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A method is presented for atom-by-atom analyses of individual nanometer-sized granular diamond 
particles (nanodiamonds, NDs) by atom-probe tomography (APT). A metal-deposition technique to affix
the NDs is combined with the unique processing capabilities of a dual-beam focused-ion beam (FIB) 
microscope to obtain microtips suitable for APT. NDs extracted from the primitive carbonaceous 
Allende meteorite first identified by transmission electron microscopy (TEM) [1]. These NDs have been 
linked to a presolar origin based on isotopic anomalies of Xe and other trace elements, detected by bulk 
mass spectrometric methods [1,2] of large numbers of NDs, which, however, showed that the bulk ratio 
of 12C/13C is close to the solar system ratio, 89 [3,4]. In this correlative study of the same sample 
material, we apply APT to measure the isotopic carbon composition of individual Allende NDs [5].

Figure 1 illustrates the preparation technique. A 170 nm thick Pt(Al) bottom layer is deposited by ion-
beam sputtering (South-Bay Technologies IBS/e) onto a polished Ni substrate disk, Fig. 1a. Next, the 
NDs are deposited by evaporating a droplet of de-ionized water with the NDs held in suspension by 
ultrasonic vibration of the Ni disk, resulting in a nearly circular deposition band, Fig. 1c, with individual 
NDs at the perimeter and larger clusters of NDs in the inner regions. The ND layer is then covered with 
a 170 nm Pt(Al) overlayer and a 400 nm Ni cover layer to provide a symmetric geometry for microtip
preparation. The ND deposition band can be identified by SEM through the over- and cover layers, Fig. 
1c. A cross-sectional cut, Fig. 1b, is made with a FEI Helios Nanolab FIB to locate the zone with
individual NDs. A bar-shaped section is lifted-out in the FIB utilizing a standard technique [6], Fig. 1d,
with an Omniprobe 200 micromanipulator, and transferred to a rotatable needle, Fig. 1e, for vertical 
reorientation. Sections of the rotated lift-out bar are mounted on standard silicon microposts [6], Fig. 1f.
Employing annular milling patterns, a tip is formed centered on the deposition band within the region
containing individual NDs in the microtip’s apex, Figs. 1g,h. A Cameca LEAP4000XSi is used for APT 
analysis. Field-evaporation is assisted by focused ultraviolet (355 nm) laser pulses with an energy of 40-
100 pJ per pulse, and a 500 kHz pulse repetition rate, at a base specimen temperature of 95 K.  

Figure 2 is a 3D atom-by-atom APT reconstruction of about 25 individual NDs embedded in the Pt(Al) 
deposition layer. Figure 3 is the mass spectrum of the NDs, displaying the region of the peaks for 13C
and 12C, singly and doubly charged ions. A ratio of 12C/13C of 63±7 is obtained for C+, and 78±10 for 
C++. These values are close to the solar system ratio, 89, with differences attributed to the instrumental 
mass fractionation.
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Figure 1.  Schematic of deposition layering (a-c) to embed nanodiamonds in a Pt matrix. FIB lift-out
(d); lift-out reorientation (e); tip mounting (f); tip sharpening (g); and the final microtip for APT (h).

Figure 2. Atom-by-atom 3D reconstruction of 
individual nanodiamonds extracted from the 
Allende meteorite, for APT analysis embedded
in a Pt(Al) matrix. C atoms are represented as 
black dots, and Pt atoms in orange. Only 5% of 
Pt atoms displayed for clarity. 

Figure 3. A partial mass spectrum with 12C and 
13C isotopic peaks from nanodiamonds extracted 
from the Allende meteorite. A 5 at.% carbon iso-
concentration surface was used to delineate the 
NDs in the reconstruction, Fig. 2. The Al peaks are 
from the Pt(Al) embedding material. 
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