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MULTIVARIATE POISSON AND POISSON PROCESS APPROXIMATIONS
WITH APPLICATIONS TO BERNOULLI SUMS AND U-STATISTICS
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Abstract

This article derives quantitative limit theorems for multivariate Poisson and Poisson
process approximations. Employing the solution of the Stein equation for Poisson ran-
dom variables, we obtain an explicit bound for the multivariate Poisson approximation
of random vectors in the Wasserstein distance. The bound is then utilized in the context
of point processes to provide a Poisson process approximation result in terms of a new
metric called dπ , stronger than the total variation distance, defined as the supremum over
all Wasserstein distances between random vectors obtained by evaluating the point pro-
cesses on arbitrary collections of disjoint sets. As applications, the multivariate Poisson
approximation of the sum of m-dependent Bernoulli random vectors, the Poisson pro-
cess approximation of point processes of U-statistic structure, and the Poisson process
approximation of point processes with Papangelou intensity are considered. Our bounds
in dπ are as good as those already available in the literature.
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1. Introduction and main results

In this paper we use the Stein method to estimate the Wasserstein distance between a non-
negative integer-valued random vector and a Poisson random vector. This problem has been
studied by several authors, mostly in terms of the total variation distance; among others we
mention [1, 3, 4, 6, 13, 28, 29]. Furthermore, we use our abstract result on multivariate Poisson
approximation to derive a limit theorem for the Poisson process approximation.

More precisely, let X = (X1, . . . , Xd) be an integrable random vector taking values in N
d
0,

d ∈N, where N0 =N∪{0}, and let P = (P1, . . . , Pd) be a Poisson random vector, that is, a
random vector with independent and Poisson distributed components. The first contribution of
this paper is an upper bound on the Wasserstein distance

dW (X, P) = sup
g∈Lipd(1)

∣∣E[g(X)] −E[g(P)]
∣∣
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between X and P, where Lipd(1) denotes the set of Lipschitz functions g : Nd
0 →R with

Lipschitz constant bounded by 1 with respect to the metric induced by the 1-norm |x|1 =∑d
i=1 |xi|, for x = (x1, . . . , xd) ∈R

d. Note that, since the indicator functions defined on N
d
0 are

Lipschitz continuous, for random vectors in N
d
0 the Wasserstein distance dominates the total

variation distance, and it is not hard to find sequences that converge in total variation distance
but not in Wasserstein distance. Our goal is to extend the approach developed in [25] for the
Poisson approximation of random variables to the multivariate case.

Throughout the paper, for any x = (x1, . . . , xd) ∈R
d and index 1 ≤ j ≤ d, we denote by x1:j

and xj:d the subvectors (x1, . . . , xj) and (xj, . . . , xd), respectively.

Theorem 1.1. Let X = (X1, . . . , Xd) be an integrable random vector with values in N
d
0, d ∈N,

and let P = (P1, . . . , Pd) be a Poisson random vector with E[P] = (λ1, . . . , λd) ∈ [0, ∞)d.

For 1 ≤ i ≤ d, consider any random vector Z(i) =
(

Z(i)
1 , . . . , Z(i)

i

)
in Z

i defined on the same

probability space as X, and define

qm1:i = miP
(
X1:i = m1:i

)− λiP
(
X1:i + Z(i) = (m1:i−1, mi − 1)

)
(1.1)

for m1:i ∈N
i
0 with mi �= 0. Then

dW (X, P) ≤
d∑

i=1

⎛⎜⎜⎜⎝λiE
∣∣Z(i)

i

∣∣+ 2λi

i−1∑
j=1

E
∣∣Z(i)

j

∣∣+ ∑
m1:i∈Ni

0
mi �=0

∣∣qm1:i

∣∣
⎞⎟⎟⎟⎠ . (1.2)

It should be noted that a bound that slightly improves (1.2) can easily be obtained as shown
in the following section in Remark 2.1, which corresponds to (1.8) in [25, Theorem 1.3] when
d = 1.

In order to give an interpretation of Equation (1.1), let us consider the random vectors

Y(i) = (X1:i−1, Xi + 1) + Z(i), i = 1, . . . , d, (1.3)

with X and Z(i) defined as in Theorem 1.1. Under the additional condition P(X1:i + Z(i) ∈
N

i
0) = 1, a sequence of real numbers qm1:i , m1:i ∈N

i
0 with mi �= 0 satisfies Equation (1.1) if and

only if
E[Xif (X1:i)] = λiE[f (Y(i))] +

∑
m1:i∈Ni

0, mi �=0

qm1:i f (m1:i) (1.4)

for all functions f : Ni
0 →R such that E |Xif (X1:i)| < ∞, where to prove that (1.4) implies (1.1)

it is enough to consider f to be the function with value 1 at m1:i and 0 elsewhere. When the
qm1:i are all zeros and E[Xi] = λi, the condition P(X1:i + Z(i) ∈N

i
0) = 1 is satisfied, as can be

seen by taking the sum over m1:i ∈N
i
0 with mi �= 0 in (1.1). In this case, (1.4) becomes

E[Xif (X1:i)] =E[Xi]E[f (Y(i))]. (1.5)

Recall that, for a random variable X ≥ 0 with mean E[X] > 0, a random variable Xs has the
size bias distribution of X if it satisfies

E[Xf (X)] =E[X]E[f (Xs)] (1.6)
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for all measurable f : R→R such that E |Xf (X)| < ∞. Therefore, if for some 1 ≤ i ≤ d the qm1:i

are all zeros and E[Xi] = λi, the distribution of the random vector Y(i) can be seen as the size
bias distribution of X1:i, as it satisfies (1.5), which corresponds to (1.6) in the one-dimensional
case. Note that this definition is similar to that of X-size bias distribution in the ith coordinate
introduced in [15].

Following this interpretation, when E[X] = (λ1, . . . , λd) and the random vectors Z(i) are
chosen to be such that the q(i)

m1:i are not zero, we can think of the distribution of Y(i) defined by
(1.3) as an approximate size bias distribution of X1:i, where instead of assuming that Y(i) sat-
isfies (1.5) exactly, we allow error terms qm1:i . This is an important advantage of Theorem 1.1,
since one does not need to find random vectors with an exact size bias distribution (in the sense
of (1.5)); it only matters that the error terms q(i)

m1:i are sufficiently small and that the random
vectors Z(i) are the null vectors with high probability.

The second main contribution of our work concerns Poisson process approximation of point
processes with finite intensity measure. For a point process ξ and a Poisson process η on a mea-
surable space X with finite intensity measure, Theorem 1.1 provides bounds on the Wasserstein
distance

dW ((ξ (A1), . . . , ξ (Ad)), (η(A1), . . . , η(Ad)) ,

where A1, . . . , Ad are measurable subsets of X. This allows for a way to compare the distri-
butions of ξ and η, by taking the supremum of the Wasserstein distances between the point
processes evaluated on arbitrary collections (A1, . . . , Ad) of disjoint sets. More precisely, let
(X,X ) be a measurable space and define NX as the collection of all σ -finite counting measures.
The set NX is equipped with the σ -field NX generated by the collection of all subsets of NX of
the form

{ν ∈ NX : ν(B) = k}, B ∈X , k ∈N0.

This means that NX is the smallest σ -field on NX that makes the map ν 
→ ν(B) measurable
for all B ∈X . A point process ξ on X is a random element in (NX,NX). The intensity of
ξ is the measure λ on (X,X ) defined by λ(B) =E[ξ (B)], B ∈X . When a point process ξ

has finite intensity measure λ, for any choice of subsets A1, . . . , Ad ∈X , the random vector
(ξ (A1), . . . , ξ (Ad)) takes values in N

d
0 (almost surely). Thus, we define a metric in the space of

point processes with finite intensity measure in the following way.

Definition 1.1. Let ξ and ζ be point processes on X with finite intensity measure. The distance
dπ between the distributions of ξ and ζ is defined as

dπ (ξ, ζ ) = sup
(A1,...,Ad)∈X d

disj, d∈N
dW

(
(ξ (A1), . . . , ξ (Ad)), (ζ (A1), . . . , ζ (Ad))

)
,

where
X d

disj = {(A1, . . . , Ad) ∈X d : Ai ∩ Aj = ∅, i �= j}.
The function dπ is a probability distance between the distributions of point processes, which
follows immediately from its definition and, e.g., [19, Proposition 2.10]. To the best of our
knowledge, this is the first time the distance dπ has been defined and employed in Poisson
process approximation. We believe that it is possible to extend dπ to larger classes of point
processes by restricting X d

disj to suitable families of sets. For example, for locally finite point
processes on a locally compact second-countable Hausdorff space (lcscH), we may define the
distance dπ by replacing X d

disj with the family of d-tuples of disjoint and relatively compact
Borel sets. However, this falls outside the scope of this paper, and it will be treated elsewhere.
Let us now state our main theoretical result on Poisson process approximation.
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226 F. PIANOFORTE AND R. TURIN

Theorem 1.2. Let ξ be a point process on X with finite intensity measure, and let η be a Poisson
process on X with finite intensity measure λ. For any i-tuple (A1, . . . , Ai) ∈X i

disj with i ∈N,

consider a random vector ZA1:i =
(

ZA1:i
1 , . . . , ZA1:i

i

)
defined on the same probability space as

ξ with values in Z
i, and define

qA1:i
m1:i

= miP
(
(ξ (A1), . . . , ξ (Ai)) = m1:i

)
− λ(Ai)P

(
(ξ (A1), . . . , ξ (Ai)) + ZA1:i = (m1:i−1, mi − 1)

) (1.7)

for m1:i ∈N
i
0 with mi �= 0. Then

dπ (ξ, η) ≤ sup
(A1,...,Ad)∈X d

disj,d∈N

d∑
i=1

⎛⎜⎜⎜⎝ ∑
m1:i∈Ni

0
mi �=0

∣∣∣qA1:i
m1:i

∣∣∣+ 2λ(Ai)
i∑

j=1

E
∣∣ZA1:i

j

∣∣
⎞⎟⎟⎟⎠ . (1.8)

Note that a bound slightly sharper than (1.8) can be derived, as expressed in Remark 2.2.
The Poisson process approximation has mostly been studied in terms of the total variation

distance in the literature; see e.g. [2, 3, 5, 8, 9, 30, 31] and references therein. In contrast,
[10, 11] deal with Poisson process approximation using the Kantorovich–Rubinstein distance.
Recall that the total variation distance between two point processes ξ and ζ on X is

dTV (ξ, ζ ) = sup
B∈NX

|P(ξ ∈ B) − P(ζ ∈ B)|.

We prove that dπ is stronger than dTV , in the sense that convergence in dπ implies convergence
in total variation distance, but not vice versa.

Proposition 1.1. Let ξ and ζ be two point processes on X with finite intensity measure. Then

dTV (ξ, ζ ) ≤ dπ (ξ, ζ ).

Note that, since dπ (ξ, ζ ) ≥ |E[ξ (X)] −E[ζ (X)]|, Example 2.2 in [10] provides a sequence
of point processes (ζn)n≥1 that converges in total variation distance to a point process ζ even
though dπ (ζn, ζ ) → ∞ as n goes to infinity.

The Kantorovich–Rubinstein distance between two point processes ξ and ζ with finite inten-
sity measure is defined as the optimal transportation cost between their distributions, when the
cost function is the total variation distance between measures; that is,

dKR(ξ, ζ ) = inf
(	1,	2)∈
(ξ,ζ )

E sup
A∈X

|	1(A) − 	2(A)|,

where 
(ξ, ζ ) denotes the set of all pairs of point processes 	1, 	2 on X defined on the same
probability space such that 	1 and 	2 follow the distributions of ξ and ζ , respectively. We prove
that, under suitable assumptions on the space, dπ is dominated by 2dKR, while it remains an
open problem whether the two distances are equivalent or not.

Proposition 1.2. Let ξ and ζ be two point processes with finite intensity measure on an lcscH
space X with Borel σ -field X . Then

dπ (ξ, ζ ) ≤ 2dKR(ξ, ζ ) .
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The factor 2 in Proposition 1.2 cannot be improved, as shown by the following simple
example: let X= {a, b} with X = {∅, {a}, {b},X}, and let δa and δb be deterministic point
processes corresponding to the Dirac measures centered at a and b, respectively. Since the
function g : (x1, x2) 
→ x1 − x2 is 1-Lipschitz, it follows that

dπ (δa, δb) ≥ | g(δa({a}), δa({b})) − g(δb({a}), δb({b})) | = 2.

On the other hand, dKR is bounded by the expected total variation distance between the two
counting measures; thus dKR(δa, δb) ≤ 1. Hence, in this case dπ (δa, δb) = 2dKR(δa, δb). It is
worth mentioning that our general result, Theorem 1.2, permits the approximation of point
processes by Poisson processes on any measurable space. Hence, Theorem 1.2 can be used to
obtain approximation results for point processes also when the notion of weak convergence is
not defined. Moreover, when X is lcscH, convergence with respect to dπ implies convergence
in distribution, as easily follows from [16, Theorem 16.16(iii)].

To demonstrate the versatility of our general main results, we apply them to several exam-
ples. In Subsection 3.1, we approximate the sum of Bernoulli random vectors by a Poisson
random vector. By a Bernoulli random vector, we mean a random vector with values in the set
composed of the canonical vectors of Rd and the null vector. This problem has mainly been
studied in terms of the total variation distance and under the assumption that the Bernoulli
random vectors are independent (see e.g. [27]). We derive an explicit approximation result
in the Wasserstein distance for the more general case of m-dependent Bernoulli random
vectors.

In Subsections 3.2 and 3.3, we apply Theorem 1.2 to obtain explicit Poisson process approx-
imation results for point processes with Papangelou intensity and point processes of Poisson
U-statistic structure. The latter are point processes that, once evaluated on a measurable set,
become Poisson U-statistics. Analogous results were already proven for the Kantorovich–
Rubinstein distance in [11, Theorem 3.7] and [10, Theorem 3.1], under the additional condition
that the configuration space X is lcscH. It is interesting to note that the proof of our result for
point processes with Papangelou intensity employs Theorem 1.2 with ZA1:i set to zero for all
i, while for point processes of U-statistic structure, we find ZA1:i such that Equation (1.7) in
Theorem 1.2 is satisfied with qA1:i

m1:i ≡ 0 for all collections of disjoint sets.
The proof of Theorem 1.1 is based on the Chen–Stein method applied to each component

of the random vectors and the coupling in (1.1). In the proof of Theorem 1.2 we mimic the
approach used in [1] to prove Theorem 2, as we derive the process bound as a consequence of
the d-dimensional bound.

Before we discuss the applications in Section 3, we prove our main results in the next
section.

2. Proofs of the main results

Throughout this section, X = (X1, . . . , Xd) is an integrable random vector with values in N
d
0

and P = (P1, . . . , Pd) is a Poisson random vector with mean E[P] = (λ1, . . . , λd) ∈ [0, ∞)d.
Without loss of generality we assume that X and P are independent and defined on the
same probability space (�, F, P). We denote by Lipd(1) the collection of Lipschitz functions
g : Nd

0 →R with respect to the metric induced by the 1-norm and Lipschitz constant bounded
by 1, that is,

|g(x) − g(y)| ≤ |x − y|1 =
d∑

i=1

|xi − yi|, x, y ∈N
d
0.
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Clearly, this family of functions contains the 1-Lipschitz functions with respect to the
Euclidean norm. For d = 1, we use the convention Lip(1) = Lip1(1).

For any fixed g ∈ Lip(1), a solution of Stein’s equation for the Poisson distribution is a
real-valued function ĝ (λ) : N0 →R that satisfies

λ̂g (λ)(i + 1) − îg (λ)(i) = g(i) −E[g(Pλ)], i ∈N0, (2.1)

where Pλ is a Poisson random variable with mean λ ≥ 0. For convenience, we fix the initial
condition ĝ (λ)(0) = 0. With this assumption, the function ĝ (λ) is unique and may be obtained
by solving (2.1) recursively on i. An explicit expression for this solution is given in [14,
Theorem 1.2]. The following lemma is a direct consequence of [7, Theorem 1.1] (note that
the case λ = 0 is trivial).

Lemma 2.1. For any λ ≥ 0 and g ∈ Lip(1), let ĝ (λ) be the solution of the Stein equation (2.1)
with initial condition ĝ (λ)(0) = 0. Then

sup
i∈N0

∣∣∣̂g (λ)(i)
∣∣∣≤ 1 and sup

i∈N0

∣∣∣̂g (λ)(i + 1) − ĝ (λ)(i)
∣∣∣≤ 1. (2.2)

Recall that, for any x = (x1, . . . , xd) ∈R
d and some index 1 ≤ j ≤ d, we write x1:j and xj:d

for the subvectors (x1, . . . , xj) and (xj, . . . , xd), respectively. For g ∈ Lipd(1), let ĝ (λ)
x1:i−1|xi+1:d

denote the solution to (2.1) for the Lipschitz function g(x1:i−1, · , xi+1:d) with fixed x1:i−1 ∈
N

i−1
0 and xi+1:d ∈N

d−i
0 . Since ĝ (λ) takes vectors from N

d
0 as input, we do not need to worry

about measurability issues. The following proposition is the first building block for the proof
of Theorem 1.1.

Proposition 2.1. For any g ∈ Lipd(1),

E[g(P) − g(X)] =
d∑

i=1

E

[
Xîg

(λi)
X1:i−1|Pi+1:d

(Xi) − λîg
(λi)
X1:i−1|Pi+1:d

(Xi + 1)
]

.

Proof of Proposition 2.1. First, observe that

E
[
g(P) − g(X)

]=
d∑

i=1

E
[
g(X1:i−1, Pi:d) − g(X1:i, Pi+1:d)

]
, (2.3)

with the conventions (X1:0, P1:d) = P and (X1:d, Pd+1:d) = X. The independence of Pi from
Pi+1:d and X1:i implies

E
[
g(X1:i−1, Pi:d) − g(X1:i, Pi+1:d)

]=E
[
E

Pi[g(X1:i−1, Pi:d)] − g(X1:i, Pi+1:d)
]
,

where E
Pi denotes the expectation with respect to the random variable Pi. From the definition

of ĝ (λi)
x1:i−1|xi+1:d

with x1:i−1 = Xi:i−1 and xi+1:d = Pi+1:d, it follows that

E
Pi [g(X1:i−1, Pi:d)] − g(X1:i, Pi+1:d) = Xîg

(λi)
X1:i−1|Pi+1:d

(Xi) − λîg
(λi)
X1:i−1|Pi+1:d

(Xi + 1)

for all i = 1, . . . , d. Together with (2.3), this leads to the desired conclusion. �

Proof of Theorem 1.1. In view of Proposition 2.1, it suffices to bound∣∣∣E [
Xîg

(λi)
X1:i−1|Pi+1:d

(Xi) − λîg
(λi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣ , i = 1, . . . , d .
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For the remainder of the proof, the index i is fixed and we omit the superscript (i) in Z(i)
1:i. Define

the function h : Ni
0 →R so that

h(X1:i) =E

[̂
g (λi)

X1:i−1|Pi+1:d
(Xi)

∣∣ X1:i

]
,

where E[·| Y] denotes the conditional expectation with respect to a random element Y . With
the convention ĝ (λi)

m1:i−1|mi+1:d
(mi) = 0 if m1:d /∈N

d
0, it follows from (1.1) that

E

[
Xîg

(λi)
X1:i−1|Pi+1:d

(Xi)
]
=E[Xih(X1:i)] =

∑
m1:i∈Ni

0

mih(m1:i)P(X1:i = m1:i)

=
∑

m1:i∈Ni
0

mi �=0

h(m1:i)qm1:i + λi

∑
m1:i∈Ni

0
mi �=0

h(m1:i)P (X1:i + Z1:i = (m1:i−1, mi − 1))

=
∑

m1:i∈Ni
0

mi �=0

h(m1:i)qm1:i + λiE

[̂
g (λi)

X1:i−1+Z1:i−1|Pi+1:d
(Xi + Zi + 1)

]
.

Since |h(X1:i)| ≤ 1 by (2.2), the triangle inequality establishes∣∣∣E [
Xîg

(λi)
X1:i−1|Pi+1:d

(Xi) − λîg
(λi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣≤ ∑

m1:i∈Ni
0

mi �=0

∣∣qm1:i

∣∣+ λi(H1 + H2), (2.4)

with

H1 =
∣∣∣E [̂

g (λi)
X1:i−1+Z1:i−1|Pi+1:d

(Xi + Zi + 1) − ĝ (λi)
X1:i−1+Z1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣

and

H2 =
∣∣∣E [̂

g (λi)
X1:i−1+Z1:i−1|Pi+1:d

(Xi + 1) − ĝ (λi)
X1:i−1|Pi+1:d

(Xi + 1)
]∣∣∣ .

The inequalities in (2.2) guarantee

H1 ≤E|Zi| and H2 ≤ 2P(Z1:i−1 �= 0) ≤
i−1∑
j=1

2P(Zj �= 0) ≤ 2
i−1∑
j=1

E|Zj|.

Combining (2.4) with the bounds for H1 and H2 and summing over i = 1, . . . , d concludes the
proof. �

Remark 2.1. It follows directly from the previous proof that the term
∑i−1

j=1 E|Zj| in (1.2) could
be replaced by P(Z1:i−1 �= 0). Moreover, applying (1.4) from [7, Theorem 1.1] yields

H1 ≤ min

{
1,

8

3
√

2eλi

}
E|Zi| .

These two observations together lead to the improved bound for Theorem 1.1:
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dW (X, P) ≤
d∑

i=1

⎛⎜⎜⎜⎝min

{
λi,

8
√

λi

3
√

2e

}
E
∣∣Z(i)

i

∣∣+ 2λiP
(
Z(i)

1:i−1 �= 0
)+

∑
m1:i∈Ni

0
mi �=0

∣∣qm1:i

∣∣
⎞⎟⎟⎟⎠ .

Next, we derive Theorem 1.2 from Theorem 1.1.

Proof of Theorem 1.2. Let d ∈N and A = (A1, . . . , Ad) ∈X d
disj. Define

XA = (ξ (A1), . . . , ξ (Ad)) and PA = (η(A1), . . . , η(Ad)),

where PA is a Poisson random vector with mean E[PA] = (λ(A1), . . . , λ(Ad)). By Theorem 1.1
with Z(i) = ZA1:i , we obtain

dW (XA, PA) ≤
d∑

i=1

⎛⎜⎜⎜⎝ ∑
m1:i∈Ni

0
mi �=0

∣∣∣qA1:i
m1:i

∣∣∣+ 2λ(Ai)
i∑

j=1

E|ZA1:i
j |

⎞⎟⎟⎟⎠ .

Taking the supremum over all d-tuples of disjoint measurable sets concludes the proof. �

Remark 2.2. By taking into account Remark 2.1, one immediately obtains

dπ (ξ, η) ≤ sup
(A1,...,Ad)∈X d

disj,d∈N

d∑
i=1

(
min

{
λ(Ai),

8
√

λ(Ai)

3
√

2e

}
E
∣∣ZA1:i

i

∣∣
+ 2λ(Ai)P

(
ZA1:i

1:i−1 �= 0
)+

∑
m1:i∈Ni

0
mi �=0

∣∣∣qA1:i
m1:i

∣∣∣ ).

Let us now prove that the total variation distance is dominated by dπ . Recall that the total
variation distance between two point processes ξ and ζ on X is

dTV (ξ, ζ ) = sup
B∈NX

|P(ξ ∈ B) − P(ζ ∈ B)| . (2.5)

The result is obtained by a monotone class theorem, [21, Theorem 1.3], which is stated below
as a lemma. A monotone class A is a collection of sets closed under monotone limits; that is,
for any A1, A2, . . . ∈A with An ↑ A or An ↓ A, we have A ∈A.

Lemma 2.2. Let U be a set and let U be an algebra of subsets of U. Then the monotone class
generated by U coincides with the σ -field generated by U .

Proof of Proposition 1.1. Let us first introduce the set of finite counting measures

N<∞
X

= {ν ∈ NX : ν(X) < ∞},
with the trace σ -field

N<∞
X

= {B ∩ N<∞
X

: B ∈NX}.
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As we are dealing with finite point processes, the total variation distance is equivalently
obtained if NX is replaced by N<∞

X
in (2.5):

dTV (ξ, ζ ) = sup
B∈N<∞

X

|P(ξ ∈ B) − P(ζ ∈ B)|.

Let P(Nd
0) denote the power set of Nd

0, that is, the collection of all subsets of Nd
0. For any d ∈N

and M ∈P(Nd
0) note that 1M(·) ∈ Lipd(1); therefore

dπ (ξ, ζ ) ≥ sup
U∈U

|P(ξ ∈ U) − P(ζ ∈ U)| , (2.6)

with

U = { {
ν ∈ N<∞

X
: (ν(A1), . . . , ν(Ad)) ∈ M

}
: d ∈N, (A1, . . . , Ad) ∈X d

disj, M ∈P(Nd
0)
}
.

It can easily be verified that U is an algebra, U ⊂N<∞
X

, and σ (U ) =N<∞
X

. Moreover, by (2.6),
U is a subset of the monotone class{

U ∈N<∞
X

: |P(ξ ∈ U) − P(ζ ∈ U)| ≤ dπ (ξ, ζ )
}

.

Lemma 2.2 concludes the proof. �

In the last part of this section, we show that dπ is dominated by 2dKR when the underly-
ing space is lcscH and X is the Borel σ -field. A topological space is second-countable if its
topology has a countable basis, and it is locally compact if every point has an open neighbor-
hood whose topological closure is compact. Recall that the Kantorovich–Rubinstein distance
between two point processes ξ and ζ , with finite intensity measure on a measurable space X,
is given by

dKR(ξ, ζ ) = inf
(	1,	2)∈
(ξ,ζ )

E sup
A∈X

|	1(A) − 	2(A)|,

where 
(ξ, ζ ) denotes the set of all pairs of point processes 	1, 	2 on X defined on the same
probability space such that 	1 and 	2 follow the distributions of ξ and ζ , respectively. When
the configuration space X is lcscH, the Kantorovich duality theorem [33, Theorem 5.10] yields
an equivalent definition for this metric:

dKR(ξ, ζ ) = sup
h∈L(1)

|E[h(ξ )] −E[h(ζ )]| , (2.7)

where L(1) is the set of all measurable functions h : NX →R that are Lipschitz continuous
with respect to the total variation distance between measures,

dTV,NX
(μ, ν) = sup

A∈X ,
μ(A),ν(A)<∞

|μ(A) − ν(A)|, μ, ν ∈ NX,

with Lipschitz constant bounded by 1. Since ξ and ζ take values in N<∞
X

, by [22, Theorem 1]
we may assume that h is defined on N<∞

X
.

Proof of Proposition 1.2. For g ∈ Lipd(1) and disjoint sets A1, . . . , Ad ∈X , d ∈N, define
h : N<∞

X
→R by h(ν) = g(ν(A1), . . . , ν(Ad)). For finite point configurations ν1 and ν2, we

obtain
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|h(ν1) − h(ν2)| ≤ |g(ν1(A1), . . . , ν1(Ad)) − g(ν2(A1), . . . , ν2(Ad))|

≤
d∑

i=1

|ν1(Ai) − ν2(Ai)| ≤ 2dTV,NX
(ν1, ν2).

Therefore, we have h/2 ∈L(1). Together with (2.7), this implies |E[h(ξ )] −E[h(ζ )]| ≤
2dKR(ξ, ζ ) and concludes the proof. �

3. Applications

3.1. Sum of m-dependent Bernoulli random vectors

In this subsection, we consider a finite family of Bernoulli random vectors Y(1), . . . , Y(n)

and investigate the multivariate Poisson approximation of X =∑n
r=1 Y(r) in the Wasserstein

distance. The distributions of Y(1), . . . , Y(n) are given by

P(Y(r) = ej) = pr,j ∈ [0, 1], r = 1, . . . , n , j = 1, . . . , d,

P(Y(r) = 0) = 1 −
d∑

j=1

pr,j ∈ [0, 1], r = 1, . . . , n,
(3.1)

where ej denotes the vector with entry 1 at position j and entry 0 otherwise. If the Bernoulli
random vectors are independent and identically distributed (i.i.d.), X has the so-called multi-
nomial distribution. The multivariate Poisson approximation of the multinomial distribution,
and more generally of the sum of independent Bernoulli random vectors, has already been
tackled by many authors in terms of the total variation distance. Among others, we refer the
reader to [4, 12, 27, 29] and the survey [23]. Unlike the abovementioned papers, we assume
that Y(1), . . . , Y(n) are m-dependent. Note that the case of sums of 1-dependent random vectors
has recently been treated in [13] using metrics that are weaker than the total variation distance.
To the best of our knowledge, this is the first paper where the Poisson approximation of the sum
of m-dependent Bernoulli random vectors is investigated in terms of the Wasserstein distance.

More precisely, for n ∈N, let Y(1), . . . , Y(n) be Bernoulli random vectors with distribu-
tions given by (3.1), and assume that for a given fixed m ∈N0 and any two subsets S and
T of {1, . . . , n} such that min(S) − max(T) > m, the collections

(
Y(s))

s∈S and
(
Y(t))

t∈T are
independent. Define the random vector X = (X1, . . . , Xd) as

X =
n∑

r=1

Y(r). (3.2)

Note that if Y(r), r = 1, . . . , n, are i.i.d., then m = 0 and X has the multinomial distribution.
The mean vector of X is E[X] = (λ1, . . . , λd) with

λj =
n∑

r=1

pr,j, j = 1, . . . , d. (3.3)

For k = 1, . . . , n and m ≥ 1 let Q(k) be the quantity given by

Q(k) = max
r∈{1,...,n} : 1≤|k−r|≤m

i,j=1,...,d

E
[
1{Y(k) = ei}1{Y(r) = ej}

]
.

We now state the main result of this subsection.
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Theorem 3.1. Let X be as in (3.2), and let P = (P1, . . . , Pd) be a Poisson random vector with
mean E[P] = (λ1, . . . , λd) given by (3.3). Then

dW (X, P) ≤
n∑

k=1

d∑
i=1

[ ∑
r=1,...,n,
|r−k|≤m

pr,i + 2
i−1∑
j=1

∑
r=1,...,n,
|r−k|≤m

pr,j

]
pk,i + 2d(d + 1)m

n∑
k=1

Q(k).

The proof of Theorem 3.1 is obtained by applying Theorem 1.1. When d = 1, Equation (1.1)
corresponds to the condition required in [25, Theorem 1.2], which establishes sharper
Poisson approximation results than the one obtained in the univariate case from Theorem 1.1.
Therefore, for the sum of dependent Bernoulli random variables, a sharper bound for the
Wasserstein distance can be derived from [25, Theorem 1.2], while for the total varia-
tion distance a bound may be deduced from [1, Theorem 1], [25, Theorem 1.2], or [32,
Theorem 1].

As a consequence of Theorem 3.1, we obtain the following result for the sum of independent
Bernoulli random vectors.

Corollary 3.1. For n ∈N, let Y(1), . . . , Y(n) be independent Bernoulli random vectors with
distribution given by (3.1), and let X be the random vector defined by (3.2). Let P =
(P1, . . . , Pd) be a Poisson random vector with mean E[P] = (λ1, . . . , λd) given by (3.3).
Then

dW (X, P) ≤
n∑

k=1

[ d∑
i=1

pk,i

]2

.

In [27, Theorem 1], a sharper bound for the total variation distance than the one obtained
by Corollary 3.1 is proven. When the vectors are identically distributed and

∑d
j=1 p1,j ≤

α/n for some constant α > 0, our bound for the Wasserstein distance and the one in [27,
Theorem 1] for the total variation distance differ only by a constant that does not depend
on n, d, or the probabilities pi,j.

Proof of Theorem 3.1. Without loss of generality we may assume that λ1, . . . , λd > 0.
Define the random vectors

W(k) = (
W(k)

1 , . . . , W(k)
d

)=
∑

r=1,...,n,
1≤|r−k|≤m

Y(r),

X(k) = (
X(k)

1 , . . . , X(k)
d

)= X − Y(k) − W(k),

for k = 1, . . . , n. Let us fix 1 ≤ i ≤ d and �1:i ∈N
i
0 with �i �= 0. From straightforward calcula-

tions it follows that

�iP(X1:i = �1:i) =E

n∑
k=1

1{Y(k) = ei}1{X1:i = �1:i} (3.4)

=E

n∑
k=1

1{Y(k) = ei}1
{
X(k)

1:i + W(k)
1:i = (�1:i−1, �i − 1)

}
.
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Let H�1:i and q�1:i be the quantities given by

H�1:i =E

n∑
k=1

1{Y(k) = ei}1
{
X(k)

1:i = (�1:i−1, �i − 1)
}
,

q�1:i = �iP(X1:i = �1:i) − H�1:i .

For i = 1, . . . , d, let τi be a random variable independent of (Y(r))n
r=1 with distribution

P(τi = k) = pk,i/λi, k = 1, . . . , n .

Since Y(r), r = 1, . . . , n, are m-dependent, the random vectors Y(k) =
(

Y (k)
1 , . . . , Y (k)

d

)
and

X(k) are independent for all k = 1, . . . , n. Therefore

H�1:i =
n∑

k=1

pk,iP
(
X(k)

1:i = (�1:i−1, �i − 1)
)

=
n∑

k=1

pk,iP
(
X1:i − W(k)

1:i − Y (k)
1:i = (�1:i−1, �i − 1)

)
= λiP

(
X1:i − W(τi)

1:i − Y (τi)
1:i = (�1:i−1, �i − 1)

)
.

Then, by Theorem 1.1 we obtain

dW (X, P) ≤
d∑

i=1

(
λiE

[
W(τi)

i + Y (τi)
i

]
+ 2λi

i−1∑
j=1

E

[
W(τi)

j + Y (τi)
j

]
+

∑
�1:i∈Nd

0
�i �=0

∣∣q�1:i

∣∣). (3.5)

From (3.4) and the definition of q�1:i it follows that

|q�1:i | ≤E

n∑
k=1

1{Y(k) = ei}
∣∣∣1{X(k)

1:i + W(k)
1:i = (�1:i−1, �i − 1)

}− 1
{
X(k)

1:i = (�1:i−1, �i − 1)
}∣∣∣

≤E

n∑
k=1

1{Y(k) = ei}1{W(k)
1:i �= 0}1{X(k)

1:i + W(k)
1:i = (�1:i−1, �i − 1)

}

+E

n∑
k=1

1{Y(k) = ei}1{W(k)
1:i �= 0}1{X(k)

1:i = (�1:i−1, �i − 1)
}
.

Thus, by the inequality 1{W(k)
1:i �= 0} ≤∑i

j=1 W(k)
j we obtain

∑
�1:i∈Ni

0
�i �=0

∣∣q�1:i

∣∣≤ 2E
n∑

k=1

1{Y(k) = ei}1{W(k)
1:i �= 0}

≤ 2E
n∑

k=1

i∑
j=1

1{Y(k) = ei}W(k)
j ≤ 4mi

n∑
k=1

Q(k).

(3.6)
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Moreover, for any i, j = 1, . . . , d we have

λiE

[
W(τi)

j + Y (τi)
j

]
= λiE

∑
r=1,...,n,
|r−τi|≤m

1{Y(r) = ej}

=
n∑

k=1

pk,i E
∑

r=1,...,n,
|r−k|≤m

1{Y(r) = ej} =
∑

k,r=1,...,n,
|r−k|≤m

pk,ipr,j.

Together with (3.5) and (3.6), this leads to

dW (X, P) ≤
d∑

i=1

∑
k,r=1,...,n,
|r−k|≤m

pk,ipr,i + 2
d∑

i=1

i−1∑
j=1

∑
k,r=1,...,n,
|r−k|≤m

pk,ipr,j + 2d(d + 1)m
n∑

k=1

Q(k)

=
n∑

k=1

d∑
i=1

[ ∑
r=1,...,n,
|r−k|≤m

pr,i + 2
i−1∑
j=1

∑
r=1,...,n,
|r−k|≤m

pr,j

]
pk,i + 2d(d + 1)m

n∑
k=1

Q(k),

which completes the proof. �

3.2. Point processes with Papangelou intensity

Let ξ be a proper point process on a measurable space (X,X ), that is, a point process
that can be written as ξ = δX1 + · · · + δXτ , for some random elements X1, X2, . . . in X and a
random variable τ ∈N0 ∪ {∞}. Note that any Poisson process can be seen as a proper point
process, and that all locally finite point processes are proper if (X,X ) is a Borel space; see e.g.
[19, Corollaries 3.7 and 6.5]. The so-called reduced Campbell measure C of ξ is defined on the
product space (X× NX,X ⊗NX) by

C(A) =E

∫
X

1A(x, ξ \ x) ξ (dx), A ∈X ⊗NX,

where ξ \ x denotes the point process ξ − δx if x ∈ ξ , and ξ otherwise. Let ν be a σ -finite
measure on (X,X ) and let Pξ be the distribution of ξ on (NX,NX). If C is absolutely contin-
uous with respect to ν ⊗ Pξ , any density c of C with respect to ν ⊗ Pξ is called (a version
of) the Papangelou intensity of ξ . This notion was originally introduced by Papangelou
in [24]. In other words, c is a Papangelou intensity of ξ relative to the measure ν if the
Georgii–Nguyen–Zessin equation

E

∫
X

u(x, ξ \ x) ξ (dx) =
∫
X

E[c(x, ξ )u(x, ξ )]ν(dx) (3.7)

is satisfied for all measurable functions u : X× NX → [0, ∞). Intuitively, c(x, ξ ) is a random
variable that measures the interaction between x and ξ ; as a reinforcement of this idea, it
is well known that if c is deterministic, that is, c(x, ξ ) = f (x) for some positive and mea-
surable function f , then ξ is a Poisson process with intensity measure λ(A) = ∫

A f (x)ν(dx),
A ∈X ; see e.g. [19, Theorem 4.1]. For more details on this interpretation we refer the reader to
[11, Section 4]; see also [18] and [31] for connections between the Papangelou intensity and
Gibbs point processes.

https://doi.org/10.1017/jpr.2022.33 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.33


236 F. PIANOFORTE AND R. TURIN

In the next theorem we prove a bound for the dπ distance between a point process ξ that
admits Papangelou intensity relative to a measure ν, and a Poisson process η with inten-
sity measure λ absolutely continuous with respect to ν. For a locally compact metric space,
Theorem 3.2 yields the same bound as [11, Theorem 3.7], but for the metric dπ instead of the
Kantorovich–Rubinstein distance.

Theorem 3.2. Let ξ be a proper point process on X that admits Papangelou intensity c with
respect to a σ -finite measure ν such that

∫
X
E|c(x, ξ )|ν(dx) < ∞. Let η be a Poisson process

on X with finite intensity measure λ having density f with respect to ν. Then

dπ (ξ, η) ≤
∫
X

E |c(x, ξ ) − f (x)| ν(dx).

Proof of Theorem 3.2. The condition
∫
X
E|c(x, ξ )|ν(dx) < ∞ and Equation (3.7) ensure that

ξ has finite intensity measure. Consider i ∈N and (A1, . . . , Ai) ∈X i
disj. Hereafter, ξ (A1:i) is

shorthand notation for (ξ (A1), . . . , ξ (Ai)). The idea of the proof is to apply Theorem 1.2 with
the random vectors ZA1:i assumed to be 0. In this case,

qA1:i
m1:i

= miP
(
ξ (A1:i) = m1:i

)− λ(Ai)P
(
ξ (A1:i) = (m1:i−1, mi − 1)

)
= miP

(
ξ (A1:i) = m1:i

)−
∫
X

E
[
f (x)1Ai(x)1{ξ (A1:i) = (m1:i−1, mi − 1)}]ν(dx)

for m1:i ∈N
i
0 with mi �= 0, i = 1, . . . , d. It follows from (3.7) that

miP
(
ξ (A1:i) = m1:i

)=E

∫
X

1Ai(x)1{ξ \ x(A1:i) = (m1:i−1, mi − 1)} ξ (dx)

=
∫
X

E
[
c(x, ξ )1Ai (x)1{ξ (A1:i) = (m1:i−1, mi − 1)}]ν(dx);

hence

qA1:i
m1:i

=
∫
X

E
[
(c(x, ξ ) − f (x))1Ai (x)1{ξ (A1:i) = (m1:i−1, mi − 1)}]ν(dx).

Theorem 1.2 yields

dπ (ξ, η) ≤ sup
(A1,...,Ad)∈X d

disj,d∈N

d∑
i=1

∑
m1:i∈Ni

0
mi �=0

∣∣∣qA1:i
m1:i

∣∣∣ .

The inequalities∑
m1:i∈Ni

0
mi �=0

∣∣∣qA1:i
m1:i

∣∣∣≤ ∑
m1:i∈Ni

0,

mi �=0

∫
X

E
[|c(x, ξ ) − f (x)|1Ai (x)1{ξ (A1:i) = (m1:i−1, mi − 1)}]ν(dx)

≤
∫
X

E

[
|c(x, ξ ) − f (x)|1Ai (x)

∑
m1:i∈Ni

0
mi �=0

1{ξ (A1:i) = (m1:i−1, mi − 1)}
]
ν(dx)

≤
∫
X

E
[|c(x, ξ ) − f (x)|1Ai (x)

]
ν(dx)
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imply that
d∑

i=1

∑
m1:i∈Ni

0
mi �=0

∣∣∣qA1:i
m1:i

∣∣∣≤ ∫
X

E |c(x, ξ ) − f (x)| ν(dx)

for any A1:d ∈X d
disj with d ∈N. Thus, we obtain the assertion. �

3.3. Point processes of Poisson U-statistic structure

Let (X,X ) and (Y,Y) be measurable spaces. For k ∈N and a symmetric domain D ∈X k,
let g : D →Y be a symmetric measurable function; i.e., for any (x1, . . . , xk) ∈ D and index per-
mutation σ , (xσ (1), . . . , xσ (k)) ∈ D and g(x1, . . . , xk) = g(xσ (1), . . . , xσ (k)). Let η be a Poisson
process on X with finite intensity measure μ. We are interested in the point process on Y

given by

ξ = 1

k!
∑

(x1,...,xk)∈ηk�=∩D

δg(x1,...,xk), (3.8)

where ηk�= denotes the collection of all k-tuples (x1, . . . , xk) of points from η with pairwise dis-
tinct indices. The point process ξ has a Poisson U-statistic structure in the sense that, for any
B ∈Y , ξ (B) is a Poisson U-statistic of order k. We refer to the monographs [17, 20] for more
details on U-statistics and their applications to statistics. Hereafter we discuss the Poisson pro-
cess approximation in the metric dπ for the point process ξ . We prove the exact analogue of
[10, Theorem 3.1], with the Kantorovich–Rubinstein distance replaced by dπ . Several appli-
cations of this result are presented in [10], alongside the case of underlying binomial point
processes. It is worth mentioning that [10] relies on a slightly less general setup: X is assumed
to be an lcscH space, while in the present work any measurable space is allowed.

Let λ denote the intensity measure of ξ , and note that, since μ is a finite measure on X, by
the multivariate Mecke formula λ(Y) < ∞. Define

R = max
1≤i≤k−1

∫
Xi

( ∫
Xk−i

1{(x1, . . . , xk) ∈ D} μk−i(d(xi+1, . . . , xk))

)2

μi(d(x1, . . . , xi))

for k ≥ 2, and put R = 0 for k = 1.

Theorem 3.3. Let ξ , λ, and R be as above, and let γ be a Poisson process on Y with intensity
measure λ. Then

dπ (ξ, γ ) ≤ 2k+1

k! R.

If the intensity measure λ of ξ is the zero measure, then the proof of Theorem 3.3 is trivial.
From now on, we assume 0 < λ(Y) < ∞. The multivariate Mecke formula yields for every
A ∈Y that

λ(A) =E[ξ (A)] = 1

k!E
∑

x∈ηk�=∩D

1{g(x) ∈ A} = 1

k!
∫

D
1{g(x) ∈ A} μk(dx).

Define the random element XA = (XA
1 , . . . , XA

k ) in X
k independent of η and distributed

according to

P

(
XA ∈ B

)
= 1

k!λ(A)

∫
D

1{g(x) ∈ A}1{x ∈ B} μk(dx)
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for all B in the product σ -field of Xk when λ(A) > 0, and set XA = x0 for some x0 ∈X
k when

λ(A) = 0. For any vector x = (x1, . . . , xk) ∈X
k, denote by �(x) the sum of k Dirac measures

located at the vector components; that is,

�(x) = �(x1, . . . , xk) =
k∑

i=1

δxi .

In what follows, for any point process ζ on X, ξ (ζ ) is the point process defined as in (3.8)
with η replaced by ζ . Furthermore, as in Section 3.2, ξ (A1:i) denotes the random vector
(ξ (A1), . . . , ξ (Ai)), for any A1, . . . , Ai ∈Y , i ∈N.

Proof of Theorem 3.3. For k = 1, Theorem 3.3 is a direct consequence of [19, Theorem 5.1].
We therefore assume k ≥ 2. Let A1, . . . , Ai ∈Y with i ∈N be disjoint sets and let m1:i ∈N

i
0

with mi �= 0. Suppose λ(Ai) > 0. The multivariate Mecke formula implies that

miP(ξ (A1:i) = m1:i) = 1

k!E
∑

x∈ηk�=∩D

1{g(x) ∈ Ai}1{ξ (A1:i) = m1:i}

= 1

k!
∫

D
1{g(x) ∈ Ai}P(ξ (η + �(x))(A1:i) = m1:i) μk(dx)

= 1

k!
∫

D
1{g(x) ∈ Ai}P

(
ξ (η + �(x))(A1:i) − δg(x)(A1:i) = (m1:i−1, mi − 1)

)
μk(dx)

= λ(Ai)P

(
ξ
(
η + �

(
XAi

))
(A1:i) − δ

g
(

XAi
)(A1:i) = (m1:i−1, mi − 1)

)
,

(3.9)

where the second-to-last equality holds true because δg(x)(A1:i) is the vector (0, . . . , 0, 1) ∈N
i
0

when g(x) ∈ Ai. The previous identity is also satisfied if λ(Ai) = 0. Hence, for

ZA1:i = ξ
(
η + �

(
XAi

))
(A1:i) − ξ (A1:i) − δ

g
(

XAi
)(A1:i) ,

the quantity qA1:i
m1:i defined by Equation (1.7) in Theorem 1.2 is zero. Note that ZA1:i has

nonnegative components. Hence, for any d ∈N and (A1, . . . , Ad) ∈X d
disj,

d∑
i=1

λ(Ai)
i∑

j=1

E

∣∣∣ZA1:i
j

∣∣∣= d∑
i=1

λ(Ai)
i∑

j=1

E

[
ξ
(
η + �

(
XAi

))
(Aj) − ξ (Aj) − δ

g
(

XAi
)(Aj)

]

≤
d∑

i=1

λ(Ai)E
[
ξ
(
η + �

(
XAi

))
(Y) − ξ (Y) − 1

]

= 1

k!
d∑

i=1

∫
D

1{g(x) ∈ Ai}E [ξ (η + �(x))(Y) − ξ (Y) − 1] μk(dx)

≤ λ(Y)E
[
ξ
(
η + �

(
XY

))
(Y) − ξ (Y) − 1

]
.
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Thus, Theorem 1.2 gives

dπ (ξ, γ ) ≤ 2λ(Y)E
[
ξ
(
η + �

(
XY

))
(Y) − ξ (Y) − 1

]
. (3.10)

From (3.9) with i = 1 and A1 =Y, it follows that the random variable ξ
(
η + �

(
XY

))
(Y)

has the size bias distribution of ξ (Y). The property (1.6) with f being the identity function and
simple algebraic computations yield

E

[
ξ
(
η + �

(
XY

))
(Y) − ξ (Y) − 1

]
= λ(Y)−1

{
E
[
ξ (Y)2]− λ(Y)2 − λ(Y)

}
= λ(Y)−1 {Var(ξ (Y)) − λ(Y)} .

(3.11)

Moreover, [26, Lemma 3.5] gives

Var(ξ (Y)) − λ(Y) ≤
k−1∑
i=1

1

k!
(

k

i

)
R ≤ 2k − 1

k! R .

These inequalities combined with (3.10) and (3.11) deliver the assertion. �
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