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EMBEDDING RIGHT CHAIN RINGS IN 
CHAIN RINGS 

H. H. BRUNGS AND G. TORNER 

1. I n t r o d u c t i o n . The following problem was the star t ing point for this 
investigation: Can every desarguesian affine Hjelmslev plane be embedded 
into a desarguesian projective Hjelmslev plane [8]? An affine Hjelmslev plane 
is called desarguesian if it can be coordinatized by a right chain ring R with a 
maximal ideal J(R) consisting of two-sided zero divisors. A projective Hjemslev 
plane is called desarguesian if the coordinate ring is in addition a left chain ring, 
i.e. a chain ring. This leads to the algebraic version of the above problem, 
namely the embedding of right chain rings into suitable chain rings. We can 
prove the following result. 

Let R be a right chain ring of type (2) or (3) (the definitions are given in 
the next section) with finitely generated maximal ideal J(R) — mR. If we 
assume further tha t the characteristic of R is different from the characteristic 
of R/J(R) then R is a chain ring. On the other hand, if we assume tha t there 
exists a ring monomorphism a from R to R2 with rrn = mcr(r), a(m) = m, 
where R2 is a subring of R, then R can be embedded into a chain ring whose 
lattice of right ideals is isomorphic to its lattice of left ideals and is isomorphic 
to the lattice of right ideals of R. This result is used to solve the above exten­
sion problem in case R contains a division ring of representatives of R/J(R) 
and satisfies some additional condition. 

2. Def in i t ions and pre l iminar ies . All rings considered in this paper have 
a unit element. A right {left) chain ring is a ring with a linearly ordered lattice 
of right (left) ideals. A ring which is a right and left chain ring is called a 
chain ring. If every element in / = J(R), the maximal ideal of a (right) chain 
ring, is a two-sided zero divisor, R is called a (affine) projective Hjelmslev ring, 
for short (AH-) PH-r'mg. We write U(R) for the group of units of R. A ring 
is said to be right invariant (invariant) if Ra ^ aR (Ra = aR) holds for all a 
in R. More details about the incidence structures mentioned in the jn t roduct ion 
can be found in [1] and [11]. 

Our problem can be formulated as follows: Let R be a right chain ring. Does 
there exist a ring extension S of R which is a chain ring and satisfies the 
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following condition (1)? 

(1) U(S) H R = U(R)\ and for any a in S there exists an 5 in U(S) wi th 
as in R. 

This condition will guarantee t ha t the lattices of right ideals of R and S 
respectively are isomorphic. If R is a right noetherian right chain ring with a t 
least two nonzero prime ideals R > xR > yR 9e (0) we have xyR = yR, bu t 
Ry 2 ^ty# 2 -̂ ty- This implies t ha t for such a ring i£ no extension in the above 
sense exists (see [4]). 

We therefore consider the following two types of right chain rings. 

(2) J(R) is the only prime ideal of R; 

(3) J(R) and (0) are the only prime ideals in R. 

3. T h e case : char (R) ^ char (R/J). We assume in this section tha t R 
is a right chain ring of type (2) or (3) satisfying 

(4) char (R) 9* char (R/J). 

This proper ty implies the existence of a central element z ^ 0 in R, contained 
in J(R). 

3.1. T H E O R E M . Every right chain ring R with (4) of type (2) or (3) is right 
invariant. 

Proof. If R is of type (2) it follows t ha t the e lements in J{R) are ni lpotent 
and this together with the assumption tha t R is a right chain ring implies t ha t 
R is r ight invariant . Now let (0) and / be the only prime ideals of R and let z 
be a nonzero element in / with zR = Rz. H J = zR it follows t h a t R, zlR, 
i = 1, . . . and (0) are the only right ideals of R and R is r ight invariant . Other­
wise we form the intersection L of all two-sided nonzero ideals of R. Two-sided 
ideals Z ^ (0) lead to right chain rings R/Z of type (2) and this implies t ha t 
every right ideal I ^ L is a two-sided ideal in R. We are therefore left with the 
case L 9e (0). I t follows tha t L is not a prime ideal and elements a, b not in L 
exist with ab in L and aRb 9^ (0). We obtain L = abR, since abR is a two-sided 
ideal, and since abJ is a two-sided nonzero ideal as well, L = abR = abJ 
follows. This implies L = (0), a contradiction, and proves the theorem. (See 
[5] for related problems and results.) 

3.2. COROLLARY. A prime right chain ring satisfying (3) and (4) has no zero 
divisors. 

We need the result t ha t the semigroup H of principal right ideals of a right 
chain ring R of type (2) is commuta t ive (see also [3; 7]) . H is a linearly 
ordered semigroup and h\ S h<2 holds for elements hi = aR, h2 = bR if and 
only if aR ^ bR. H has a unit element e = R and a largest element 0 = (0). 
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I t follows tha t hi ^ h2 holds if and only if there exists an element h% in H with 
hihz = h2. In addition, the cancellation laws hold in the following form: 

(i) h\hi = hihz 7e 0 implies h2 = A3, and 
(ii) h2hi = hzhi ^ 0 implies h2 = hz. 

T o prove this let hi = aR, h2 = bR and h$ = c7? and assume b = cd for d in 
J(R). This leads to the contradiction ao/i? = acR in the case (i). In the case 
(ii) one obtains cdaR = caR and using (i), daR = aR follows. The ideal / = 
[r £ R; raR Ç. aR} is a prime ideal different from J(R) and (0) and this 
contradiction proves (ii). 

3.3. LEMMA. The semigroup H of a right chain ring of type (3) is commutative. 

Proof. The result is obvious if H' = H\{e{ contains a least element. We can 
assume tha t H' does not have a smallest element. Let hi, h2 be two elements 
with hih2 9^ h2hY. If we assume hih2 < h2hi ^ O w e proceed as follows: h2hi = 
hih2c; c in H'. There exists an element z in H' with z2 :§ c, z ^ hi, z ^ h2 and 
integers m, n with zm ^ hi < zm+l and zn ^ h2 < zn+l. We obtain h2hi =h]h2c 
x> zm+n+2 > hji^ a contradiction. If we assume hxh2 < h2hi = 0 we consider 
first the case h2 < hi. Then there exists k ^ 1 with h2 < hi ^ /&2*

+1 and /h = 
/&2*fe for some h in 77'. We get h ^ fe2, and h2h ^ hi < 0 and / ^ 2 ^ hih2 < 0 
follows. Application of the first par t shows tha t h and h2 and therefore h2 and /h 
commute. I t remains to consider the case hih2 < h2hi = 0 and hi < /&2. As 
before we obtain an integer k ^ 1 and an element h in if ' with hik < h2 ^ 
hik+1 and h2 = hkh, and as before, h ^ fei. We see tha t hih ^ 0 and if hhi = 0 
we apply the previous argument with h < hi to prove tha t hi and h commute . 

We can now prove the main result of this section. 

3.4. T H E O R E M . Let R be a right chain ring of type (2) or (3) with finitely generated 
maximal ideal J = mR and char (R) ^ char (R/J). Then R is a chain ring. 

I t is sufficient to prove this result for chain rings of type (2). The next lemma 
leads immediately to the proof of the theorem and can actually be used to 
prove the above result for a larger class of right chain rings (see Remark 3.6). 

3.5. LEMMA, Let R be a chain ring of type (2). We assume further that there 
exists an element m in J with 0 9e Rmk = mkR for some k ^ 1 and that 

(5) K ) r = {a e R\mka = 0} g mR. 

Then mR = Rm. 

Proof. We define a sequence of subrings Rf of R in the following fashion: 

R = Ri, Ri+i = {b in R; 3 a in Rf with am = mb). 

I t follows tha t the Ri form a descending chain: 

R ^ Ri ^ i?2 è . . . ^ Ri è Ri+i ^ . . . 
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The associated semigroup H of all the principal right ideals of R is commuta­
tive. This implies t ha t elements a, b in R with ab = 0 commute . In part icular 
am = 0 implies ma = 0 and a is contained in r\Ri together with the element 
m. Let n be the nilpotency index of m, i.e. mn = 0, mn~l ^ 0. Using the above 
notat ion we have Rmk = mkRk+i = mkR. For each a in R exists therefore an 
element b in Rk+\ with mka = mkb and a — b in (mk)r ^ mi? follows. 

We prove, using induction on j , t ha t mjR ^ i^+j holds for j = n — 1, . . . , 

1,0. 
The conta inment mn~lR ^ 7^.+1 is trivial. We assume mj+lR ^ i^-+i. Let 

r = mhi be an element in mjR. Then there exists an element b in Rk+i with 
a — 6 in mR, say a — b = mc for some c in i?. This leads to r = mjb + mj+1c 
which is an element in Rk+i using induction. We conclude t ha t R = Rk+i = R2 
and Rm = mR follows. 

3.6. Remark. The s ta tement in Theorem 3.4 remains t rue for r ight chain rings 
of type (2) or (3) satisfying (4) as long as the associated semigroup of principal 
right ideals is isomorphic to one of the following semigroups: 

(i) (<2. + ) ; (ii) ( < 2 , + ) ^ [ 0 , 1]; (Hi) ( Q , + ) n [ 0 , l ] ) U { o o } . 

In addit ion, it must be assumed tha t the principal ideal generated by the 
central element (whose existence is guaranteed by (4)) is not the upper neigh­
bour of the zero ideal. Condit ion (5) in Lemma 3.4 will then be satisfied and 
an abr i t ra ry principal right ideal aR can be obtained from mR by either 
11 taking roots" ((aR)n = bR) or by using powers of certain right ideals. One 
obtains aR = Ra for a rb i t rary a in R. 

4. T w o e m b e d d i n g t h e o r e m s . We can now restrict ourselves to the case 
in which 

(6) char (R) = char (R/J) 

is satisfied. 
We begin with the solution of our problem for right invar iant right chain 

rings of type (3). We need the result, t ha t the semigroup of nonzero principal 
right ideals of such a ring R is commuta t ive (Lemma 3.3 and [3]). I t is obvious 
tha t R is an integral domain and embeddable in a division ring of quot ients 
Q(R). 

4.1. T H E O R E M . Let R be a right invariant right chain ring of type (3). Then 
S = KJ Ra, 0 9^ a in J(R), Ra = aRa~1

J is a chain ring extension of R and the 
lattices of right ideals in R and S respectively are isomorphic. 

Proof. Since R is right invariant , Ra ^ aR follows for every element a in 7 .̂ 
But , the multiplication of principal right ideals is commuta t ive which implies 
t ha t J(R)a g aJ(R). From this we conclude t ha t U(S) C\ R = U(R) holds; 
otherwise there exist nonzero elements x, a in J(R) with x~l in Ra. This leads 
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to x - 1 = ara~l and a = xar = ax'r for some x' in J(R), r in R, and the contra­
diction a = 0, To prove the second par t of condition (1) (Section 2) for S let 
y = bxb~l be an element in S for some x in R, b in J(R). Then there exist a unit 
/ in i^ with xb = bxt and y(btb~l) = x for the unit btb~l in 5. One checks, by 
computing it directly, tha t Sy ^ yS ^ Sy for all 3/ in S, and it follows tha t S is 
an invariant chain ring, satisfying condition (1). 

The first example of an ^4i7-ring which is not a PH-r'mg was probably given 
by Baer in [2] using an idea of Ore in [9] : 

Let F be a commutat ive field with a monomorphism a which is not an iso­
morphism. The vector space F 0 F can be made into a ring E using the 
multiplication (a, b)(a', b') = (aa', aab' + baf). The right ideals of E are 
E D J = {(0, b); b e F} 3 ( 0 ) and £ is a right chain ring, but £ ( 0 , b) £ 
£ ( 0 , b°) 2 ^ ( 0 , b) for 6 in F \ F " . 

The next result gives a solution to our problem for right chain rings of type 
(2) (or (3)) if the maximal ideal is a principal right ideal and an additional 
condition is satisfied: 

4.2. T H E O R E M . Let R be a right chain ring of type (2) {or (3)) with finitely 
generated maximal right ideal J = mR. We assume further: 

(7) There exists a monomorphism a from R into R with a(m) — m and rm = 

ma(r). 

Then there exists a chain ring S satisyfing condition (1) and solving our embedding 
problem. 

Proof. If R = Rff we can take S = R. Otherwise we consider a set Si which 
is the disjoint union of the set R and a set T with T = {tk; k G R\Ra}. We can 
extend the mapping a to a one to one and onto mapping a\ from S\ to R by 
mapping tk in Si to k in R. This mapping can be used to define a ring s t ructure 
on Si and ai is then an isomorphism between Si and R, and Si contains R as a 
subring. This process is repeated and we obtain a sequence of rings 

R = So C Si C S2 C • • . 

with isomorphisms at from Si to Sj_i with a0 = a and ai+i is an extension of a{. 
The lattice of right ideals in Si is still of the form 

Si D mSi D . . . D mnSi D mn+'St D . . . D (0) and 

rm = mat(r) holds for r in S*. 

This last s ta tement is proved by induction on i: 

rm = <T Cl {v i{r)m) = ai-
1(mal-i(ai(r)) = m<Ti(r). 

We form the ring S = \J Sn Z) R- This ring is a local ring with maximal ideal 
mS. For an element r in S there exists an index i and an element q in S f + i with 
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<ri+i(q) = Y in St. This implies Sm = tnS and it follows tha t S is a chain ring 
containing 7? and satisfying condition (1). 

This result can be applied immediately to the following si tuat ion: 

4.3. COROLLARY. Assume R is a right chain ring of type (2) with finitely 
generated maximal ideal J = mR. If R contains a division ring D of representa­
tives of R/J and dm = ma(d) holds for any element d in D, with <r(d) in D also, 
then R is embeddable in a chain ring S satisfying (1). 

Let R be a right chain ring as in Corollary 4.3 wi thout the special condition 
tha t a(d) is again in D. We will then have the more general equat ion dm = 
m{d] + md2 + . . . + mn~2dn_i) with dj in D for j = 1, . . . , n — 1 where n is 
the nilpotency index of m. This case will be t reated in the next section. 

5. i4H-rings as skew p o l y n o m i a l r ings . In this section the following 
assumptions are made: R is an ^477-ring of type (2), R contains a skew field D 
of representat ives of R/J and / = mR is finitely generated as a r ight ideal. 
Finally, let n be the nilpotency index of m. 

T h e multiplication in R is determined by 

(8) dm = md8' + m2d8* + . . . + mn~ld^-^ 

where the of are mappings from D into D. Since R is a right vector space with 
basis {1, m, . . . , mn~1}, it is obvious t ha t the ô/s are endomorphisms of the 
addit ive group of D; ôi is a monomorphism from D into D. W e will use the 
notation and some arguments from [10]. If we pu t abi = at and 

0(*.o = 2Z <ViJ2:.h ((hk,t) = Ofor& > t) 
Ji = l n~l 

one obtains 
i 

(9) (ab)i = J2 a(k,i)Ok for i = 1, . . . , n — 1, a, b in D. 

The following identi ty, needed later, can be easily checked: 

(10) X) a>i+Kw,n-i-i) = a(w+i,n) iorw= 1, 2, . . . . 
1 = 0 

We would like to apply Theorem 4.2 to solve our embedding problem for a ring 
R satisfying the assumptions listed a t the beginning of this section. 

This means tha t a monomorphism a from R into a subring 5i of R mus t be 
found with a(m) = m and rm = ma(r) for r in R. 

This we could do under an addit ional assumption on the mappings 5*: 

(11) Dô- Ç D^ and 5i+1 = 8% with 5 = ô2ôr\ i = 1, . . . , n - 2. 

Assuming (11) one checks tha t the following identi ty is t rue : 

(12) ai(A;t<_i) + «(*+!,*_!) = aot+1,0, a in P . 
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Given an element A in R. Then A can be writ ten as 

A = a(0) + ma(l) + . . . + mn-la{n - 1) with a(i) in D. 

We have Am = mB for some element B in R and J5 = ]C"Io mib(i), bu t only 
the &(i)'s for i = 0, . . . , n — 2 are uniquely determined by A : 

(13) b(i) = <i(t), + a ( t - 1)2 + . . . +ffl(0)«+i ( 0 ^ t g n - 2 ) . 

In order to make (13) a valid equation for n — 1 as well, we define a mapping 
bn from D into D by 

8, = « - ' « i . 

I t is now possible to prove (9) for i = n and a monomorphism a from i\! to R 
with m = ma(r) can be given. 

We have: 

(14) {ab)n = ( a ô ) 5 8 - 1 = ( a6 ) ' , , 1 _ 1 ' " - 1 

= (0261 + a i W " " " - - 1 (using (9)) 

= (a'ft + aj)')'-1 (using (11)) 

= X a\k,n-i)bk + X ai(*,n-i)&** (using (9)) 
fc=l k=l 

n 

= X «(*,»)&* (using (11) and (12)). 

We claim tha t 
(15) (r{mia) = mla\ + mi+1a2 + . . . + mn~1an-i; i = 0, . . . , n — 1 

defines a monomorphism from 7? to R with o-(ra) = m, rm = ma(r). 
Let a, b be elements in Z>. We will show tha t a(ab) = a(a)a(b). I t is enough 

to prove tha t (ab)n equals the coefficient of mn~l in <r(a)<r(b). 
Let 

n~l n~l 

<r(a) = X ™va>v+i and a(b) = X) mwbw+i. 

Using (9) we obtain 
n~l n~l n~\ 

a(a)a(b) = X m" X X ^X+K^.A+i. 

The coefficient of mn~l is therefore equal to 
n~l n-\ 
2-J 2-J av+l(w,n—l—v)bw+li 

since v + s = n -\- 1. If we apply (10) we see tha t this expression is equal to 

Z ^ a(«,+ l,n)&w?+l = 2 ^ a(w,n)bw = (û^)n-
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The mapping a defined by (15) is therefore a homomorphism from R into R 
with a(m) = m, rm = m<r(r). That a is also a one-to-one mapping is obvious. 
We obtain therefore the following result: 

5.1. THEOREM. Let R be an AH-ring of type (2) containing a skew field D 
of representatives of R/J, where J = mR is the maximal ideal of R. Let 

am = ma01 + m2a82 + . . . + mn~labn~l for a in D, 

and assume that D52 C D01 and 8t = ôi~lôi holds for 8 = <52<5i_1 and i = 1, . . . , 
n — 1. Then R can be embedded into a chain ring S satisfying (1). 

5.2. Remark. The assumption 8t = ôi~lôi is always true if the nilpotency 
index n of m is equal to 3. 

5.3. Remark. Let R be given as in the beginning of this section. Then R/mn~1R 
is embeddable in a chain ring. 

Example [6; p. 38]. Let K[y; a, 8] be a skew polynomial ring over a (skew) 
field K with monomorphism a and an «-derivation 8. Let ya = aay + ad. In the 
quotient field K(y; a, 8) consider the subring generated by K and y~l. We 
obtain with x = y~1 the following: 

ax = xaa + xa8x = xaa + x2sba + x2aô2x = . . . 

We see that K[x]/(xn) = R provides us with an example of a ring it* satisfying 
the conditions of Theorem 5.1. 
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