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ON THE SELF-LENGTH OF TWO-DIMENSIONAL BANACH SPACES

B. CHALMERS, C. FRANCHETTI AND M. GIAQUINTA

The aim of this paper is to prove the following result: if X is a 2-dimensional
symmetric real Banach space, then its self-length is greater than or equal to 2ir.
Moreover, the minimum value 2ir is uniquely attained (up to isometries) by eu-
clidean space.

1. SYMMETRY NOTIONS AND PROJECTION CONSTANTS

An n-dimensional real Banach space X is symmetric if it has a symmetric basis,
that is, a basis {x\,xz, ..,xn} such that:

£
for any scalars a i , .. , a n and any permutation ir of {1,2, .. ,n}. This notion of sym-
metry is generalised by the following: An n-dimensional real Banach space X is said to
have enough symmetries (e.s.) (see [5]) if the only elements of C(X,X) which commute
with every linear isometry of X have the form KI .

The (absolute) projection constant A(X) of X is defined by:

\{X) = suV{\(X,Y) : X CY}

where X(X,Y) is the (relative) projection constant of X in Y, defined by:

\{X,Y)=int{\\P\\:P projects Y onto X}.

2. 2-DIMENSIONAL SPACES, SELF-LENGTH

Let X be a 2-dimensional real Banach space, S its unit sphere. We recall the
definition of the self-length (or perimeter) p(X) of X. Let A be a convex polygon of
vertices {01,02, . . , a n } inscribed in S, then (setting an+i = ai)

~ak\\x

k=l
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is the "length" (with respect to the metric of X) of the polygon. Parallel to the classic
definition of length of a curve we have the definition of self-length:

p(X) = sup{p(.A) : A a convex polygon inscribed in 5 } .

It is clear that if X is isometric to Y (X ~ Y) then p(X) = p(Y). We list now
some well known facts about self-length. For more detailed information we refer to [4].
6 ^ p(X) < 8 ;p(X) = 6 if and only if X ~ H, the affine regular hexagon; p(X) - 8
if and only if X ~ Zoo(2), the parallelogram. Of course, if X ~ ^ (2) , then p(X) = 2-K .
Also p(X) — p(X*), where X* is the dual of X. p(X) has been computed for the
affine regular polygons and also for other spaces; see [4].

For the projection constants of 2-dimensional spaces we have: A(X) = A(X*) ; 1 ^
X(X) ^ 4/3 ; A(X) = 4/3 if and only if X ~ H; \(X) = 1 if and only if X ~ /oo(2).
The upper bound for A as well as the unicity statement about the hexagon is a difficult
and important result recently proved in [7],

When the dimension is 2 the symmetry conditions become very simple. If X is
symmetric then there is a convenient basis such that in the representation of X in R2,
the unit half sphere is symmetric with respect to the x-axis and the unit quarter sphere
is symmetric with respect to the (y=x)-axis.

If X is a (e.s.) space then the self-length and the projection constant satisfy the
equation

(1)

(See [4]). This equality does not hold, however, for general spaces.

3. MAIN RESULT

We state here our main result:

THEOREM 1 . Assume that X is a 2-dimensional real symmetric Ba.na.ch space.
Then p(X) ^ 2TT and p(X) = 2TT if and only if X ~ /2(2); consequently, X(X) ^ 4/TT,
and A(X) = 4/TT if and only if X ~ Z2(2)

We note that for spaces with (e.s) this result is not true in general since for H,
which has (e.s.), we have p{H) = 6 and A(fT) = 4 /3 . Before proving the theorem we
need some preliminary lemmas.

4. PRELIMINARY LEMMAS

It is well known that every 2-dimensional Banach space X is embeddable (linearly
and isometrically) in a L\ space, say Li[—n/2,ir/2]. A simple standard way of do-
ing it was shown by Yost [10] (see also [8]): let (x(t),y(t)), - i r /2 ^ t ^ TT/2, be a
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parameterisation of half the unit sphere of X (in a representation in R2); then (the
derivatives x'(t),y'(t) exist almost everywhere and are in L\[—ir/2,ir/2] ) the subspace
[x',y'] C Li[-n/2,w/2] is isometric to X*, the dual of X.

LEMMA 1. Every 2-dimensional symmetric space X is isometric to a subspace
V C Li[-ir/2,n/2] of the form V = [r(t) cos t, r(*) sin *] with r ^ 0; r(-t) =

r(t); r(7r/2 - r ) = J-(T), 0 ^ T < TT/2.

PROOF: We can choose a symmetric basis so that in the representation in R2 we
have a parameterisation P{t) = (x(t),y(t)) of the unit sphere C such that

X(±TT/2) = 0; x(0) = 1; x{-t) = x(t); x'{t) ^ 0, 0 < t ^ TT/2;

y(±ir/2) = ±1; y(0) = 0; y(-t) = -y(t); y'(t) > 0, 0 < |<| < TT/2;

X(TT/2 - *) = y(i); y(7r/2 - t) = x(t), 0 < t ^ TT/2.

If Q{t) = (i/(<),—x(t)), then Q is also a parameterisation of C, and therefore
[y1,— x'] C Li[—Tr/2,7r/2] is isometric to X*. Now (j/'(t), —x'(<)) is in the same octant
as (cost,sint); so, by considering for example only the first octant, there is a rear-
rangement t —* <j>(t) (0(0) = 0; 0(TT/4) = TT/4) and a positive Li -function r(t) such
that almost everywhere in [—7r/2,7r/2] we have

(2/'M<)],-x'[<Ht)]) = (r(t)cosi>r(i)rint).

Finally recall that if X is symmetric then also X* is symmetric; therefore the family
of duals of symmetric spaces coincides with the family of all symmetric spaces. D

EXAMPLE. If X is 2-dimensional real euclidean space, then note that we can take
(x(t),y(t)) — (cost,sint), <f>(t) — t, and r(t) = 1 in Lemma 1 and its proof.

LEMMA 2 . [2, 8] If V is a 2-dimensionaJ real space and V C L1, then A (V, L1) =
X(V).

REMARK. It is a well known fact that if V is isometric to W then A(V) = X(W). For
2-dimensional real spaces with (e.s.), this fact follows immediately also from (1).

LEMMA 3 . Let r be an element of L1[-n/2,n/2} such that:

r(t) > 0; r(-<) = r(i); r(n/2 - r) = r(r) (r G [0,

Then, if

<r{t)= / |cos(o-«)|r(o)da,
J-x/2

we have

(2) <r{t) = a[-t);a(ir/2-t) = *{i).
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PROOF: The first equality follows from the fact that

,*/2

a{i) = / (\cos (a+ t)\ + \cos (a-t)\)r{a)da.
Jo/o

With the change of variable a = TT/2 — /? we obtain

a(t) =
/o

rr/2
a(n/2-t)= / (\cos(ir-/3-t)\ + \cos(-l3 + t)\)r(0)d/3 = a(t).

Jo

D
LEMMA 4 . Let T- and a be as in Lemma 3 and set V = [vi,«2] C L\\ U =

[1*1,1*2] C Loo; vi = r(t)cost; v^ — r(<)sint; u\ = s(<)cos<; U2 =

c/(*{t)); 1/c = f£/2 {r{t))/{<r{t))dt. Then, if we define P : Lx -* V by P = ul®v1 +
U2®V2, the operator P is a projection onto V with \\P\\ = c.

PROOF: We must show that < U{,VJ >— Sij. Note that by (2) we have s(t) =

s(-t); $(TT/2 - t ) = s(t). We have

, * /2

i,V2 >=< U2,Vi >= I r(t)s(t) cost sin t
J-ir/2

()() dt
ir/2

which is 0 since the integrand is an odd function. Moreover

,ir/2

thus

, i r /2 ^Tr/2

<u1,v1>—2 r(t)s(t) cos2 t dt = 2 / r(t)s(t)sm2 tdt =< u2,v2 >;
Jo Jo

f*/2 r*/2
 r(t)

<Ui,v{>= r(t)s{t)dt = c -fp-dt = l.
Jo Jo <H*j

Recall now that the Lebesgue function A of the operator P is defined by A(^) =

S-L/2 l u i (^ ) r i ( ' ) + U2(<t>)v2(t)\ dt and that the norm of P is given by sup{A(^) : <f> G

[—7r/2,7r/2]}, see for example, [1] and [3]. As we shall see in our case, the Lebesgue

function is constantly equal to c. Indeed we have

A(*) - s(<j,) J* ^ r(t) |cos (*-t)\dt = *{+)*{+) = s(<t>)^j = c- Q

We shall prove that ||P|| ^ 4/n. Once this is done, since by Lemma 2 A(V) ̂  | |P||,
recalling (1) we obtain that

Since 1/(||P||) = ft'2 (r(t))/(a(t))dt = J, we have to show that / ^ ir/4.
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LEMMA 5 . J can be written in the form

,ir/4

JO

T(t)dt

o (cost + sin t ) / 0 cos a r(a)da + J*' sin (a — t)r(a)da

PROOF: First it is dear that J - 2 J*f* (r(t))/(a(t))dt and it is also easy to

see that a(t) = /Jr /4 (|cos(a + f)| + |cos(a - t)| + |sin(a - t)| + |sin(a + t)\)r(a)da.

Since 0 ^ a ^ 7r/4 and 0 ^ t ^ TT/4 we have:

ff(0 = / (2 cos a cos t + sin a cos t + cos a sin <)r(a)da+ / |sin (a — f)| r(a)da,
Jo Jolo

where

I |sin (a — t)| r(a)da = I sin (t — a)r(a)da + 2 / sin (a — t)r(a)da.

Thus we obtain

ff(f) = 2 / (cos a cos t + cos a sinf )r(a)da + 2 / sin (a — t)r(a)da,
Jo Jt

from which the formula for J follows. 0

5. PROOF OF THEOREM 1

Pointing out the dependence of J on the function r , we shall write

ST(t) = (cost + sin t) / cos a r(a) da + I sin (a — t)r(a) da.
Jo Jt

Let A = {r £ LI[0,TT/4] : r ^ 0}; we first prove that

inf{J(r), r £ A } = TT/4.

We have (omitting the index r in the functional 6):

5'(t) = (cost — sinf) / cos ar(a) da— I cos (a — f)r(a) da ;

5"(t) = —(cost + sinf) / cosar (a) da + r(t) — I sin (a — t)r(a) da
Jo Jt
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and consequently

S" + S = r; 6{0) > 0 ; 6'{0) = 0; *'(ir/4) = 0.

These imply that

But we have
'4 6"

and hence we get
ir/4

It is clear that every r — constant (positive) is a minimum point for J on A; also
J(r) = 7r/4 <=> 5' = 0. We show now that constants are the only minimum points. If
the function r is a point of minimality, it follows that 6' — 6" = 6, and this implies
that 6 is constant and (since 6" + S — r) that r = constant. D

6. REMARK

It is well known (see for example, [6]) that the value of the projection constant of
n-dimensional euclidean space is

In view of the second statement in Theorem 1, one could ask whether it is true, also for
n > 2, that for n-dimensional symmetric spaces Xn one has X(Xn) ^ A ^ ^ ) ) - The
answer is no even for n = 3 as is shown in the example constructed by Positselskii in
[9]. In fact he has computed for every n the exact value Kn of the absolute projection
constant of a special sequence of symmetric spaces (Marcinkiewicz spaces); it turns out
that Kn > A(/2(n)) for all n > 2 but n = 4.

7. NOTE

After completing this work we were informed that the result A(X) ^ 4/TT has
been proved (independently and with totally different method) in: "Projections onto
symmetric spaces" by Hermann Koenig, to appear in Quaest. Math.
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