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ON THE SELF-LENGTH OF TWO-DIMENSIONAL BANACH SPACES
B. CHALMERS, C. FRANCHETTI AND M. GIAQUINTA
The aim of this paper is to prove the following result: if X is a 2-dimensional
symmetric real Banach space, then its self-length is greater than or equal to 2.

Moreover, the minimum value 27 is uniquely attained (up to isometries) by eu-
clidean space. ’

1. SYMMETRY NOTIONS AND PROJECTION CONSTANTS

An n-dimensional real Banach space X is symmetric if it has a symmetric basis,
that is, a basis {z;,22, ..,Z4} such that:

n

D laxlz

k=1

Z Qn(k)Tk
k=1

for any scalars o3, ..,a, and any permutation = of {1,2, ..,n}. This notion of sym-
metry is generalised by the following: An n-dimensional real Banach space X is said to
have enough symmetries (e.s.) (see [5]) if the only elements of £{X, X) which commute
with every linear isometry of X have the form xI.

The (absolute) projection constant A(X) of X is defined by:

AX) =sup{AMX,Y): X CY}
where A(X,Y’) is the (relative) projection constant of X in Y, defined by:
AMX,Y) =inf{||P||: P projects Y onto X}.

2. 2-DIMENSIONAL SPACES, SELF-LENGTH

Let X be a 2-dimensional real Banach space, § its unit sphere. We recall the
definition of the self-length (or perimeter) p(X) of X. Let A be a convex polygon of
vertices {a1,a3, ..,a,} inscribed in S, then (setting apt+; = a1)

p(4) = Z llar+1 — aellx
k=1
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is the “length” (with respect to the metric of X ) of the polygon. Parallel to the classic
definition of length of a curve we have the definition of self-length:

p(X) = sup{p(A4) : A a convex polygon inscribed in S}.

It is clear that if X is isometric to ¥ (X ~ V) then p(X) = p(Y). We list now
some well known facts about self-length. For more detailed information we refer to {4].
6 < p(X) <8;p(X) =6 if and only if X ~ H, the affine regular hexagon; p(X) = 8
if and only if X =~ l(2), the parallelogram. Of course, if X =~ [3(2), then p(X) = 2~.
Also p(X) = p(X*), where X* is the dual of X. p(X) has been computed for the
affine regular polygons and also for other spaces; see [4].

For the projection constants of 2-dimensional spaces we have: A(X) = A(X*); 1<
MX)<4/3; M(X)=4/3ifand only if X ~ H; MX) =1 if and only if X ~ (2).
The upper bound for A as well as the unicity statement about the hexagon is a difficult
and important result recently proved in [7].

When the dimension is 2 the symmetry conditions become very simple. If X is
symmetric then there is a convenient basis such that in the representation of X in R?,
the unit half sphere is symmetric with respect to the x-axis and the unit quarter sphere
is symmetric with respect to the (y=x)-axis.

If X is a (e.s.) space then the self-length and the projection constant satisfy the
equation

1) p(X) = 8/X(X).

(See [4]). This equality does not hold, however, for general spaces.

3. MAIN RESULT
We state here our main result:

THEOREM 1. Assume that X is a 2-dimensional real symmetric Banach space.
Then p(X) > 2r and p(X) = 2r if and only if X ~ [3(2); consequently, A\(X) < 4/,
and M X) = 4/~ if and only if X ~ 15(2)

We note that for spaces with (e.s) this result is not true in general since for H,
which has (e.s.), we have p(H) = 6 and A(H) = 4/3. Before proving the theorem we
need some preliminary lemmas.

4. PRELIMINARY LEMMAS

It is well known that every 2-dimensional Banach space X is embeddable (linearly
and isometrically) in a L; space, say Li[—7/2,7/2]. A simple standard way of do-
ing it was shown by Yost [10] (see also [8]): let (z(t),y(t)), —7/2 < t < 7/2, be a
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parameterisation of half the unit sphere of X (in a representation in R?); then (the
derivatives z'(t),y'(t) exist almost everywhere and are in L,{—w/2,7/2] ) the subspace
[#',9'] € Li[-7/2,7/2] is isometric to X*, the dual of X .

" LEMMA 1. Every 2-dimensional symmetric space X is isometric to a subspace
V C Ly[-n/2,x/2] of the form V = [r(t)cost,r(t)sint] with r > 0; r(—t) =
r(t); r(7/2—7)=7(7), 0K T < /2.

PROOF: We can choose a symmetric basis so that in the representation in R? we
have a parameterisation P(t) = (z(t),y(t)) of the unit sphere C such that

z(+w/2) =0; 2(0) =1; z(~¢t) = =(t); z'(¢) <0, 0Kt < m/2 -

y(£7/2) = £1; y(0) = 0; y(—t) = —y(2); ¥'(t) 20, O < |t| < 7/2;

2(n/2— 1) = y(2); y(n/2— 1) = a(t), 0 <t < n/2.

If Q(t) = (y(t),—=(t)), then Q is also a parameterisation of C, and therefore

[¥',—2'] C Li[—7 /2,7 /2] is isometric to X*. Now (y'(t), —2'(t)) is in the same octant

as (cost,sint); so, by considering for example only the first octant, there is a rear-

rangement t — $(t) (¢(0) = 0; ¢(w/4) = n/4) and a positive L;-function r(t) such
that almost everywhere in [—n/2,7/2] we have

(¥'[6(®)], —='[#()]) = (r(t) cost,r(t) sint).

Finally recall that if X is symmetric then also X* is symmetric; therefore the family
of duals of symmetric spaces coincides with the family of all symmetric spaces. 0

ExaMPLE. If X is 2-dimensional real euclidean space, then note that we can take
(=(t),y(t)) = (cost,sint), ¢(t) =t, and (t) =1 in Lemma 1 and its proof.

LEMMA 2. [2,8]IfV isa 2-dimensional real space and V C L!, then z\(V, LY) =
A(V).

REMARK. It is a well known fact that if V is isometric to W then A(V) = AMW). For
2-dimensional real spaces with (e.s.), this fact follows immediately also from (1).

LEMMA 3. Let r be an element of L1[—w/2,7/2] such that:
r(t) 2 0; r(—t) =r(2); r(n/2 —T) = r(7) (7 € [0,7/2]).
Then, if
w/2
a(t) = / |cos(a — )l r(a)da ,
-%/2

we have

)] a(t) = a(—t); o(w/2 —t) = o(t).
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PROOF: The first equality follows from the fact that

w2
a(t) = /; (Jeos (o + t)| + |cos (a — t)|)r(a)dex.

With the change of variable a = 7/2 — 8 we obtain
1r 2
o) = [ (lcon (x/2= B+ 1)+ fcos (x/2— B = D)= (B)d8

) /2
o(r/2—1t)= /; (Jcos(m — B —1t)| + |cos (=B + t)|)r(B)dB = o(2).
O

LEMMA 4. Let r and o be as in Lemma 3 and set V = [vy,v;] C L;; U =
[u1,u2] C Loo; v1 = 7(t)cost; vy = r(t)sint; uy = s(t)cost; uz = s(t)sint;s(t) =
c/(o(t)); 1/c= "/2 (r(t))/(o(t))dt. Then, if we define P: Ly -V by P=1u; Qv +
uz @ vz, the operator P is a projection onto V with ||P| = c.

PROOF: We must show that < u;,v; >= §;;. Note that by (2) we have s(t) =
s(—t); s(n/2 —t) = s(t). We have

/2

< uy,vy >=< Uz, v >=/ r(t)s(t) costsint dt
—n/2

which is 0 since the integrand is an odd function. Moreover
/2 /2
< up,v; >= 2/ r(t)s(t) cos® tdt = 2/ r(t)s(t) sin? t dt =< uy,v; >;
0 0

thus

< ui,v; >= /:/2 7(t)s(t) dt = c/o’r/2 T((t; dt = 1.

Recall now that the Lebesgue function A of the operator P is defined by A(¢) =

:/rjz lui(@)v1(t) + ua(@)v2(t)| dt and that the norm of P is given by sup{A(¢): ¢ €
[-7/2,7/2]}, see for example, [1] and [3]. As we shall see in our case, the Lebesgue
function is constantly equal to ¢. Indeed we have

wf2

A(¢) = s(¢) T(t) |cos (¢ —t)| dt = s($)o(¢) = s(é) —— ( y = 0

We shall prove that ||P|| 4/7. Once this is done, since by Lemma 2 MV) < ||P|l,

recalling (1) we obtain that

p(V) = ,\—(SV—) > 2w,

Since 1/(|P]) = J"* (r(t))/(o(t))dt = J, we have to show that J > m/4.
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LEMMA 5. J can be written in the form

/”/4 (t) dt
o (cost+sint) fo’r“ cosar(a)da + f:“ sin (a — t)r(a)da

J =

ProoF: First it is clear that J = 2f0"/4 (r(£))/(e(t))dt and it is also easy to
w/4

see that o(t) = [’/ (|cos(a + t)] + |cos(a — t)| + |sin (@ — t)| + [sin (@ + t)|) r(a)da.
Since 0 K a < 7/4 and 0 < t < w/4 we have:

w/4

wf4
o(t) = / (2cosacost +sinacost + cosasint)r(a)da+/ |sin (a — t)| r(a)da,
) 0
where

/0 " |sin (@ — t)| r(a)da = /0 " n (t — a)r(a)da + 2 [ " sin (a — t)r(a)da.

Thus we obtain

n/4

wf4
o(t) = 2/ (cosacost + cosasint)r(a)da + 2/ sin (a — t)r(a)da,
0 t

from which the formula for J follows. ' 0

5. PROOF OF THEOREM 1

Pointing out the dependence of J on the function r, we shall write

n/4 r
J=J(r)= /0. 6,.((tt)) dt;

w/4 w/4
6.(t) = (cost +sint) / cosar(a)da + / sin (a — t) r(a) da.
0 t

Let A = {r € L,1[0,7/4] : » > 0}; we first prove that
inf{J(r), r € A} =n/4.

We have (omitting the index = in the functional §):
w/4 /4
8'(t) = (cost — sin t)/ cosar(a)da — / cos(a — t)r(a)da;
0 t

w/4 n/4
§"(t) = —(cost + sin t)/o cosar(a)da + r(t) — ./: sin(a — t)r(a) da
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and consequently
§"+8=r; 6§(0)>0;6'(0)=0; §'(r/4)=0.

These imply that
w/4 cn
n )

/4 5" § /4 /4 /5t 2
/o 5 5, T) G

n/4 1\ 2
J(r):% /0 (%) dt;%.

It is clear that every r = constant (positive) is a minimum point for J on 4; also

But we have

and hence we get

J(r) = n/4 & §' = 0. We show now that constants are the only minimum points. If
the function r is a point of minimality, it follows that §' = " = 0, and this implies
that § is constant and (since §" 4+ § = r) that » = constant. 0

6. REMARK

It is well known (see for example, {6]) that the value of the projection constant of

n-dimensional euclidean space is

nI(z
VAT(E)

In view of the second statement in Theorem 1, one could ask whether it is true, also for

Alz(n)) =

n > 2, that for n-dimensional symmetric spaces X, one has AX,) < A(lz(n)). The
answer is no even for n = 3 as is shown in the example constructed by Positselskii in
[9]. In fact he has computed for every n the exact value K, of the absolute projection
constant of a special sequence of symmetric spaces (Marcinkiewicz spaces); it turns out

that K, > A(lz(n)) for all n > 2 but n =4.

7. NOTE

After completing this work we were informed that the result A(X) < 4/7 has
been proved (independently and with totally different method) in: “Projections onto
symmetric spaces” by Hermann Koenig, to appear in Quaest. Math.
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