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1. Introduction. Let 5 be a semigroup and let R = 0 Rs be an 5-graded ring. If
IES

Rs = 0 for all but finitely many elements J E S , then R is said to have finite support. In this
paper we concern ourselves with the question of whether a graded ring R with finite
support inherits a given ring theoretic property from the homogeneous subrings Re

corresponding to idempotent semigroup elements e.
When S is finite, an approach based on the structure theory of semigroups has led to

an affirmative answer to this question for perfect, semilocal and semiprimary rings [3], for
Jacobson rings [4], and for Pi-rings [11].

If 5 is an arbitrary semigroup and R has finite support, then structure theoretic
methods at the semigroup level require dealing with principal factors which are 0-simple
but not completely 0-simple. This approach leads to difficulties because the structure of
such factors is not well understood. In the absence of such factors, the proofs developed
for finite semigroups can be easily modified to handle the finite support case [2].

In this paper, we present a new method to deal with graded rings with finite support.
For such rings, we obtain results of the form: if each subring Re, e an idempotent in the
support, is a perfect ring, then R is a perfect ring. The method relies on the class of rings
under consideration (for example, perfect rings) being closed under various constructions
(cf. Lemma 2); then induction on the size of the support is used to reduce to the case of a
ring graded by a finite group.

This method avoids use of the structure theory of semigroups almost entirely, only
requiring a simple result that a semigroup satisfying a certain property is in fact a finite
group. Note also that the results obtained include the cases of rings graded by finite
semigroups and group-graded rings with finite support.

For group-graded rings, there are many examples in the literature of results which
hold for finite group-graded rings remaining true for group-graded rings with finite
support (see, for example [1], [7], [12], [13], [14], [15]). However, each such result
requires a separate method of proof; there seems to be no obvious structural reason why
results can be extended in this way. The current paper, using ideas from semigroup-
graded rings, provides a more general approach which perhaps clarifies why results extend
from finite group-graded rings to graded rings with finite support.

We will give the proofs in detail for perfect rings, but our method works for
semiprimary, semilocal, Jacobson, nilpotent, and Pi-rings.

The results we obtain for semilocal and perfect rings complement nicely some recent
results of Jespers and Okniriski [10] which show that in many cases, a perfect (or
semilocal), group- or semigroup-graded ring is, modulo its graded Jacobson radical, a
graded ring with finite support.
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Of course, this work raises the question of whether an 5-graded ring with finite
support could not somehow be regraded by a finite semigroup 5', or at least a semigroup
in which all 0-simple principal factors were completely O-simple. If this were always
possible, then the methods of [2], [3], [4], [11] suffice. We provide examples to show that
this is not so.

2. Preliminaries. All rings are associative and do not necessarily have an identity
element.

Write J(R) for the Jacobson radical of a ring 7?. A ring R is right T-nilpotent if for
every sequence xux2,x3,... of elements of /?, there is an n such that *„*„_]... *, = 0.
We define left T-nilpotent similarly.

A ring R is semilocal if R/J(R) is Artinian. R is semiprimary if it is semilocal and
J(R) is nilpotent. R is right perfect if it is semilocal and J(R) is right T-nilpotent; left
perfect is similarly defined. We shall use perfect to mean right perfect throughout, but all
results obtained hold equally for left perfect rings.

A ring R is a Jacobson ring if J(R/P) = 0 for every prime ideal P of R.
Let 5 be a semigroup. An S-graded ring is a ring R together with a direct sum

decomposition (as an additive group) R = 0 Rs with the property that RSR, c Rsl for all
ssS

s,t e S. The summands Rs are called homogeneous components and elements of these
summands are called homogeneous elements.

The support of R is the set supp(7?) = {s e S | Rs ¥^ 0}. We say that R has finite support
if supp(7?) is a finite set.

Let / be an ideal of R. For s e S,\et Is = ID Rs. If / = 2 Is, then / is a homogeneous
ssS

ideal. In this case, 7 = 0 7 , and 7?/7 = 0 7?J/7J are S-graded rings. We may similarly
seS seS

define homogeneous left and right ideals.
If A is a subset of 7?, then RXA denotes the left ideal generated by A, and similarly,

AR1 and RlAR] denote the right and two-sided ideals generated by A. Note that a one-
or two-sided ideal generated by homogeneous elements is necessarily homogeneous.

3. Perfect rings. We will prove the following theorem to illustrate our method.

THEOREM 1. Let S be a semigroup and let R be an S-graded ring with finite support. If
Re is a (right) perfect ring for each idempotent e in supp(7?), then R is a (right) perfect ring.

The properties that we require of the class of perfect rings are summarised in the
following lemma. Proofs of these facts can be found in [1], [2], [3].

LEMMA 2.

(i) A nilpotent ring is perfect.
(ii) A left or right ideal of a perfect ring is perfect.
(iii) Let R = Rx + R2 +... + Rn where each 7?, is a left (resp. right) ideal of R. If each

Rj is a perfect ring, then R is perfect.
(iv) A homomorphic image of a perfect ring is perfect.
(v) Let I be an ideal of a ring R. If I and R/I are perfect, then R is perfect.
(vi) Let R be a ring graded by a finite group G. If R\ is perfect then R is perfect.
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As will be apparent from the proof of Theorem 1, these are the only properties
required of the class of perfect rings. So for any class of rings with a similar set of closure
properties, we can obtain similar results. In particular, we have the following result.

PROPOSITION 3. Results analogous to Theorem 1 hold for the classes of semilocal,
semiprimary, Jacobson, nilpotent, and Pi-rings.

Verifications of the appropriate closure properties which are not straight-forward can
be found in [1], [2], [3] for semilocal and semiprimary rings, in [6] for nilpotent rings, and
in [11], [17] for Pi-rings. The class of Jacobson rings is a left and right hereditary radical
class [9], [18] from which fact analogues of properties (ii), (iv), and (v) are immediate.
The other properties of Jacobson rings are verified in [2], [4], [16]. (Note that [4] proves
(iii) for Jacobson rings in the case that R is a direct sum of a finite set of its right ideals:
such a ring is graded by a left zero .semigroup with the ideals as homogeneous
components. When the sum in (iii) is not direct, the additive direct sum R = R1®R2®
...©/?„ can be made into a ring by defining multiplication on homogeneous components
Rj and Rj to be the multiplication in R, and extending this distributively to all of R. The
original ring R is then a homomorphic image of R.)

Proof of Theorem 1. Let 5 be a semigroup and let R be an S-graded ring with finite
support such that Re is perfect for every idempotent e e S. Let X = supp(/?). We will
proceed by induction on n = \X\.

If n = 1, then A" = {x} for some x, and R = Rx. If x is idempotent, then R is perfect by
hypothesis. Otherwise, R2 = 0 and R is perfect by (i).

Assume that the result is true for rings with fewer than n elements in the support.
Suppose that there is an x e X such that |supp(/?1/?J)| <n. Then for all y e X, we

have Isupp^1/?,/?,,)! <n as well. Consider the ring A = RlRx. Let e be an idempotent of
S. If x = e, then Ae = Re is perfect. Otherwise, Ae = 2 RZRX, which is a left ideal of Re

zx=e
and is therefore perfect by (ii). By induction, the ring A = R]RX is perfect. A similar
argument shows that each ring R*RxRy is perfect.

Let I = RlRxR\ Since I = RlRx+ £ R]RxRy, 1 is perfect by (iii). Since / is a
yeX_

homogeneous ideal of R, the quotient R = R/I is also an 5-graded ring. For each
idempotent e sS, Re = RJle is perfect by (iv). Since Rx c /, supp(/f) is strictly smaller
than X. So by induction, R is perfect. We conclude that R is perfect by (v).

A similar argument holds if |supp(/fjri?
1)| < n for some x E X.

Otherwise, we have that for all x, supp(R*Rx) = supp(RxR*) = X. These conditions
imply that X c Xx U {x} and X £ xX U {x} for all x e X.

It suffices to show that under these conditions, the subsemigroup of 5 generated by X
is actually a finite group, for then we may conclude by (vi) that R is perfect. This assertion
follows at once from the next lemma, which completes the proof of Theorem 1.

LEMMA 4. Let S be a semigroup and let X be a finite generating subset of S with at least
two elements. Suppose that X satisfies:

X^XxD {x} and X c xX U {x}, for all x e X. (1)

Then S has an identity element 1 and S = X U {1} is a finite group.
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Proof. We first show that S has an identity element. Since X has at least two
elements, we may choose distinct elements x and y of X. Then by (1), there are elements
a, b e X such that x = ay and y = bx. From these equations, we conclude that abx = x. But
X c xX U {x}, so that abz = z for all z & X, and since X generates S, we see that ab is a
left identity element of S. A similar argument shows that S has a right identity element,
and therefore a unique two-sided identity element 1.

Let x e X. If x = ax for some a e 5, then, as above, a is a left identity for S and
therefore a = \.

Now let x E X. We will show that x has a left inverse in X. Let z e X be an element
different from x. By (1), there is a y E A" such that z = xy. If z = y, then by the above
argument we conclude that x = 1. Otherwise, by (1) again, there is a w e X such that
y = wz. Combining these equations, we get y = wxy, whence wx - 1.

The argument of the last paragraph shows that 1 E XX. Put A" = X U{1}. We have
X'x = Xx U {x}, so from (1) and the fact 1 e Xx, we see that A" c A"*. Since A" is finite,
we must in fact have the equality X'x = A", and similarly, xX' = X' for all x e A" (the
equations being trivial for * = 1). In particular, this means that the set X' is closed under
multiplication, and since it contains an identity and left inverses, it forms a group. Finally,
X being a generating subset of S ensures that S = A" is a finite group.

Note that the converse of Theorem 1 was recently proved by lespers and Okniriski
[10]. In fact, they proved a stronger statement that for any perfect semigroup-graded ring
(not necessarily having finite support) and for any subgroup G of S (in particular, for
G = {e}, e an idempotent), the subring Rc = X Rg is perfect. They proved a similar result

gsG

for semilocal and semiprimary rings, and the appropriate converse statements are trivially
true in the cases of nilpotent rings and Pi-rings.

We mention an interesting corollary of Proposition 3, which was proved in [2] using a
combinatorial method.

COROLLARY 5. Let R be a semigroup-graded ring whose support is finite and contains
no idempotents. Then R is nilpotent.

4. Rings which cannot be regraded. Let S be a semigroup and let R be an 5-graded
ring with finite support. It is conceivable that it is somehow possible to relabel the
components of R with elements of another semigroup T in such a way that R becomes a
7-graded ring, and furthermore so that T is a nicer semigroup: a finite semigroup, or one
with no principal factors which are 0-simple but not completely O-simple. If this were
always possible, then the methods of [2], [3], [4], [11] would be sufficient to prove all the
results of the previous section. In this section, we give some examples of semigroup-
graded rings with finite support which .cannot be so regraded.

We must first make precise what we mean by regrading a semigroup-graded ring. Let
R be a ring graded by a semigroup S. Let T be another semigroup. We say that R can be
regraded faithfully by T if there is an injective map </>:supp(/?)-» T such that R' = R is a
7-graded ring if we put R', = R^-^,) for t e ij/(supp(R)) and R't = 0 otherwise. Essentially,
we relabel the non-zero homogeneous components of R by some elements of T in such a
way that the multiplication of homogeneous elements of R is compatible with the
semigroup multiplication in T.
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Let us examine this process more closely. Suppose then that we are in the situation
outlined above, and s,t e S are elements such that RSR,^O. Then RSR,^RSI. Hence in
the ring R' we require that R'^yR^^R'^st) ar>d because R'+^R'^^O, we must have
R'ws,) = R'HIMI) SO that <A(»tHO = fist).

We will produce a ring graded by an infinite semigroup, with finite support, which
cannot be regraded by a finite semigroup. In fact, the grading semigroup is a group, so
this example solves the corresponding question for group graded rings at the same time.

The ring is constructed from an example, due to Dascalescu, Nastasescu, del Rio, and
Van Oystaeyen [7], of a finite subset of an infinite group which cannot be embedded in a
finite group in such a way that all products which do not leave the subset are preserved.
We first present this example and show that such an embedding into a finite semigroup is
also impossible.

EXAMPLE 1. Let G be an infinite simple group which is finitely presented. Such
groups exist, see for example [8]. Specifically, let X be a finite set of symbols, let Fbe the
free group on X, let W be a finite set of words in F, and let N be the normal subgroup of
F generated by W such that F/N = G. For an element i v e f w e will write w for the image
of w in G.

Define a subset A of F by

A = {w | w is a subword of an element of W} U X U Ar"1 U {1},

where we denote the identity element of a group by 1, and X'x = {x~l | JC e X). Note that
we include the elements of W itself in A. Because W and X are finite, A is finite. Write A
for the image of A in G. We may assume that elements of X are distinct in G and identify
X with its image in G. Note also that \X\ > 1.

We now show that the subset A of G has the property described above.

LEMMA 6. There is no injective map i{/:A-+S into a finite semigroup S such that
if/(u)il/(v) — ip(uv) whenever u, v, uv e A.

Proof. Suppose there is such a map. We first claim that we can replace 5 by a group
H. For if g G A, then g = gl = lg so that i/̂ (g) = ip(g)ip(l) = tf/(l)tlf(g), and also
i/f(l)i/f(l) = iKl). Letting e = iKl), we see that iK-^) is contained in the monoid eSe. Let
w be an element of A. If w is a subword of an element of W, then there are elements
u,v e A such that uwv is an element of W and so iiwv = 1. If w e X U A""1 U {1}, then
take « = 1 and v = w~l (which are elements of A) and we also have iiwv-I.
Furthermore, we have uw e A in each case. Hence,

e = ip(l) = tp(uwv) = ij/(uw)tp(v) = tj/(u)tj/(w)ip(v).

But eSe is a finite monoid, so left units are also right units and it follows that \jt(w) is a
unit. So ij/(A) is contained in the group of units H of the monoid eSe.

Now, the restriction tp \x induces a group homomorphism (p:F^>H, since F is a free
group generated by X. It is straightforward to check that <£(iv) = ijj(w) for any w e A. In
particular, for w e W, we have 4>(w) = ij/(w) = i//(l) = e. Hence, <f>(N) = e and <f> induces_a
homomorphism 4>:G^H. But A certainly has more than two elements (since X^A)
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and \p is injective, so the image of i// and hence the image of 4> are non-trivial. This is not
possible, since G is an infinite simple group and H is finite.

This final contradiction shows that there is no such map ip.

We now construct, using the group G of Example 1, a G-graded ring with finite
support which cannot be faithfully regraded by a finite semigroup.

EXAMPLE 2. Let n be the maximum length of a word in W and let P be a ring with an
ideal Q such that Q2"^ = 0 but Q2" ¥= 0.

Let R be the subring of the group ring P[G] generated by the set

PI U U Qx U U Qx
\xeX I \xeX-'

Since R is generated by homogeneous elements, it is a homogeneous subring of P[G]. For
g e G, the g-component of R is Rg = R n Pg.

Let g e G. If /c is the length of the shortest product of elements xux2,..,xk with
each x,• e X U X'1 such that g = x^x2 • • • xk, then Rg = <2*g. This means that supp(7?) is
finite, since Q2n+l=0 and only finitely many elements of G can be written as such
products of length less than 2n + 1.

Let w e A. If w e X U A""1, then /?* = Qw. If w = 1, then /?„-, = PI. Otherwise, w is a
subword of length /: of some element of W, and by choice of n, O ^ Q ^ g / ? ^ Hence
/4gsupp(#). Furthermore, if u, v, uveA, then Qku^Rn and Q'v^R^ for some
k,l<n,so lhat 0¥^ Qk+Iuv c R-R-c Rn-.

If 7? can be faithfully regraded by a finite semigroup 5, then there is an injective map
<£:supp(./?)-»S such that <p(g)<f>(h) = <p(gh) whenever RgRh^0. But by the above, the
restriction of <f> to A satisfies the properties of the map iff of Lemma 6. Since such a map ip
does not exist, we conclude that R cannot be faithfully regraded by a finite semigroup.

An 5-graded ring R is strongly graded if RxRy = Rxv for all x,ye.S. The ring
constructed above is not strongly graded; for example, if x e X, then RxRx-> = Q2l ¥= /?,.
More generally we have the following result.

PROPOSITION 7. Let R be a ring which is strongly graded by a semigroup S and which
has finite support. Then R can be faithfully regraded by a finite semigroup.

Proof. Let / = {x e 5 | Rx = 0}. Because R is strongly graded, / is an ideal of S. The
canonical map tp:S-+S/I induces a faithful regrading of R by the finite semigroup 5//.

Our second example is of a ring graded by a 0-simple semigroup which cannot be
regraded by a completely 0-simple semigroup, or a semigroup with only completely
0-simple or null principal factors.

EXAMPLE 3. Let 5 = ^(p,q) be a bicyclic semigroup, that is, the monoid generated
by elements p and q, subject to the relation pq = 1 (cf. [5, §12]). Let / be an ideal of a ring
A with /3 = 0 but 72^0. Let R be the subring of A[S] generated by the homogeneous
elements Al U Ip U Iq, and let R inherit the 5-gradation from A[S}.

Suppose that i//:supp(/?)->7 is a map that faithfully regrades R. Then it is easy to
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see, by considering products of homogeneous components of R, that the following
identities hold in T:

and

Write 1 = t//(l), p'= ijj(p), and q'= {f/(q) and let T' = (p',q'), the subsemigroup of 7
generated by p ' and g'. Because we require i// to be injective, we have q'p' ^ 1. But this
means that 7' is actually a bicyclic semigroup [5, Lemma 1.31]. Therefore, T cannot be
completely 0-simple (since T contains non-primitive idempotents), and furthermore, the
principal factor of T which contains p' must contain all of T (since the latter semigroup is
simple), and therefore cannot be completely 0-simple.
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This enabled us to include the class of Jacobson rings in Proposition 3, replacing a weaker
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