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ON THE NONLINEAR DIRICHLET PROBLEM WITH
p(i)-LAPLACIAN

MAREK GALEWSKI AND M A R E K PL6CIENNICZAK

Using a dual variational method which we develop, we show the existence and stability
of solutions for a family of Dirichlet problems

= 0, « 6 Wt*'\tl),

k = 0,1,... in a bounded domain in R^ and with the nonlinearity satisfying some
general growth conditions. The assumptions put on 1/ are satisfied by p(x)-Laplacian
operators.

1. INTRODUCTION

In the paper we consider a problem

(1-1) - d

«(x)|fln = 0, u € Wo
ljKx)(n)

for A; = 0 ,1 , . . . and with suitable assumptions on V which are valid for the p(x)-
Laplacian operator. Following some ideas from [11] we construct a dual variational
method which applies to more general type of nonlinearities than those that are subject
to a Palais-Smale type condition. We relate critical values and critical points to the
action functional for which (1.1) is the Euler-Lagrange equation and the dual action
functional (introduced in the paper and different from the Clarke dual functional) on
specially constructed subsets of their domains.

A variational approach concerning existence results for a class of problems involving
critical and subcritical growth is shown in [2]. Critical point theory in certain Sobolev
spaces is used to obtain existence and multiplicity results in sublinear and superlinear
cases as well [5], where the problem is written as

|u|p(l)-2u = f(x,u),
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382 M. Galewski and M. Plocienniczak [2]

u € Wl'p^(RN). Standard variational arguments in Sobolev spaces with variable
exponents are used to show the existence of radial solutions u € W1<P^(RN) with
sup p(x) < N in [17] where we assert inf p(x) > N in a bounded domain. The sin-

gularity of positive radial solutions to

-div( |Vu|p ( : i : ) - 2Vu) = f(x,u)

with p, / radial in x, / continuous and growth speed rate less than N(p(x) — l)/(N

- p(x)) as u —> oo one can find in [16].

Such problems as ours are studied in [3, 7] and these can be applied in elastic me-
chanics and electrorheological fluid dynamics. Although in both [3] and [7] the problems
are not studied in the form which we investigate. See [13, 18] and references therein. In
[7] the authors consider the problem

= Fx(x,u(x)),

where ft C KN is a bounded region and WQX'(Q) denotes the generalised Orlicz-Sobolev
space, (see [6, 8]), while in [3] the equation studied is

-div(a(x)|V«(x)|p(l)~2Vu(x) + b(x)\u(x)\p{x)-2) = Fx(x,u(x)),

« ( I ) | « I = 0, u €

with a, 6 € L°°(fi) such that o(x) ^ ao > 0 and b(x) ^ 60 ^ 0 almost everywhere on £1.

Both papers deal with sublinear and superlinear nonlinearities. In the sublinear case
the direct method of the calculus of variations is used while in the superlinear case they
apply the mountain pass geometry by showing that a type of Palais-Smale condition is
satisfied.

Our method is based on investigating the primal action functional; that is, a func-
tional for which the original problem is the Euler-lagrange equation and the suitably
constructed dual one. The duality relations between the two functionals, derived with
the aid of Fenchel-Young conjugacy [4] allows for relating the critical values to both
functionals on suitably constructed subsets of their domains. Later we relate the relevant
critical points at which the critical values are obtained. When this is done we are in a
position to chose a minimising sequence and prove that it is convergent to a solution to
the original problem.

The novelty of our approach allows also for considering the stability of solutions.
Following some general framework for studying stability of solutions for variational prob-
lems in sublinear case [12, 14], [15] we provide suitable results for the Dirichlet problem
involving p(x)-Laplacian problem also. The approach we use has been sketched in the
first author's previous work [10].
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2. T H E ASSUMPTIONS AND AUXILIARY RESULTS

In what follows by Cs we denote the best Sobolev constant

IMUx) < CsllVulU.) for all u € W^(x){Q).

Since Wo
lj>(l)(fi) is continuously embedded into Wo

lj>~ (ft), [6] and by the Sobolev Imbed-
ding Theorem [1], we denote by C\ and Ci the following constants

(2-1) IIVtxHp- ^ CiHVulU,),

(2.2) max|u(x) | < C2| |Vu| |p- for all u G Wo
llP~(ft).

Here p , q G C(ft), l/p(x) + l/q{x) = 1 for x G ft and p ~ = infp(i), p + = sup p(x),

P->N,N>2.
We also assume

Fl vol(ft) < (l/p~ +1/?")"1 ! there exist positive numbers do, d\, d2,. • • such
that CXC2 < 4 ^ do for k = 1, 2 , . . . . For all Jk = 0,1,2,...:

(2.3) d

CiC2Csesssup|F*(x,-

F2 There exists positive number d > do such that for all k = 0,1,2,... and
/ = [-d, d]: F*{; d), Fu

fc(-, -d) G L°°(Q), Fk: ^ x / -> K are Caratheodory
functions and convex in u for almost everywhere zGf i , F£: £1 x I —»R
are Caratheodory functions, F*(i,u) := +oo for (x,u) G ft x (K - / ) .

F3 F*(z,0) # 0, for almost everywhere i £ fi, i n ^(z .O) and
x •-> (Ffc)'(i, 0) are integrable on fi, A = 0 ,1 , . . . .

F4 V: ft x RN -> R is a Caratheodory function, convex in the second variable,
V = (yui,VU3,...,VUN): fixR"-+R, VUi,i = 1,. . . , N are Caratheodory
functions. V(x, 0) = 0, V(ar, 0) = 0 almost everywhere on fi and
x i-t V(x, 0) is integrable on Q for almost everywhere x G f2.

F5 There exists a constant ao such that

[\Vu(x)\p{x)dx ^ f \v{x,Vu(x))Vu(x)

for all u e Wo
l'plx)(Q).

Here (Fk)* denotes the Fenchel-Young conjugate of Fk, see [4]. Now for each
k = 0,1,... F * : f i x R - » R i s convex and lower semi-continuous.
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Relation (1.1) is the Euler-Lagrange equation for a functional •/*: WQ '(fl) —¥ R

for fc = 0 , 1 , . . .

Jk(u)= [v(x,Vu(x))dx- f Fk(x,u(x))dx.
Jn Jn

Let W = {v € L"lx\n): divv 6 L«(x)(ft)}. The dual functional JDk:W^>R reads

•W«)= /(Ffc)*(x,-div7;(x))dx- [v(x,v(x))dx,
Jn Jn

for A; = 0 , 1 , . . . . We assume t h a t the operator L : Wo
l i P ( l ) (n) ->• (W0

1 > P ( l ) ( f i ))* g i v e n bY

), h)= f <V{x, Vg(x))Vh(x) dx
Jn

for all g, h G Wo
llP(l)(Q) has the following properties

F6 L is a continuous, bounded and strictly monotone operator having (5+)
property and being a homeomorphism.

Property (5+) means that un -> u in ^0
1>p( l )(n) provided un ->• u in WollP(:r)(n) and

limsup(L(un) — L(u),un — u) ^ 0. Therefore
n—KX>

LEMMA 2 . 1 . For any fixed / € L°°(fi) t i e Dirichlet problem

u(x) | 8 n = 0, u e ^ ^ ( f i )

has a unique weai solution.

Now we shall construct certain nonlinear subsets of spaces M/
O

1'P^^(J2) and W on
which we shall look for critical points and critical values of the action and dual action
functional. Having established the relationship between the relevant critical points we
get the solution to (1.1). For k = 0 , 1 , . . . we define

%={ue W^P{X)(Q): ||Vu||p(l) < - ^ , \u{x)\ < dk for all x € fi}.

We consider a set Xk such that for all u & Xk the relation

(2.4) -div(^(x,V2(x))) =F*(x,u(x)),

u(x)\dn = o,uewl'p{x\n)

implies u € Xk.
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P R O P O S I T I O N 2 . 2 . xk = x~k.

P R O O F : Fix k = 0 , 1 , . . . . We take any h € X~k. The solution u e W0
1>p(l)(n) to

(2.5) -div(^(x,Vu(x))) =FZ(x,h{x))

u(x)\g(i = 0

exists by Lemma 2.1. Multiplying (2.5) by u(x), calculating integrals and using assump-
tions (F5) and (Fl) we have

a0 f \Vu(x)\p{x) dx ^ /*|^(i,Vti(x))Vu(x)
Jn Jn'

dx

So

O1O2

If / i V u t x J l ^ d x ^ 1 then HVullrf,, ^ 1 < (d*)/(C,C2).
Jn

If /"|Vu(x)|p(l) dx Ss 1 we get /1Vu(x)|p( l ) dx ^ ||V«||*7_, so we have
Jn Jn '

Using inequalities (2.2) and (2.1) we obtain

for all x € Q. Therefore \u(x)\ ^ dt . Thus u e AT* and we may put Xk = Xk. D

The dual functional Jpk will be considered on a set

Xk = j t ; e W: 3u, u € Xk related by (2.4) such that

- divu(z) = F*(z ,u(z) ) and u(x) = ^ ( x , u ( x ) ) | .

Jk and Jo t are well defined on Xk and X% due to the following

LEMMA 2 . 3 . For any fc = 0 , 1 , . . . t iere exist constants Jk, Vk > 0 such that

/" |F*(x, t i (x)) |dx s$ 7* for aii u G Xfc and / ( F * ) * ( x , - d i v u ( x ) ) dx < »7fc for aii

v\ Xi
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P R O O F : We have from (Fl) and (F3) for almost everywhere x 6 £1, since u € Xk,

that

\Fk(x,u(x))\dxt

[\F"(x,0)\dx + dk f\F
k(x,dk)\dx = Jk.

Jn Jn

Now only the boundedness of the integral / (F*)* (x, — div v(x)) dx remains to be

shown. Since (F*)* is convex, we have for almost everywhere x € fi that

-Ffc(x,0) ^ (Ffc)-(x,-divi;(x)) ^ (F*)'(x,0) + £(*)(-divw(s)),

where £(x) € d(Fk)* (x, — div u(x)). From the definition of X* it follows that there exists
u € Xk such that

-divu(x) = Fu
fc(x,u(x)).

By (F2) and (F3)

- [ Fk(x,0)dx^ f I (FkY (x, - div v(x)) I dx^ f\(FkY(x,O)\dx
Jn Jn' > Jn

+ /" |t»(a;)| • | - div «(*)| dx ̂  f |(Fk)'{x, 0)| dx + dk f \Fk(x,dk)\dx.
Jn Jn Jn

Hence % = m a x / - f Fk(x,0)dx, f\(Fk)'(x,O)\ dx + dk [\Fk(x,dk)\ dx). D
I Jn Jn Jn J

THEOREM 2 . 4 . (Duality Principle)

inf Jk(u) = inf JDAV)-

PROOF: We fix k = 0 , 1 , . . . and define a functional jf: Xk x X*-> R,

Jk
#(u,v) = - [ u{x)(-dWv{x))dx+ f V(x,Vu{x))dx

Jn Jn

+ f{Fk)'(x,-dWv(x))dx.
Jn

We observe that for any u E Xk

(2.6) inf J#(u,v) = Jk(u).
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Fix u G Xk.

inf jf(u,v) = — sup < / u(x)(— divu(x)) dx
«e*t veX* I Jn

- f{Fky(x,-divv(x))dx}+ f V(x,Vu(x))dx
Jn ) Jn

2- sup { / u(x)f(x) dx- f (Fk)'(x, /(*)) dx\
/eL«<*>(fi) U n Jn )

+ f V(x,Vu{x))dx
Jn

= - f Fh(x,u(x))dx+ [ V(x,Vu(x))dx = Jk(v).
Jn Jn

On the other hand, for any u € Xk there exists i; € X* such that

-diviJ(x) = F*(x,u(x)),

[ Fk(x,u(x))dx+ [ {FkY(x, -divv{x))dx= f u(x)divv{x)dx,
Jn Jn Jn

so

Jk(u)= [ V(x,Vu(x))dx+ I {Fk)*(x,-divv(x))dx- [ u(x)divv(x)dx
Jn Jn Jn

and (2.6) follows.
Now we show that for any v € X*

(2.7)

Fix v e X^.

inf J?(u,v) = - sup < / Vw(x)u(x)dx - / V(x, Vu(x)) dx }
u6** uex* (Jn Jn )

+ [{FkY(x,-divv(x))dx
Jn

>- sup { - / f(x)v(x) dx- f V(x, /(x)) dx)
/€L»(*>(n) L Jn J )

+ f(Fky(x,-divv{x))dx
Jn

= - [v(x,v(x))dx+ f(Fky(x,-diVv(x))dx = JDt(v).
Jn Jn

On the other hand, there exist up,up € Xk, related by (2.4), such that

-divu(x) = F*(x,u(x)),
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Therefore

JDk(v)= f(Fky(x,-divv(x))dx- [v(x,v{x))dx
Jn Jn

= [{Fky(x,-divv{x))dx- f v(x)Vup(x) + [ V(x, Vu{x))dx
Jn Jn Jn

= J*(u,v) ^ inf J?{u, v)

Hence (2.7) holds. This and (2.6) provide

D
We shall use the duality results to derive necessary conditions for the existence of

solutions to (1.1).

THEOREM 2 . 5 . (Variational Principle) Assume (F1)-(F5) and that for any

k = 0 , 1 , . . . there exists Uk € Xk such that —oo < Jk{uk) = inf Jk{u) < oo. Tien
uex

there exist Vk € X*, k = 0 , 1 , . . . such that

(2.8)

(2.9) V(x,Vuk(x)) =vk(x).

Moreover

(2.10) inf JDk{v) = JDk(vk) = Jk(uk) = inf Jk(u).

P R O O F : Since u* € Xk, we may take v* € X* such that

Thus (2.8) holds. By (2.8) and by the Fenchel-Young inequality we have

Muk) = f V(x, ViZfc(x)) dx - [ Fk(x,uk(x)) dx
Jn Jn

= - /'(-divUfc(x))Vufc(I)dx+ [(Fky(x,-divvk(x))dx
Jn Jn

+ fv(x,Vuk(x))dx
Jn

> - f V(x,i7fc(x)) dx + f{Fk)'(x, - divi;fc(x)) dx = JDk(vk).
Jn Jn

Hence Jk(uk) ^ JDk(vk)- By Theorem 2.4 it follows that

Jk{uk) = inf Jk(u)= inf JDk{v) ^ JDk(vk).
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Hence Jk{uk) = JDk(vk) and

V(x, V«t(i)) dx - [ Fk(x,uk(x)) dx
Jn

= - [v*(x,vk(x))dx+ f(FkY(x,-dWvk(x))dx.
Jn Jn

By the above and (2.8) it follows that

V(x,Wk(x))+\r(xtvk{x))=Vk(x)Vuk{x).

Hence (2.9) holds. Assertion (2.10) follows by Duality Principle and since Jk(uk)
= JDk{vk). 0

3. T H E EXISTENCE OF SOLUTIONS

THEOREM 3 . 1 . Assume (F1)-(F5). For all k = 0 , 1 , 2 . . . there exists (uk, vk)
G Xk x X% such that

(3.1) -divvk(x)=Fk{x,uk(x)),

(3.2) 1>(x,Vuk{x))=vk(x),

Moreover

(3.3) inf JDk(v) = JDk(vk) = Jk(uk) = inf Jk(u).

PROOF: First we show that Jk is bounded from below on Xk. Let us fix A; = 0 , 1 , . . . .
By convexity of V, F*, (Fl ) , and integration by parts we get for any uk € Xk

[ V(x,Vuk{x))dx> fv(x,0)dx+ f ^(x,0)Vufc(i)da;
Jn Jn Jn

By (F4) it follows that / V(x, Vu t ( i ) ) dx is bounded from below on Xk.
Jn

Moreover, by Lemma 2.3 we obtain the boundedness of / Fk(x,uk(x))dx. As a
Jn

consequence Jk is bounded from below on Xk.
By the definition of Xk it follows that it is weakly compact in WltP^(Q). There-

fore we can find a minimising sequence {uk } for Jk in Xk which is, possibly up to
subsequence, convergent weakly in WltP<-x^(Q.), strongly in D*X)(Q) and thus strongly
in W~ {Q). Therefore it is convergent almost everywhere. We denote its limit by uk .
Therefore

lim / F*(x,uk
n\x)) dx= f Fk(x, u[0)(x)) dx.
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Moreover, since {Vuj. } is convergent weakly in D'^(Q,) and V is convex and lower
semicontinuous we get

liminf f V(x,Vu[n)(x))dx > f V(x,Vu{°]{x)) dx.
n-fo° Jn Jn

Thus Jfc is lower semicontinuous on Xk- Consequently, for any k — 0 ,1 ,2 , . . . one can
find Uk 6 Xk such that Jk{uk) = inf J*(u). By Theorem 2.5 it follows that there exists

u€Xk

vk e Xj[ satisfying (3.1). As in Theorem 2.5 we assert that (3.2) and (3.3) also hold. D

COROLLARY 3 . 2 . For all k = 0 ,1,2, . . . there exists uk £ Xk such that

=Ft(x,uk(x)),

Jk{uk) = inf Jk(u).

ti€Xk

Moreover - d i v ^ ( - , Vu/t(-))) € L°°(Q) and

, \uk{x)\ ^ dk.

4. STABILITY OF SOLUTIONS

THEOREM 4 . 1 . Assume (F1)-(F5) and that for every u 6 W0
IlP(l)(fi) tiere is a

subsequence {fcj such that

weakly in L°°(fl). Then for each k = 0,1,2, . . . t iere exists a solution Uk to problem
(1.1). There exists a subsequence {ujt,,}^! of the sequence {uk}kLi and u e Wo

llP(:r)(Q)
such that

Uk* -+ u e Xo, strongly in

and

(4.1) -d(

u{x)\m = 0.

Moreover
J0(u) = inf

P R O O F : By Corollary 3.2 it follows that for each A; = 0 ,1 ,2 , . . . there exists

G WQ (Q) satisfying (1.1). Due to the fact that Xk C Xo it follows that the sequence

u*}fc^i is bounded in 1/^(0.) and we may choose a weakly convergent subsequence
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in WQ'P^X\Q,) which up to a subsequence may be assumed to be strongly convergent in

1P~ (fi) and thus convergent almost everywhere. We denote its limit by u. By the assump-

tion we may take a subsequence {fci}~! such that lim F*'(x, u(x)) = F°(x,u(x)) weakly

in L°°(fi). We denote all the resulting subsequences by the subscript k for simplicity.

Due to (2.3) we obtain

ess sup

This and the definition of Xk imply that \ - d i v f ^ - , Vuk(-)) j \ is, up to a subse-

quence, weakly convergent in L9^(Q.) to a certain function d € Lq^(Q). Thus

J ( - div(v(i, Vuk(x))) - div(y(x, VB(*))), uk(x) - u{x))dx -> 0.

Hence and by the fact that the operator — div (/V'(-,Vufc())j has (S+) property it follows

that {Vut}^! is strongly convergent in Wo

We shall next prove that

By the convexity of Fk we get for any u € Wo
llP(l)(n)

(,Ufc(x)) - F*(x)U(x)))Ujt(x) - U(x))dx £ 0.

Corollary 3.2 provides

J ( - div(^(x, Vufc(*))) - F*(x)U(x)),ufc(x) - u(x))dx ^ 0.

Since uk -»• u strongly in 1 ^ ( 0 ) and F*(-,u(-)) ->• F°(-,u(-)) weakly in L«^(fi) we
easily get that

j ( - Ft(x,u(x)),uk(x) - u{x))dx -> j ( -

Moreover

),-u{x))dx= / (^(x,Vttfc(x)),-Vu(x))dx

-^ / (V(x, Vu(x)),-Vu(x)W= I /-div^(x,Vu(x))V-u(:

We further observe that

Jn
-> I -div(v(x,Vu(x))^Vu{z)dx.
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Hence

(4.2) J ( - div(^(x, Vu(x))) - Fu°(x,u),u(x) - u(x))dx > 0

for any u € Wo'p{x\Q).
Now we apply the Minty "trick" that is, we consider the points u + tu, where

u e Wo
llP(l)(fi), \u(x)\ <; d0 on ft and t > 0 are such that u(x) + tu(x) e / almost

everywhere. By inequality (4.2) we obtain

J ( - div(^(x, VtZ(x))) - Fu°(x,u(x) + tu(x)),u(x))dx ^ 0

Since the function t t-¥ F°(-,u(-) + tu(-)) is convex it follows that its derivative

tn-> / /F°(x, K(X) +tu(x)), u(x) \dx is continuous at any sufficiently small t. Hence for

any u € W0
1'p(l)(fi) satisfying the above conditions

0 ̂  Jim [ ( -div^(x,Vu(x))) - F°(x,u(x) + tu(x)),u(

Since -d iv (^ ( - , VS(-))) - Fu°(-,«(•)) € L»(l)(ft) we obtain (4.1).

5. EXAMPLE

Consider the problem

(5.1) - d

where Q C RN is a bounded region satisfying (Fl), F is subject to Fl , F2, F3 and (p
satisfies

0 1 ip :QxR—^Risa Caratheodory function; there exist constants OQ, a.\ > 0

such that for almost everywhere x G Q and ao ^ yjjt(x,a) ^ ai for all
a G R+; there exists a constant m > 0 such that

<p(x, a)a - <p(x, b)b ^ m(a - b)

for all a ^ 6, a, 6 6 R and almost everywhere x 6 ft.

We observe that assumptions F4, F5, F6 are obviously satisfied. Indeed, exactly as
in [9] we may prove that operator
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is monotone and by its definition it follows that it is radially continuous and coercive.
We need to write V explicitly

r t /-IMi)l
/ V(x,h(x))dx= / / (^(x,^1)-1)^-1^!.

Jn Jn Jo

5.1. EXISTENCE We take up an following example

(5.2) -div(<p(x, |Vu\p { x )-1) |Vu|p ( l )-2Vu) = \x\2 • \u(x)\a{x)~lu{x) + \x\2,

ulan = 0, u €

where Q, - B(0,1/2) is a ball in R3, p G C(fi), p~ > 3. We also assume a(x) > a~ > p+

and that a has an upper bound a+ > 2.

We shall show that (F1)-(F3) hold. Here

F(x,u) = ^ y ^ M 2 • |«(x)|Q(l)+1 + |x|2 • u(x)

and it is Caratheodory function, convex in u. Of course Fu is also Caratheodory, such
that Fu( i , 0) / 0 almost everywhere on Q and Fu(-,w) € L°°(Q.) for any fixed t u e l .
Moreover, the functions x i-> F(x, 0) and 11-> F*(i , 0) are integrable on Cl. Thus (F2)
and (F3) hold. Clearly vol(fi) < (1/p- + 1/g")"1.

Assume that C1C2 > 1 and

02 oo> (CiC2Cs)/2 for all i € f i .

To conclude that (Fl) is satisfied we only need to show that there exists a constant
d ^ C\C2 such that inequalities in (2.3) hold. We have

dC2Cs esssup|Fu(x,d)I = CICTCS^ A
+1,

da+ - 1
CiC2Csesssup|Fu(a;,-d) | = CXC2CS

Therefore we need to find d satisfying da+ + 1 ̂  (4a0d)/(CiC2Cs). Since O l we have
that dQ+ + 1 ̂  2da+ and since

when d = ((2ao)/(CiC2Cs))1/ (a+~1) we assert by (02) that d ̂  1 and inequalities in
(2.3) hold. Finally we put

We may now construct the set X which reads

u(x)| < d for all x G fi},

where d is given above. Corollary 3.2 provides existence of solution to (5.2).
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5.2. STABILITY We consider the problem

(5.3) - d i v ^ ( x , \Vu\p^-1)\Vu\p{x)-2Vu) = \x\2 • |u(s) |°*( x ) ' lu(x) + \x\2,

with ft = 5 ( 0 , (1/2)) C R3, p as above, ak(x) ^ o£ > p + and with an upper bound

a£ > 2 for each A; = 0 , 1 , . . . .

As previously the assumptions (Fl)-(F6) are satisfied and for each k = 0 , 1 , . . .

there exists a solution to (5.3). We assume (O2) and

0 3 a f > a j > • • • > a£ > a£+1 > • • • > a j > 2.

We obtain as previously that dk = maxjCiC2, ((2ao)/(C1C2Cls))1/(a^~1)} for every

k = 0 , 1 , . . . and by (03) it is an nondecreasing sequence. Consequently the sets

(Q): | |Vti||p(x) ^ ^ r , |«(ac)| ^ dk for all x 6

form into an nondecreasing sequence Xi C X2 C . . . C XQ- By Theorem 4.1 it follows

that the solutions uk of (5.3) up to a subsequence converge to a certain wo G Xo being a

solution to

-div(v?(x, I V u ^ - ^ I V u ^ - ' V u ) = \x\2 • \u{x)\ao{x)~\{x) + \x\2,

REFERENCES

[1] R.A. Adams, Sobolev spaces (Academic Press, New York, 1975).

[2] CO. Alves and A.S. Marco, 'Existence of solutions for a class of problems in R^ involv-
ing the p(x)-Laplacian', in Contributions to nonlinear analysis, Nonlinear Differential
Equations Appl. 66 (Birkhuser, Basel, 2006), pp. 17-32.

[3] J. Chabrowski and Y. Fu, 'Existence of solutions for p(x)-Lapacian problem on a bounded
domain1, J. Math. Anal. Appl. 306 (2005), 604-618.

[4] I. Ekeland and R. Temam, Convex analysis and variational problems (North-Holland,
Amsterdam, 1976).

[5] X.L. Fan and X.Y. Han, 'Existence and multiplicity of solutions for p(x)-Laplacian equa-
tions in RN>, Nonlinear Anal. 59 (2004), 173-188.

[6] X.L. Fan and D. Zhao, 'Sobolev embedding theorems for Spaces Wk'p^(Sl)\ J. Math.
Anal. Appl. 262 (2001), 749-760.

[7] X.L. Fan and D. Zhao, 'Existence of solutions for p(x)-Lapacian Dirichlet problem',
Nonlinear Anal. 52 (2003), 1843-1852.

[8] X.L. Fan and D. Zhao, 'On the Spaces LP^{il) and Wk*M(n)', J. Math. Anal. Appl.
263 (2001), 424-446.

[9] H. Gajewski, K. Groeger and K. Zacharias, Nichtlineare Operatorgleichungen und opera-
tordifferentialgleichungen (Akademie-Verlag, Berlin, 1974).

https://doi.org/10.1017/S0004972700039319 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039319


[15] On the nonlinear Dirichlet problem 395

[10] M. Galewski, 'Stability of solutions for an abstract Dirichlet problem', Ann. Polon. Math.
83 (2004), 273—280.

[11] M. Galewski, 'New variations! method for p(z)-Laplacian equation', Bull. Austral. Math.
Soc. 72 (2005), 53-65.

[12] D. Idczak, 'Stability in semilinear problems', J. Differential Equations 162 (2000), 64-90.
[13] M. Ruzicka, 'Electrorheological fluids: modelling and mathematical theory', in Lecture

Notes in Mathematics 1748 (Springer-Verlag, Berlin, 2000).
[14] S. Walczak, 'On the continuous dependance on parameters of solutions of the Dirichlet

problem. Part I. Coercive Case, Part II. The Case of Saddle Points', Acad. Roy. Belg.
Bull. Cl. Sci. (6) 6 (1995), 247-273.

[15] S. Walczak, 'Continuous dependance on parameters and boundary data for nonlinear
P.D.E. coercive case', Differential Integral Equations 11 (1998), 35-46.

[16] Q.H. Zhang, 'Singularity of positive radial solutions for a class of p(x)-Laplacian equa-
tions', J. Lanzhou Univ. Nat. Sci. 36 (2000), 5-11.

[17] Q.H. Zhang, 'Existence of radial solutions for p(x)-Laplacian equations in R^', J. Math.
Anal. Appl. 315 (2006), 506-516.

[18] V.V. Zhikov, 'Averaging of functional of the calculus of variations and elasticity theory',
Math. USSR Izv. 29 (1987), 33-66.

Faculty of Mathematics
University of Lodz
Banacha 22
90-238 Lodz
Poland
e-mail: galewski@math.uni.lodz.pl

plo@math.uni.lodz.pl

https://doi.org/10.1017/S0004972700039319 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039319

