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Abstract. We prove that for C1+θ , θ -bunched, dynamically coherent partially hyperbolic
diffeomorphisms, the stable and unstable holonomies between center leaves are C1,
and the derivative depends continuously on the points and on the map. Also for C1+θ ,
θ -bunched partially hyperbolic diffeomorphisms, the derivative cocycle restricted to the
center bundle has invariant continuous holonomies which depend continuously on the map.
This generalizes previous results by Pugh, Shub, and Wilkinson; Burns and Wilkinson;
Brown; Obata; Avila, Santamaria, and Viana; and Marin.
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1. Introduction
Let M be a compact smooth Riemannian manifold.

Definition 1.1. A diffeomorphism f : M → M of the compact Riemannian manifold M is
called partially hyperbolic if the tangent bundle admits a continuous Df -invariant splitting
T M = Es ⊕ Ec ⊕ Eu such that there exist continuous functions 0 < λs(x) < λ−

c (x) ≤
λ+

c (x) < λu(x), with λs(x) < 1 < λu(x), satisfying the following conditions:
(1) ‖Df (x)vs‖ ≤ λs(x);
(2) λ−

c (x) ≤ ‖Df (x)vc‖ ≤ λ+
c (x);

(3) ‖Df (x)vu‖ ≥ λu(x),
for every x ∈ M and unit vectors v∗ ∈ E∗(x)(∗ = s, c, u).

Here, Es and Eu are uniquely integrable, generating the stable and unstable foliations
Ws and Wu. A partially hyperbolic diffeomorphism is called dynamically coherent if there
exist invariant foliations Wcs and Wcu tangent to Ecs = Ec ⊕ Es and Ecu = Ec ⊕ Eu.
The intersection of Wcs and Wcu is the central foliation Wc tangent to Ec. In this
case, Wcs is subfoliated by the stable and central foliations Ws and Wc, while Wcu is
subfoliated by the unstable and center foliations Wu and Wc.

Definition 1.2. A partially hyperbolic diffeomorphism is θ -unstable bunched, θ > 0 if

λθ
u >

λ+
c

λ−
c

. (1)
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Similarly, we define θ -stable bunching if λθ
s < λ−

c /λ+
c , and θ -bunched means both stable

and unstable bunched.

Given f : M → M partially hyperbolic and dynamically coherent, p ∈ M ,
q ∈ Wu(x, f ), we can define the unstable holonomy hu

p,q,f : Wc
loc(p) → Wc(q) between

the center leaves. We are addressing the question of differentiability of the holonomy along
the center leaves, and the continuity of the derivative with respect to the points and the
map.

THEOREM 1.3. Suppose that f is a C1+θ partially hyperbolic diffeomorphism which is
dynamically coherent and θ -unstable bunched, θ ∈ (0, 1]. Then hu

p,q,f is C1+Hölder and its
derivative depends continuously on f , p, q with q ∈ Wu(p). A similar statement holds for
the stable holonomy under the θ -stable bunching condition.

Remark 1.4. The continuity means that if fn is inside a C1+θ neighborhood of f and
converges to f in the C1 topology, xn converges to x, yn ∈ Wu

loc(xn), and yn converges to
y, then Dhu

xn,yn,fn
converges to Dhu

x,y,f .

Even if f is not dynamical coherent, one can always construct fake foliations which
are locally invariant under f and are almost tangent to the invariant bundles (see [4] for
example). The fake foliations are a fundamental tool for the study of ergodic properties of
partially hyperbolic diffeomorphisms.

COROLLARY 1.5. Suppose that f is a C1+θ partially hyperbolic diffeomorphism which
is θ -unstable bunched, θ ∈ (0, 1]. Then the fake unstable holonomy between fake center
leaves is uniformly C1+Hölder (in particular Lipschitz). A similar statement holds for the
stable holonomy under the θ -stable bunching condition.

Independently, if f is dynamically coherent or not, one can have invariant holonomies
of the continuous cocycle defined by Df |Ec .

Definition 1.6. Let E be a continuous vector bundle over M and F : E → E a continuous
linear cocycle over the partially hyperbolic diffeomorphism f : M → M . An invariant
unstable holonomy for F is a family of linear maps {Hu

x,y : E(x) → E(y) : x ∈ M ,
y ∈ Wu(x)} satisfying the following conditions:
(1) Hu

x,x = id, Hu
y,z ◦ Hu

x,y = Hu
x,z;

(2) F ◦ Hu
x,y = Hu

f (x),f (y) ◦ F ;
(3) Hu

x,y is continuous in x, y under the condition y ∈ Wu
loc(x);

In addition, we say that an unstable holonomy is β-Hölder (along the leaves of Wu) if
it satisfies the following additional property: the vector bundle is β-Hölder and for any
R > 0, there exists K such that

(H4) ‖Hu
x,y − id‖ ≤ Kd(x, y)β for any x ∈ M and y ∈ Wu

R(x).

The invariant stable holonomy is defined in a similar manner.

One can also consider the projectivized bundle PE over M, with fibers PE(x) (the
projective space of E(x)), which is also a continuous bundle (with smooth fibers) over M.
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The projectivization of the cocycle F, PF , is a continuous cocycle in PE . If H is an
invariant unstable holonomy for the cocycle F, then its projectivization PH is an invariant
unstable holonomy for the cocycle PF (see for example [1] for more details on cocycles
with holonomy and applications to the study of central Lyapunov exponents).

If f is partially hyperbolic, then the center bundle forms a continuous (in fact, Hölder
if f is C1+θ ) vector bundle Ec(f ) over M and Df |Ec(f ) is a continuous (Hölder) linear
cocycle over f. A by-product of the proof of Theorem 1.3 is the following result.

THEOREM 1.7. Suppose that f is a C1+θ partially hyperbolic diffeomorphism which is
θ -unstable bunched, θ ∈ (0, 1]. Then Df |Ec and PDf |PEc have unique Hölder invariant
unstable holonomies. The holonomies are also continuous with respect to the map in the C1

topology restricted to a C1+θ neighborhood of f. A similar statement holds for the stable
holonomy under the θ -stable bunching condition. If f is dynamically coherent, then the
invariant holonomy coincides with the derivative of the holonomy between center leaves.

Remark 1.8. Theorems 1.3 and 1.7 work in particular for C2 maps and the regular (1-)
bunching condition.

Let us make some historical remarks about these results. The differentiability of
the holonomies along center leaves was established in [16] for C2 partially hyperbolic
diffeomorphisms which are 1-bunched; however, the continuity of the derivative with
respect to the points or the maps was not considered. The continuity of the derivative with
respect to the points was proven in [14] under the additional assumptions of α-bunching
and α-pinching for some α > 0. The case of C1+θ partially hyperbolic diffeomorphisms
was addressed in several papers like [2, 3]. The differentiability of the holonomy and the
continuity of the derivative with respect to the point was obtained under the assumption of
θ -bunching together with more restrictive assumptions of pinching. The continuity of the
derivative of the holonomy with respect to the map has not been addressed to the best of
our knowledge.

Regarding the invariant holonomies, there are also various works establishing the
existence and the continuity with respect to the map (the continuity with respect to the
points is included in the definition), see for example [1, 7, 8, 10, 11, 13]. The existence
on invariant holonomies is known for Cθ general linear cocycles which are θ -bunched.
Furthermore, there is a unique invariant holonomy which is θ -Hölder. If we consider
the particular case of the center derivative cocycle, the existence is known under the
assumptions of C2 smoothness, θ -bunching, and θ -pinching. Again there is a unique
invariant holonomy which is Hölder. It seems to follow from the construction that in the
dynamical coherent case, the invariant holonomy of the center bundle cocycle coincides
with the derivative of the regular holonomy between the centers of the original partially
hyperbolic diffeomorphism.

Our contribution is to get rid of the unnecessary and restrictive pinching conditions, and
to establish the full continuity (including with respect to the map) of the derivative of the
holonomy and of the invariant holonomy, assuming only θ -bunching and C1+θ regularity
of the map. We also give a unified presentation of both the differentiability of the holonomy
between centers and the existence of invariant holonomies for the center derivative cocycle.
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1.1. Ideas of the proofs. The main difficulty in the proof is the lack of sufficient regular-
ity of the invariant bundles. The center bundle is Hölder continuous, but the Hölder expo-
nent is smaller than θ in general, and this makes it difficult to use the control which comes
from the θ -bunching and the Cθ regularity of the derivative. A first idea which we use is to
consider the invariant holonomy together with a correction of the potential error coming
from the variation of the center bundle with respect to the points (the projection from one
bundle to the other, roughly along the unstable leaf is good enough). We can expect that the
difference has better regularity along the unstable leaves. This observation together with a
(more or less) standard application of the invariant section theorem [6] gives us the exis-
tence and continuity of the invariant holonomies (Theorem 1.7 without the identification
with the derivative of the regular holonomy in the dynamically coherent case).

The differentiability of the regular holonomy requires more work. Previous works
usually start with a good approximation of Wu inside Wcu-leaves, and iterate it forward.
Unfortunately, again the leaves of Wcu and Wc are only C1+α for some α < θ , and this
fact limits the regularity of the approximation to C1+α , and consequently we loose the
control when we iterate forward. The second idea of this paper is to start with a smooth
approximation of both Wu- and Wcu-leaves and iterate it forward. It is important that
these approximations are uniformly smooth, which makes the construction a bit more
technical. When we iterate forward the approximation of Wcu-leaves and its subfoliation,
the bunching condition helps us keep uniform C1+θ control of the holonomy along the
subfoliation. This argument will give us that the holonomy is Lipschitz, with uniform
bounds on the Lipschitz constants.

To upgrade to differentiability, we use the ideas from [6] on Lipschitz jets. The
continuity of the derivative and the identification with the invariant holonomy is obtained
again using the invariant section theorem.

1.2. Several applications. We list a couple of applications of the above results.
(1) The ergodicity of C1+θ accessible θ -center bunched partially hyperbolic diffeomor-

phisms can be obtained under weaker assumptions, without the condition that the
invariant bundles are Cθ [4, 17].

(2) The existence of invariant holonomies for the derivative cocycle on the center
bundle for partially hyperbolic diffeomorphisms can be also obtained with weaker
assumptions, without the θ -pinching condition (and in C1+θ regularity). This applies
for example to various results concerning the continuity and the non-vanishing of
central exponents of partially hyperbolic diffeomorphisms with two-dimensional
center [1, 7, 10, 11, 13].

(3) We establish the continuity of the derivative of the holonomies with respect to the
points and the map, under more general conditions. This is a useful tool which
can be applied to obtain perturbation results related to the uniqueness of u-Gibbs
or MMEs for some classes of partially hyperbolic diffeomorphisms (for example
along the lines of [5, 12, 15]) or related to the accessibility of partially hyperbolic
diffeomorphisms [9].

1.3. Organization of the paper. In §2, we present some tools which we will use in the
proof. In particular, we discuss the regularity of the holonomy along a subfoliation of a
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submanifold, and how to approximate immersed submanifolds with smooth ones. In §3,
we present the proofs.

2. Preparations
2.1. Regularity of holonomy along a subfoliation: some general comments. We will start
with a discussion about the regularity of the (derivative of) holonomy along a subfoliation
of a submanifold in R

d .
Assume that we have a C1 embedded submanifold W inside R

d . Assume that F is a
C1 subfoliation of W . Given two points x, y on the same leaf of F , and two transversals
Tx , Ty to F inside W passing through x and y, let hFTx ,Ty

: Tx → Ty be the holonomy given
by F .

Let Dx = TxTx and Dy = TyTy the tangent planes to Tx , Ty in x and y. Let DhFTx ,Ty
:

Dx → Dy be the derivative of the holonomy hFTx ,Ty
. Clearly, it depends only on Dx and

Dy and not on the transversals Tx and Ty , which is why we will also use the notation
DhFDx ,Dy

. Given a decomposition A ⊕ B = R
d , we denote by pB

A : Rd → A the projection

to A parallel to B. If we want to specify that we consider the restriction of pB
A to a subspace

A′, we will denote it as pB
A′,A.

Let dF be the distance induced on the leaves of F .

Definition 2.1. Let x ∈ W , � be a continuous cone field inside TW uniformly transverse
to F , Ex transverse to �x and δ > 0. We say that DhF is (CF , θ)-Hölder along Fat x
with respect to �, Ex and at scale δ if

‖DhFDx ,Dy
(x)−p

Ex

Dx ,Dy
‖ ≤ CFdF (x, y)θ for all y ∈ Fδ(x), for all Dx ∈ �x , Dy ∈ �y .

(2)

If instead of Rd we are in a smooth Riemannian manifold, the definition is similar, with
the requirement that the condition in equation (2) holds in an exponential chart at x of
size δ.

Let us remark that given a C2 submanifold W with a C2 subfoliation F , the continuous
cone field �, and a subspace Ex containing TxF(x), there exist CF , δ > 0 such that DhF
is (CF , θ)-Hölder along F at x with respect to �, Ex and at scale δ (we can actually take
θ = 1). The following lemma explains this fact in more detail.

We need a bound on the transversality between Ex and � at the scale δ:

t (Ex , �, δ) = sup
{

1
sin(� (Ex , Dy))

: y ∈ Wδ(x), Dy ∈ �y

}
.

In particular, we have

‖pEx

Dy
‖ ≤ t (Ex , �, δ) for all y such that d(x, y) < δ.

We also consider a bound on the transversality between � and F :

t (F , �) = sup
{

1
sin(� (TyF(y), Dy))

: Dy ∈ �y

}
.
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We say that φ : Rd → R
d is a linear parameterization of (W , F) if

φ(Rdim W × {0}d−dim W ) = W and φ(Rdim F × {b} × {0}d−dim W ) = F(φ(0, b, 0))

for all b ∈ R
dim W−dim F (φ basically straightens both W and F). If φ is defined only

between balls of radius δ at the origin and x, we say that it is a δ-linear parameterization
of (W , F) at x.

LEMMA 2.2. Let W be a C2 submanifold in R
d and F a C2 subfoliation of W . Let �

be a continuous cone field in TW transverse to F , x ∈ W and Ex a subspace containing
TxF(x) and transverse to �y for all y ∈ Fδ(x) for some δ > 0. Let φ be a C2 δ-linear
parameterization of (W , F) at x. Then DhF is (CF , θ)-Hölder along F at x with respect
to �, Ex and at scale δ for CF = ‖φ‖2

C1+θ · ‖φ−1‖2+θ

C1 · t (Ex , �, δ) · t (F , �) · δθ .

Proof. Denote ∗̃ the push-forward under φ−1 of the objects ∗. Observe that

DhF̃
D̃x ,D̃y

= p
Ẽx

D̃x ,D̃y

because Ẽx contains the plane parallel to the linear foliation F̃ . Denote D′ = Dφ(x̃)D̃y

and D̃′ = Dφ−1(x)Dy . Since DφẼx = Ex , we have

p
Ex

Dx ,Dy
= Dφ(x̃)|

D̃′ ◦ p
Ẽx

D̃x ,D̃′ ◦ Dφ−1(x)|Dx

= Dφ(x̃)|
D̃′ ◦ p

Ẽx

D̃y ,D̃′ ◦ p
Ẽx

D̃x ,D̃y
◦ Dφ−1(x)|Dx

= p
Ex

D′,Dy
◦ Dφ(x̃)|

D̃y
◦ p

Ẽx

D̃x ,D̃y
◦ Dφ−1(x)|Dx .

Then

‖DhFDx ,Dy
− p

Ex

Dx ,Dy
‖ = ‖Dφ(ỹ)|

D̃y
◦ DhF̃

D̃x ,D̃y
◦ Dφ−1(x)|Dx − p

Ex

Dx ,Dy
‖

= ‖(Dφ(ỹ)|
D̃y

− p
Ex

D′,Dy
◦ Dφ(x̃)|

D̃y
) ◦ p

Ẽx

D̃x ,D̃y
◦ Dφ−1(x)|Dx‖

≤ ‖pEx

Dy
‖ · ‖Dφ(ỹ) − Dφ(x̃)‖ · ‖pẼx

D̃y
‖ · ‖Dφ−1(x)‖

≤ t (Ex , �, δ) · ‖φ‖C1+θ · ‖φ−1‖1+θ

C1 · δθ

sin(� (D̃y , T F̃ ))

≤ ‖φ‖2
C1+θ · ‖φ−1‖2+θ

C1 · t (Ex , �, δ) · t (F , �) · δθ .

We used the fact that

sin(� (Dy , TyF )) ≤ sin(� (D̃y , T F̃ ))‖Dφ‖ · ‖Dφ−1‖.

We want to study the behavior of the regularity of foliations under the push-forward of
a diffeomorphism. Assume that W is contained in the open set U and f : U → F(U) is a
C1+θ diffeomorphism. We will use the following notation for the bounds of Df along �

and TF :
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λ+
�(f , x, δ) := sup

d(x,y)<δ

‖Df (y)|�y ‖;

λ−
�(f , x, δ) :=

(
sup

d(x,y)<δ

‖(Df (y)|�y )
−1‖

)−1
;

λF (f , x, δ) :=
(

sup
d(x,y)<δ

‖(Df (y)|TyF(x))
−1‖

)−1
.

The following lemma is one of the main tools behind our proof. It keeps track on how
the constant CF changes under iterations.

LEMMA 2.3. Let F be a foliation as above such that DhF is (CF , θ)-Hölder along F at
x ∈ R

n with respect to �, Ex and at scale δ. Let f : U → f (U) ⊂ R
n be a C1+θ diffeo-

morphism. Then for any �′ ⊂ f∗� and δ′ < λF (f , x, δ)δ, Dhf∗F is (Cf∗F , θ)-Hölder
along f∗F at f (x) with respect to �′, f∗Ex and at scale δ′, where

Cf∗F = λ+
�(f , x, δ)CF + t (Ex , �, δ)t (f∗Ex , �′, δ′)‖Df ‖Cθ

λ−
�(f , x, δ)λF (f , x, δ)θ

. (3)

Proof. Denote E′
x = Df (x)Ex , D′

x = Df (x)Dx , D′
y = Df (y)Dy , D̃ = Df (x)Dy . Since

Df (x) takes the decomposition Ex ⊕ Dx to E′
x ⊕ D′

x , we have that

p
E′

x

D′
x ,D′

y
◦ Df (x)|Dx = p

E′
x

D̃,D′
y

◦ Df (x)|Dy ◦ p
Ex

Dx ,Dy
.

We also have

df∗F (f (x), f (y)) ≥ λF (f ) d(x, y).

For simplicity, we will use the notation λ±
�, λF . We have

‖Dh
f∗F
D′

x ,D′
y
− p

E′
x

D′
x ,D′

y
‖ = ‖Df (y)|Dy ◦ DhFDx ,Dy

(x) ◦ (Df (x)|Dx )
−1 − p

E′
x

D′
x ,D′

y
‖

≤ ‖Df (y)|Dy ◦ (DhFDx ,Dy
(x) − p

Ex

Dx ,Dy
) ◦ (Df (x)|Dx )

−1‖
+ ‖Df (y)|Dy ◦ p

Ex

Dx ,Dy
◦ (Df (x)|Dx )

−1 − p
E′

x

D′
x ,D′

y
‖

≤ ‖(Df (y)|Dy ◦ p
Ex

Dx ,Dy
− p

E′
x

D′
x ,D′

y
◦ Df (x)|Dx )(Df (x)|Dx )

−1‖ + λ+
�

λ−
�

CFdF (x, y)θ

≤ λ+
�

λ−
�

CFdF (x, y)θ + 1
λ−

�

‖Df (y)|Dy ◦ p
Ex

Dx ,Dy
− p

E′
x

D̃,D′
y

◦ Df (x)|Dy ◦ p
Ex

Dx ,Dy
‖

≤ λ+
�

λ−
�

CFdF (x, y)θ + 1
λ−

�

‖pE′
x

D′
y
‖ · ‖Df (y)|Dy − Df (x)|Dy ‖ · ‖pEx

Dx ,Dy
‖

≤
(

λ+
�CF

λ−
�λθ

F
+ t (Ex , �, δ)t (f∗Ex , �′, δ′)‖Df ‖Cθ

λ−
�λθ

F

)
df∗F (f (x), f (y))θ .

2.2. Smooth approximations of invariant submanifolds. The center-unstable leaves Wcu

of the partially hyperbolic diffeomorphism f are subfoliated by the unstable leaves
Wu, but unfortunately they are not smooth enough to carry out the ideas from the
previous sub-section. This is why we need to construct smooth approximations of the
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center-unstable leaves, together with a smooth approximation of the unstable subfoliation.
We need to approximate pieces of Wcu which are arbitrarily large in the center direction,
while making sure that the C2 bounds of the approximations are uniform. The reader can
keep in mind some specific examples where the smooth approximations are more or less
straightforward: fake foliations—cu-subspace subfoliated by u-subspaces; perturbations
of linear maps—the linear foliations of the original linear map. The case of partially
hyperbolic diffeomorphisms which are fibered over hyperbolic homeomorphisms is also
easier, because the center leaves are uniform C1+α embeddings of the same compact fiber,
and one can use a standard smooth approximation. Our construction is a bit more technical
because we want to include possible large pieces of the center manifolds with possible
complicated topology.

Let us make some preparations.

Definition 2.4. A Cr submanifold W has size greater than δ at x if within the exponential
chart at x, W contains the graph of a Cr function g from the ball of radius δ in TxW to the
orthogonal complement TxW⊥.

If the ball of radius δ at x in the Cr submanifold W can be written, in an exponential
chart at x ∈ M , as the graph of a Cr function g from an open subset of TxW to the
orthogonal complement TxW⊥, then the (Cr , x, δ) size of W is ‖W‖Cr ,x,δ = ‖g‖Cr .

Eventually modifying the Riemannian metric, we can assume that the invariant
subspaces are close to orthogonal.

Definition 2.5. The continuous cone field �∗
ε over M is defined in the following way:

�∗
ε (x) contains the subspaces of TxM which have the same dimension as E∗(x) and are

ε-close to E∗(x), ∗ ∈ {s, c, u, cs, su, cu}.
For ε small, we have that �u

ε and �cu
ε are forward invariant, while �s

ε and �cs
ε are

backward invariant.
Fix ε0, δ0 > 0 and a C1+θ neighborhood U(f ) of f such that:

• the s, sc-cones of size 2ε0 are backwards invariant while the u, cu-cones are forward
invariant for all g ∈ U(f );

• the cone fields �∗
2ε0

are uniformly transverse for all ∗ ∈ {s, c, u, cs, su, cu} at the
scale δ0, meaning that for every x ∈ M , within the exponential chart at x, �∗

2ε0
(x) and

�∗′
2ε0

(y) are uniformly transverse for d(x, y) < δ0: t (�∗
2ε0

, �∗′
2ε0

, δ0) < 2, where

t (�∗
2ε0

, �∗′
2ε0

, δ0) = sup
{

1
sin(� (D1, D2))

: d(x, y)<δ0, D1∈�∗
2ε0

(x), D2∈�∗′
2ε0

(y)

}
;

• the bunching condition holds at the (2ε0, δ0)-scale for all g ∈ U(f ), meaning that

λ+
�c

2ε0
(g, x, δ0)

λ−
�c

2ε0
(g, x, δ0)λ

−
�u

2ε0
(g, x, δ0)θ

< μ < 1 for all g ∈ U(f ), for all x ∈ M; (4)

• the center bundle is uniformly Cα and the local center manifolds are uniformly C1+α ,
meaning that there exists Cα > 0 such that for every g ∈ U(f ) and every x, y ∈ M ,
d(Ec(x, g), Ec(y, g)) ≤ Cαd(x, y)α and ‖Wc

4δ0
(x, g)‖C1+α ,x,4δ0

< Cα .
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The following lemma is an immediate consequence of the transversality. We say that
the submanifold W is tangent to the cone field � if TyW ∈ �(y) for all y ∈ W .

LEMMA 2.6. (Local product structure) There exist δp > 0 such that for any 0 < δ ≤ δp,
any x, y ∈ M with d(x, y) < δ, any W2δ(x) C1 manifold of size 2δ at x tangent to �∗

ε0
, and

any W2δ(y) C1 manifold of size 2δ at y tangent to �∗′
ε0

, where ∗ and ∗′ are complementary
combinations of {s, c, u}, then W2δ(x) and W2δ(y) intersect transversally in a unique
point.

Now we are ready to construct the smooth approximations.

2.2.1. Smooth uniform approximation of center manifolds. The first step is to approx-
imate large pieces of center manifolds with smooth ones, while keeping control on the
smoothness of the approximations.

Fix a smooth approximation Ẽsu inside �su
ε0

. There exists 0 < ε1 < ε0 such that for
every p ∈ M , the family {expx(Bε1Ẽ

su(x)) : x ∈ Wc(p)} subfoliate a tubular neighbor-
hood of Wc(p). Let h̃su be the holonomy generated by this subfoliation.

LEMMA 2.7. For any ε > 0 small enough, any p ∈ M , and any R > 0, there exists a
smooth approximation of size ε of Wc

R(p), meaning the following. There exists a smooth
immersed manifold (possible with self-intersections) W̃c

R,ε(p) tangent to �c
ε , together with

a local diffeomorphism h̃su
ε given by the local h̃su-holonomy.

Furthermore, the approximations are uniform in the following sense. For every
x ∈ W̃c

R,ε(p), we have ‖W̃c
R,ε(p)‖C1+α ,x,δ0

≤ C̃α for some C̃α independent of p, R, ε, f ,
and ‖W̃c

R,ε(p)‖C2,x,δ0
≤ C̃(ε) for some C̃(ε) independent of p, R, f (but depends on ε).

Proof. Cover M by a finite number of foliation charts of Wc with center leaves of size δ0,
say U1, U2, . . . , Uk . Then Wc

R(p) is covered by finitely many plaques Wc
δ0

(xi), 1 ≤ i ≤ K

from these foliation charts. Let Bi = Wc
3δ0

(xi) and Wc
R(p) ⊂ W0 = ⋃K

i=1 Bi .

Each Bi is (contained in) the graph of a function γi : B4δ0E
c(xi) → Ec⊥

(xi) with
uniform C1+α bounds. We will use the following standard regularization procedure.

Suppose that γ : U → E⊥ is C1+α , B3δ0E ⊂ U ⊂ E, and it is also C∞ on some subset
V ⊂ U . For any ε > 0 sufficiently small, we can use the standard regularization and obtain
γ ′ which is C∞ and C1 close to γ . Let ρ be a smooth bump function which is one on B2δ0E

and zero outside B3δ0E. Use ρ to interpolate between γ ′ and γ , and obtain a new function
γ̃ which is C1+α on B4δ0E, C∞ on B2δ0E ∪ V , and satisfies:
• ‖γ̃ − γ ‖C1 ≤ εα‖γ ‖C1+α on U;
• ‖γ̃ ‖C1+α ≤ 2‖γ ‖C1+α on U;
• ‖γ̃ |B2δ0E∪V ‖C2 ≤ C(ε) max{‖γ ‖C1+α , ‖γ |V ‖C2};
• γ̃ = γ outside B3δ0E,
where C(ε) > 2 depends only on ε (and ρ).

We proceed with perturbing the leaves in U1. Let Ij = {1 ≤ i ≤ k : Wc
δ0

(xi) ∈ Uj }.
By performing the perturbation described above to each Bi , i ∈ I1, we obtain new
submanifolds B1

i which are graphs of the functions γ 1
i in exponential charts at xi . The
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holonomy h̃su
1 of length smaller than 2εαCα (in the exponential chart at xi) is well defined

between Bi and B1
i . Let

W1 = W0 \
( ⋃

i∈I1

Bi

)
∪

( ⋃
i∈I1

B1
i

)
.

Then W1 is an immersed submanifold of M, possible with self-intersections. Observe that
we can extend h̃su

1 as the identity outside
⋃

i∈I1
B1

i and obtain a local diffeomorphism
between W0 and W1. Let A1 = ⋃

i∈I1
Gr(γ 1

i |B2δ0Ec(xi )) (the smooth part of W1). For

i /∈ I1, define B1
i = h̃su

1 (Bi) ⊂ W1. Then W1 is the union of B1
i , and each B1

i is related to
Bi by h̃su

1 . If πi is the projection on the first coordinate in the exponential chart at xi , then
B1

i is the graph of a function γ 1
i : πi(B

1
i ) → Ec⊥

(xi) satisfying:
• B4δ0−ε1E

c(xi) ⊂ πi(B
1
i ) ⊂ B4δ0+ε1E

c(xi);
• ‖γi − γ 1

i ‖C1 ≤ ε1/2;
• ‖γ 1

i ‖C1+α ≤ 2CMCα;
• ‖γ 1

i |πi(B
1
i ∩A1)

‖C2 ≤ C(ε)CMCα ,
where CM depends on the Riemannian manifold M and δ0 (measures the size of the change
of coordinates between nearby exponential charts) and ε1 = 2εαCMCα . Furthermore,
each Bi is diffeomorphic to B1

i by the holonomy h̃su
1 of length less than ε1. Observe

that if ε is small enough so W1 stays C1 close to Wc, then we have that A1 contains⋃
i∈I1

h̃su
1 (Wc

2δ0−2ε1
(xi)).

Now we proceed with perturbing the leaves corresponding to U2. In a similar manner,
we obtain a submanifold W2 related to W1 by the holonomy h̃su

2 of length ε2 = 4εαC2
MCα ,

and containing a smooth part A2 ⊂ W2. Here, W2 is the union of B2
i = h̃su

2 (B1
i ), and each

B2
i is the graph of a function γ 2

i : πi(B
2
i ) → Ec⊥

(xi) satisfying:
• B4δ0−ε1−ε2E

c(xi) ⊂ πi(B
2
i ) ⊂ B4δ0+ε1+ε2E

c(xi);
• ‖γ 1

i − γ 2
i ‖C1 ≤ ε2/2;

• ‖γ 2
i ‖C1+α ≤ 4C2

MCα;
• ‖γ 2

i |πi(B
1
i ∩A2)

‖C2 ≤ C(ε)2C2
MCα .

If ε is small enough so that W2 stays C1 close to Wc, then

⋃
i∈I1∪I2

h̃su
2 ◦ h̃su

1 (Wc
2δ0−2ε1−2ε2

(xi)) ⊂ A2.

Continue by induction, perturbing on each Ui until we reach Uk . We get a submanifold
Wk related to Wk−1 by the holonomy h̃su

k of length εk = 2kεαCk
MCα , and containing a

smooth part Ak ⊂ Wk . In particular, Wk is related to W0 by the holonomy h̃su of length
ε̃ = ∑k

i=1 εi . Furthermore, Wk is the union of Bk
i = h̃su

k (Bk−1
i ), and each Bk

i is the graph
of a function γ k

i : πi(B
k
i ) → Ec⊥

(xi) satisfying:
• B4δ0−ε̃E

c(xi) ⊂ πi(B
k
i ) ⊂ B4δ0+ε̃E

c(xi);
• ‖γ k−1

i − γ k
i ‖C1 ≤ εk/2, so ‖γi − γ k

i ‖C1 ≤ ε̃/2;
• ‖γ k

i ‖C1+α ≤ 2kCk
MCα;

• ‖γ k
i |πi(B

1
i ∩Ak)

‖C2 ≤ C(ε)kCk
MCα .
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If ε is small enough, then we also have⋃
i∈I

h̃su
k ◦ · · · ◦ h̃su

1 (Wc
2δ0−2ε̃ (xi)) ⊂ Ak .

We can make this construction until the end for any ε small enough such that ε̃ < δ0/2
(and Wk is close to Wc so the estimates on the smooth part hold).

If x = (a, γ k
i (a)) ∈ Wk (in a chart at xi), let x0 = (a, γi(a)) ∈ Wc(xi). We have

d(Ec(x), Ec(x0)) ≤ Cαε̃α and d(Ec(x0), Gr(Dγ k
i (a))) ≤ ε̃, so Wk is tangent to

�c
ε̃+ε̃αCα

.
Since limε→0 ε̃ + ε̃αCα = 0, the conclusions of the lemma hold with ε = ε̃ + ε̃αCα ,

W̃c
R,ε(p) = Wk , h̃su

ε = h̃su
k ◦ · · · ◦ h̃su

1 , C̃α = 2kCk+1
M Cα , and C̃(ε) = C(ε)kCk+1

M Cα .

2.2.2. Smooth uniform approximation of center-unstable manifolds and of unstable
foliation. The second step is to use the smooth approximation of the center to construct
smooth approximations of local center-unstable pieces together with a subfoliation close
to the unstable one.

Fix a smooth global approximation Ẽu of Eu, say within �u
ε0/10. We know from

the previous step that W̃c
R,ε(p) are uniformly C1+α for all p, R, ε, f . Then there exists

0 < δF < min{δ0, δp} such that, for every p, R, ε, f , the family {exp(BδF Ẽu(x)) : x ∈
W̃c

R,ε(p)} foliates a smooth submanifold inside a tubular neighborhood of W̃c
R,ε(p); we

denote this submanifold W̃cu
R,ε(p), and the foliation Fu

R,ε,p. By assuming that ε < (ε0/10)

and eventually making δF smaller, we have that W̃cu
R,ε(p) is tangent to �cu

ε0
and Fu

R,ε,p is

tangent to �u
ε0

. We also have that W̃cu
R,ε(p) and Fu

R,ε,p are uniformly Cr , r ≥ 2 with respect
to p, R, f (the Cr bounds do however depend on ε).

LEMMA 2.8. For any ε > 0 small enough, there exists a constant Cφ(ε) > 0 such that
for every p, R, f and any x ∈ W̃c

R,ε(p), there exists a δF -linear parameterization φ of
(W̃c

R,ε(p), Fu
R,ε,p) at x with ‖φ‖C2 , ‖φ−1‖ < Cφ(ε).

Proof. For simplicity of the notation, we will work in an exponential chart at x, and we
will make an abuse of notation using the same notation for the objects in M and in the
exponential chart.

Choose a decomposition E1 ⊕ E2 ⊕ E3 = R
d(= TxM) with E1 = TxW̃c

R,ε(p),
E2 = Ẽu

x , and E3 orthogonal on E1, E2. Let α : BδFR
d × BδF E2 → R

d be a smooth
parameterization of the family {exp(BδF Ẽu(y)) : y ∈ BδFR

d}, in other words, α(y, ·) is
a parameterization of exp(BδF Ẽu(y)). We can assume that α(y, 0) = y, so Dyα(y, 0) =
idRd , and Dy2α(y, 0) is a linear map from E2 to Ẽu

y , uniformly bounded from zero and
infinity. In particular, Dy2α(0, 0) is an automorphism of E2. The map α is C∞, and its
size depends only on the Riemannian structure on M and the choice of Ẽu.

Let γ : BδF E1 → E2 ⊕ E3 be a smooth function such that its graph is the local
manifold W̃c

R,ε(p) in a neighborhood of x. Then γ has the C1+α size bounded by 2C̃α

and its C2 size bounded by 2C̃(ε).
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Let φ : BδFR
d → R

d ,

φ(y1, y2, y3) = (α((y1, γ (y1)), y2) + y3.

It is clear from the definition that φ is a δF -linear parameterization φ of (W̃c
R,ε(p), Fu

R,ε,p)

at x. The C2 size of φ is bounded by some Cφ(ε) which depends on C̃(ε), the Riemannian
structure of M, and the choice of Ẽu. The C1+α size of φ is bounded by some constant
which depends on C̃(α), the Riemannian structure of M, and the choice of Ẽu.

We have

Dφ(0) =
⎡
⎣idE1 0 0

0 Dy2α(0, 0) 0
0 0 idE3

⎤
⎦.

The determinant is uniformly bounded away from zero, so eventually readjusting δF , we
have that the C1 size of φ−1 is uniformly bounded. This finishes the proof.

We claim that Wu
δ Wc

R−r (p) and W̃cu
R,ε(p) are related by local stable holonomy for some

r > 0 and ε, δ sufficiently small.

LEMMA 2.9. Suppose that ε is small enough and r − 2ε > δF , δ + ε < δF/4. Then for
any p, R, f , with R > r , the stable holonomy of size 2(δ + ε) gives a local homeomor-
phism from Wu

δ Wc
R−r (p) to (a subset of) W̃cu

R,ε(p).

Proof. Let x ∈ Wc
R−r (p) and y ∈ Wu

δ (x). Let x′ = h̃su
ε (x) ∈ W̃c

R,ε(p), so d(x, x′) < ε.
Then W̃c

R,ε(p) has size at x′ at least r − 2ε > δF . This implies that W̃cu
R,ε(p) has size at

x′ at least δF/2. However, d(y, x′) ≤ δ + ε < δF/4. The local product structure from
Lemma 2.6 implies that Ws

2(δ+ε)(y) intersects transversely the disk centered at x ′ of

size 2(δ + ε) < δF/2 in W̃cu
R,ε(p) in a point hs

2(δ+ε)(y). Then hs
2(δ+ε)(y) is a local

homeomorphism from Wu
δ Wc

R−r (p) to W̃cu
R,ε(p).

3. Proofs
We divide the proof of Theorem 1.3 into several steps.

3.1. Approximation of the unstable holonomies: construction of hn
p,q . We start with the

construction of an approximation of the unstable holonomy inside center-unstable leaves.
From now on, we fix r = 2δF and 0 < ε = δ < (δF/10) small enough so that all the
conclusions from §2.2 hold.

Let p ∈ M , q ∈ Wu
δ (p), x ∈ Wc

δ (p), z = hu
p,q(x) ∈ Wc

2δ(q), and Rn = 3δ supx∈M

‖Df −n|Ec‖ + r . We start iterating back by f −n. Denote

Wn = Wu
δ Wc

Rn−r (f
−n(p)).

Observe that f −n(Wc
2δ(p)), f −n(Wc

2δ(q)) ⊂ Wn.
As in the previous section, we consider the approximation W̃cu

Rn,ε(f
−n(p)) := W̃n

and its subfoliation FRn,ε,f −n(p) := Fn. Lemma 2.9 implies that the stable holonomy
of size (smaller than) 4δ, hs

4δ : Wn → W̃n, is a local homeomorphism. Denote
∗̃n = hs

4δ(f
−n(∗)) ∈ Wn for ∗ ∈ {p, q, x, z}.
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Let Tp̃n
= hs

4δ(f
−n(Wc

2δ(p))) and Tq̃n
= hs

4δ(f
−n(Wc

2δ(q))), they are C1+α transver-
sals to the foliation Fn in W̃n (they are in fact tangent to �c

ε).
Now we iterate W̃n and Fn forward by f n. Denote ∗n = f n(∗̃n) = hs

4λn
s δ(∗) for

∗ ∈ {p, q, x, z} (the stable holonomy commutes with f and is uniformly contracted). Also
denote Tpn = f n(Tp̃n

) = hs
4λn

s δ(Wc
2δ(p)) and Tqn = f n(Tq̃n

) = hs
4λn

s δ(Wc
2δ(q)), they are

again C1+α transversals to f n∗ Fn inside f nW̃n.
The partial hyperbolicity implies that:

• pn, qn and xn converge exponentially to p, q, x;
• Tpn and Tqn converge to Wc

2δ(p) and Wc
2δ(q) in the C1 topology;

• hs
4λn

s δ(Wcu
loc(p)) ⊂ f nW̃n converges to Wcu

loc(p) in the C1 topology;
• f n∗ Fn,loc converges to Wu

loc in the following sense: if an converges to a, then
f n∗ Fn,loc(an) converges to Wu

loc(a) in the C1 topology.
Let T ′

pn
= hs

4λn
s δ(Wc

δ (p)) ⊂ Tpn . Then for n sufficiently large, there exists a
well-defined holonomy of the foliation f n∗ Fn between the transversals T ′

pn
and Tqn . We

denote this holonomy h
f n∗ Fn
pn,qn

and observe that it is C1+θ .
Define hn

p,q : Wc
δ (p) → Wc

2δ(q),

hn
p,q = hs−1

4λn
s δ ◦ (h

f n∗ Fn
pn,qn

) ◦ hs
4λn

s δ . (5)

In other words, to obtain hn
p,q(x) for x ∈ Wc

δ (p), we move with the stable holonomy of
size 4λn

s δ to T ′
pn

⊂ f nW̃n, then we move with the holonomy given by the foliation f n∗ Fn

of f n(W̃n) between the C1 transversals T ′
pn

and Tqn , and then we move back by the stable
holonomy of size 4λn

s δ to Wc
2δ(q).

Clearly, hn
p,q is continuous, since the stable holonomies are Hölder continuous, while

the holonomy h
f n∗ Fn
pn,qn

is C1+θ .

3.2. hn
p,q converges uniformly to hu

p,q . This follows immediately from the remarks in
the previous section.

3.3. hu
p,q is Lipschitz. We first show that Dh

f n∗ Fn
pn,qn

(xn) is bounded uniformly in n, xn.
Let �̃n = �cs

ε0
∩ T W̃n ⊂ �c

2ε0
be a cone field tangent to Wn. Let Ex̃n

= Es
x̃n

⊕
Tx̃n

Fn. Since the cone fields �∗
2ε0

are uniformly transverse at the scale δ0, we have
t (Ex̃n

, �̃n, δ) < 2 and t (Fn, �̃n) < 2. In view of Lemmas 2.8 and 2.2, we have that DhFn

is (CF , θ )-Hölder along Fn at x̃n with respect to �̃n, Ex̃n
and at scale δ for some constant

CF independent on p, n, x̃n and g in U(f ).
Let �̃k

n = �cs
ε0

∩ Tf kW̃n ⊂ �c
2ε0

be a cone field tangent to f kW̃n. Observe that
�̃k+1

n ⊂ f∗�̃k
n because of the backward invariance of �cs

ε0
. Since Tf k∗ Fn stays tangent

to �u
ε0

, we also have uniform transversality between �̃k
n and both f k∗ Fn and f k∗ Ex̃n

at
scale δ: t (f k∗ Ex̃n

, �̃k
n, δ) < 2 and t (f k∗ Fn, �̃k

n) < 2. Due to the fact that Fn is uniformly
expanding, we can apply successively Lemma 2.3 and using the bunching condition,
we conclude that Dhf n∗ Fn is (C0, θ )-Hölder along f n∗ Fn at f n(x̃n) = xn with respect
to �̃n

n, f n∗ Ex̃n
, and at scale δ for the constant C0 = CF + (4‖Df ‖Cθ /(1 − μ)‖Df −1‖)
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independent of p, n, x̃n. The constant also works for g within the neighborhood U(f ) of
f (eventually readjusting U(f ) or C0). Then Dh

f n∗ Fn
pn,qn

(xn) is bounded uniformly by some

constant L0, so h
f n∗ Fn
pn,qn

is Lipschitz with constant L0 uniformly in n.

Now the fact that hu
p,g is Lipschitz is just a simple consequence of the fact that h

f n∗ Fn
pn,qn

are uniformly Lipschitz. We have that d(h
f n∗ Fn
pn,qn

(xn), h
f n∗ Fn
pn,qn

(x′
n)) ≤ L0d(xn, x′

n) uniformly

in n. Since xn converges to x, x′
n converges to x′, h

f n∗ Fn
pn,qn

(xn) converges to hu
p,q(x), and

h
f n∗ Fn
pn,qn

(x′
n) converges to hu

p,q(x′), it follows that d(hu
p,q(x), hu

p,q(x′)) ≤ L0d(x, x′).

3.4. Estimate on the Lipschitz jet of hu
p,q . Let us remember the definition of Lipschitz

jets. Let M , N be two metric spaces, p ∈ M , q ∈ N . Two functions f , g : M → N such
that f (p) = g(p) = q are equivalent if lim supx→p(d(f (x), g(x))/d(x, p)) = 0. The
equivalence classes form the space J (M , p, N , q) of Lipschitz jets at p, q. The distance
between two Lipschitz jets is d(J (f ), J (g)) = lim supx→p(d(f (x), g(x))/d(x, p)), it
can be infinite and is independent of the representatives f and g. A Lipschitz jet is bounded
if the distance to the jet of the constant function is finite. The space of bounded Lipschitz
jets at p, q, J b(M , p, N , q), is a complete metric space. If M , N are differentiable man-
ifolds, then the space of differentiable Lipschitz jets at p, q, J d(M , p, N , q), is formed
by the jets which have a representative which is differentiable. Here, J d(M , p, N , q) is a
closed subspace of J b(M , p, N , q).

For simplicity, let us denote Dxn = TxnTpn , Dyn = TynTqn , where yn = h
f n∗ Fn
pn,qn

(xn),

Exn = f n∗ Ex̃n
, h

n = h
f n∗ Fn
pn,qn

. We have

‖Dh
n
(xn) − p

Exn

Dxn ,Dyn
‖ ≤ C0d(xn, yn)

θ . (6)

In particular, we have that Dxn and Dyn converge exponentially to Ec(x), Ec(z) when n
goes to infinity, while Exn converges exponentially to Es(x) ⊕ Eu(x).

We will work in an exponential chart at pn, and we will make an abuse of notation
keeping the notation of the points. Let Bpn , Bqn be the balls or radius δ in Dpn , Dqn . We
can choose C1+α maps σpn : Bpn → Tpn and σqn : Bqn → Tqn such that:
• pn + x′ − σpn(x

′) ∈ Epn for all x′ ∈ Bpn ;
• qn + y′ − σqn(y

′) ∈ Epn for all y′ ∈ Bqn .
In other words, they are parameterizations of Tpn , Tqn given by the projection from
Bpn , Bqn parallel to Epn . Using them, we can define gn : T ′

pn
→ Tqn , gn = σqn ◦

p
Epn

Dpn ,Dqn
◦ σ−1

pn
. This means that gn has Dgn(pn) = p

Epn

Dpn ,Dqn
. We will analyze the

Lipschitz jets of hn and gn at pn.
We will use the notation xn = σpn(x

′
n), yn = σqn(y

′
n). We can see that:

• σpn(0) = pn, σqn(0) = qn;
• Dσpn(0) = idDpn

, Dσqn(0) = idDqn
;

• Dσpn(x
′
n) = p

Epn

Dpn ,Dxn
, Dσqn(y

′
n) = p

Epn

Dqn ,Dyn
;

Let Gn = σ−1
qn

◦ h
n ◦ σpn − p

Epn

Dpn ,Dqn
: Bpn → Dqn . We have that Gn(0) = 0 and

‖DGn(0)‖ ≤ C0d(pn, qn)
θ . We have
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‖DGn(x
′
n)‖ = ‖Dσ−1

qn
◦ Dh

n
(xn) ◦ Dσpn(x

′
n) − p

Epn

Dpn ,Dqn
‖

= ‖pEpn

Dqn
◦ (Dh

n
(xn) − p

Exn

Dxn ,Dyn
) ◦ p

Epn

Dxn
+ p

Epn

Dqn
◦ (p

Exn

Dxn ,Dyn
− p

Epn

Dxn ,Dyn
) ◦ p

Epn

Dxn
‖

≤ ‖pEpn

Dqn
‖ · ‖pEpn

Dxn
‖ · (C0d(xn, yn)

θ + 2d(Epn , Exn))

≤ 4(C0d(xn, yn)
θ + 2d(Epn , Exn)).

There exists γ > 0 depending on d(p, q) such that for all n sufficiently large and all
xn ∈ T ′

pn
with d(xn, pn) < γ , we have:

• d(xn, yn) < 2d(p, q);
• 8d(Epn , Exn)) < C0d(p, q)θ .

We deduce that if d(xn, pn) < γ , then ‖DG(x′
n)‖ < 5C0d(p, q)θ , or G is Lipschitz

with constant 5C0d(p, q)θ . Then

d(σ−1
qn

◦ h
n ◦ σpn(x

′
n), p

Epn

Dpn ,Dqn
(x′

n))

= d(G(x′
n), G(0)) ≤ 5C0d(p, q)θd(x′

n, 0) ≤ 10C0d(p, q)θd(xn, pn)

and furthermore

sup
d(xn,pn)<γ

d(h
n
(xn), gn(xn))

d(xn, pn)
≤ Lip(σqn) sup

d(xn,pn)<γ

d(σ−1
qn

◦ h
n
(xn), σ−1

qn
◦ gn(xn))

d(xn, pn)

≤ 20C0d(p, q)θ .

In other words, d(J (h
n
), J (gn)) ≤ 20C0d(p, q)θ in J b(Tpn , pn, Tqn , qn) (in fact in

J d(Tpn , pn, Tqn , qn)). Since γ is independent of n, this relation can be passed to the limit
when n goes to infinity and we get

sup
d(x,p)<γ

d(hu
p,q(x), gp,q(x))

d(x, p)
≤ 20C0d(p, q)θ ,

where gp,q = σq ◦ p
Esu(p)

Ec(p),Ec(q) ◦ σ−1
p . This means that d(J (hu

p,q), J (gp,q)) ≤ 20
C0d(p, q)θ for all p ∈ M and q ∈ Wu

δ (x).

Remark 3.1. The gp,q is differentiable and the derivative is p
Esu(p)

Ec(p),Ec(q). The bound
obtained also works for the neighborhood U(f ).

3.5. hu
p,q is differentiable. We will use the invariant section theorem. Let

q ∈ Wu
δ (p), q �= p. For simplicity, let us denote gf n(p),f n(q) = gn, p

Esu(p)

Ec(p),Ec(q) = πn.
The base is Z with the discrete topology, and the base map is T, the translation by one.
The fiber over n is

Bn = B(J (gn), C1d(f n(p), f n(q))θ ) ⊂ J b(Wc
δ (f n(p)), f n(p), Wc

δ (f n(q)), f n(q))

if n ≤ 0, where C1 = 20C0. In particular, we have J (hu
f n(p),f n(q)) ∈ Bn. Observe that

since C1 > C0, we have
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μC1 + 4μ‖Df ‖Cθ

‖Df −1‖ < C1. (7)

The subset Z− = Z \ N is overflowed by T. The bundle map is

F(n, J (h)) = (n + 1, J (f ◦ h ◦ f −1)).

We claim that F is well defined. For this, we have to prove that if d(J (h), J (gn)) ≤
C1d(f n(p), f n(q)), then d(J (f ◦h◦f −1), J (gn+1)) ≤ C1d(f n+1(p), f n+1(q)). Observe
that

d(J (f ◦ h ◦ f −1), J (gn+1))

≤ d(J (f ◦ h ◦ f −1), J (f ◦ gn ◦ f −1)) + d(J (f ◦ gn ◦ f −1), J (gn+1)).

On one hand, we have

d(J (f ◦ h ◦ f −1), J (f ◦ gn ◦ f −1))

≤ Lip(f , f n(q)) · d(J (h), J (gn)) · Lip(f −1, f n+1(p))

≤
λ+

�c
2ε0

(f , p, δ0)

λ−
�c

2ε0
(f , p, δ0)λ

−
�u

2ε0
(f , p, δ0)θ

C1d(f n+1(p), f n+1(q))θ

≤ μC1d(f n+1(p), f n+1(q))θ .

On the other hand, since gn and gn+1 are differentiable, we have

d(J (f ◦ gn ◦ f −1), J (gn+1)) = ‖D(f ◦ gn ◦ f −1) − Dgn+1‖
= ‖p

Esu

f n+1(p)

Ec

f n+1(q)

· (Df (f n(q)) − Df (f n(p))) · pEsu
f n(p)

Ec
f n(q)

· Df −1|Ec

f n+1(p)
‖

≤ 4μ‖Df ‖Cθ

λ−
�c

2ε0
(f , p, δ0)λ

−
�u

2ε0
(f , p, δ0)θ

d(f n+1(p), f n+1(q))θ

≤ 4μ‖Df ‖Cθ

‖Df −1‖ d(f n+1(p), f n+1(q))θ .

The estimates above together with the condition in equation (7) imply that F is indeed
well defined.

Next, we modify the distance inside each fiber Bn, we let dn = d/d(f n(p), f n(q))θ .
Let �b be the space of sections over Z−, with the supremum distance dsup = supn∈Z− dn.
It is clear that (�b, dsup) is a complete metric space. We claim that F is a uniform bundle
contraction over Z−.

Let J (σ), J (σ ′) ∈ Bn. Then

dn+1(J (f ◦ σ ◦ f −1), J (f ◦ σ ′ ◦ f −1)) = dn+1(J (f ◦ σ ◦ f −1), J (f ◦ σ ′ ◦ f −1))

d(f n+1(p), f n+1(q))θ

≤ Lip(f , f n(q)) · Lip(f −1, f n+1(p)) · d(f n(p), f n(q))θ

d(f n+1(p), f n+1(q))θ

· d(J (σ ), J (σ ′))
d(f n(p), f n(q))θ
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≤
λ+

�c
2ε0

(f , p, δ0)

λ−
�c

2ε0
(f , p, δ0)λ

−
�u

2ε0
(f , p, δ0)θ

dn(J (σ ), J (σ ′))

≤ μdn(J (σ ), J (σ ′)).

This shows that F induces a contraction on �b, so there exists a unique invariant
bounded section σ(n) ∈ Bn.

Here, Bn ∩ J d(Wc
δ (f n(p)), f n(p), Wc

δ (f n(q)), f n(q)) is a closed non-empty subset
of Bn, so we can apply again the invariant section theorem to this closed sub-bundle, which
is clearly preserved by F, and we get that the unique invariant section must contain actually
differentiable jets at all points.

We can check that the jet of the holonomy is also an invariant bounded section of F.
Uniqueness of the invariant section implies then that the holonomy is differentiable at
every points p, q ∈ Wu

δ (p), and satisfies

‖Dhu
p,q(p) − p

Esu
p

Ec
p ,Ec

q
‖ ≤ C1d(p, q)θ .

Remark 3.2. We proved the differentiability of the unstable holonomy between (nearby)
center leaves. However, we can adapt the proof for any two transversals to Wu inside a
center-unstable leaf. A sketch of the proof is the following.

Let Tp, Tq be two C1 transversals to Wu restricted to Wcu(p), and denote Dp and Dq

their tangent planes in p, q. Assume that Dp, Dq ∈ �c
ε0/4 and d(p, q) < δ/4 (otherwise,

iterate back a finite number of times). Choose W̃s a smooth approximation of Ws in
a tubular neighborhood of Wcu

δ (p). The local W̃s holonomy takes Tp, Tq to the C1

transversals T n
p , T n

q to f n∗ Fn inside f nWn. If n is sufficiently large, f nWn is close to
Wcu(p), and the local W̃s holonomy takes Dp, Dq to subspaces Dn

p, Dn
q inside �c

ε0/2. We
do have again the uniform control of the regularity of the f n∗ Fn holonomy between T n

p and
T n

q , so we can pass it to the limit as before, and obtain that the unstable holonomy between
Tp and Tq is differentiable with

‖Dhu
Tp ,Tq

(p) − p
Esu

p

Dp ,Dq
‖ ≤ C1d(p, q)θ .

In other words, Dhu is (C1, θ )-Hölder along Wu at p with respect to Esu
p , �c

ε0/4 and at
scale δ/4 for all p ∈ M . The result holds for the neighborhood U(f ).

3.6. Dhu
p,q is continuous in p, q, f . We will apply again the invariant section theorem

in yet another space. First, let us refine the bunching bound from equation (4). Choose
μ < μ′ < 1. Since Ec is uniformly Cα in a neighborhood of f, there exists 0 < δ′ < δ

such that for all g ∈ U(f ), p, q ∈ M , d(p, q) ≤ δ′, we have

‖pEsu
p,g

Ec
p,g ,Ec

q,g
‖, ‖pEsu

p,g
Ec

q,g ,Ec
p,g

‖ <

√
μ′
μ

.
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The base space is N = M2 × U(f ), with the C1 topology on U(f ). The base map is
G(p, q, g) = (g(p), g(q), g), which is continuous. At each (p, q, g) ∈ N , we consider
the fiber Ep,q,g = L(Ec

p,g), the linear maps from Ec
p,g to itself, with the usual norm given

by the Riemannian metric. Since the center bundle is continuous with respect to the point
and the map, we obtain a continuous Banach bundle E over N. Let N ′ = {(p, q, g) ∈ N :
q ∈ Wu

δ′(p, g)}. Clearly, N ′ is overflowed by G.
Let

‖σ‖b = sup
(p,q,g)∈N ′

‖σ(p, q, g)‖
d(p, q)θ

and let �b be the space of sections in E over N ′ bounded in ‖ · ‖b (in particular, σ ∈ �b

implies σ(p, p, g) = 0). This is a complete metric space. Here, �c ∩ �b is the space of
the sections which are both continuous and bounded in ‖ · ‖b, and is a closed non-empty
subset of �b (it contains the zero section).

The bundle map is T : E → E ,

T (p, q, g, L) = p
Esu

g(p),g
Ec

g(q),gEc
g(p),g

◦ Dg(q)|Ec
q,g ◦ p

Esu
p,g

Ec
p,g ,Ec

q,g
◦ (id + L) ◦ Dg(p)|−1

Ec
p,g

− id.

This is continuous in (p, q, g) ∈ N ′, L ∈ L(Ec
p,g).

The corresponding graph transform acts on sections σ ∈ �b and it is the following:

(T σ)(g(p), g(q), g)

= p
Esu

g(p),g
Ec

g(q),gEc
g(p),g

◦ Dg(q)|Ec
q,g ◦ p

Esu
p,g

Ec
p,g ,Ec

q,g
◦ (id + σ(p, q, g)) ◦ Dg(p)|−1

Ec
p,g

− id.

The connection with the holonomies is the following. If

id + σ(p, q, g) = p
Esu

p,g
Ec

q,g ,Ec
p,g

◦ Hu
p,q,g ,

where Hu
p,q,g : Ec

p,g → Ec
q,g is the candidate for the derivative of the holonomy, then

id + (T σ)(g(p), g(q), g) = p
Esu

g(p),g
Ec

g(q),g ,Ec
g(p),g

◦ g∗Hu
p,q,g

= p
Esu

g(p),g
Ec

g(q),g ,Ec
g(p),g

◦ Dg(q)|Ec
q,g ◦ Hu

p,q,g ◦ Dg(p)|−1
Ec

p,g
.

Let us check that T applied to the zero section is in �b. We remark first that

id = p
Esu

g(p),g
Ec

g(q),gEc
g(p),g

◦ Dg(p)|Ec
q,g ◦ p

Esu
p,g

Ec
p,g ,Ec

q,g
◦ Dg(p)|−1

Ec
p,g

.

Then,

‖T 0‖b = sup
(g(p),g(q),g)∈N ′

‖pEsu
g(p),g

Ec
g(q),g ,Ec

g(p),g
◦ Dg(q)|Ec

q,g ◦ p
Esu

p,g
Ec

p,g ,Ec
q,g

◦ Dg(p)|−1
Ec

p,g
− id‖

d(g(p), g(q))θ

≤ sup
(p,q,g)∈N ′

‖pEsu
g(p),g

Ec
g(p),g

◦ (Dg(q) − Dg(p))|Ec
q,g ◦ p

Esu
p,g

Ec
p,g ,Ec

q,g
◦ Dg(p)|−1

Ec
p,g

‖
d(g(p), g(q))θ
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≤ sup
(p,q,g)∈N ′

4‖Dg‖Cθ

λ−
�c

2ε0
(g, p, δ′)λ−

�u
2ε0

(g, p, δ′)θ

≤ 4μ‖Dg‖Cθ

‖Dg−1‖ .

Now let us check that T is a contraction in �b:

‖T σ1 − T σ2‖b

= sup
N ′

‖pEsu
g(p),g

Ec
g(q),g ,Ec

g(p),g
◦ Dg(q)|Ec

q,g ◦ p
Esu

p,g
Ec

p,g ,Ec
q,g

◦ (σ1 − σ2)(p, q, g)) ◦ Dg(p)|−1
Ec

p,g
‖

d(g(p), g(q))θ

≤
μ′λ+

�c
2ε0

(g, p, δ′)

μλ−
�c

2ε0
(g, p, δ′)λ−

�u
2ε0

(g, p, δ′)θ
‖σ1 − σ2‖b

≤ μ′‖σ1 − σ2‖b.

Since �b is a complete metric space, we obtain that there is a unique invariant section
in �b. Continuous sections are preserved by T, so we can also apply the Banach fixed
point theorem in �b ∩ �c, and we obtain that the unique invariant section in �c is in fact
continuous. However, the section

σu(p, q, g) = p
Esu

p,g
Ec

q,g ,Ec
p,g

◦ Dhu
p,q,g − id

is an invariant section of T inside �b, so it must be the unique invariant section. Since

p
Esu

p,g
Ec

q,g ,Ec
p,g

is continuous in p, q, g, we obtain that Dhu is also continuous in p, q, g.

If we consider the restriction to the base space M2 × {f }, then we have a Hölder map in
a Hölder bundle, so the invariant section theorem will provide us with a Hölder continuous
invariant section, which means that Dhu

p,q,f is actually Hölder in p, q. This finishes the
proof of Theorem 1.3.

3.7. Proof of Corollary 1.5. The proof is similar to the proof of Theorem 1.3. The
space is not compact (it is a disjoint union of R

d ), but the bounds are uniform. The
invariant foliations are globally defined graphs so in this case, the approximation of the
pair (Wcu, Wu) is actually much easier. We can take W̃cu to be the cu-subspace passing
through the origin, and the subfoliation F to be the subfoliation by u-subspaces. For more
details on fake foliations, we direct the reader to [4].

3.8. Proof of Theorem 1.7. The proof is actually contained in §3.6. Even if we do not
know that there exists a (differentiable) holonomy between center leaves, we still obtain

a continuous invariant section σu of T, and then Hu
p,q,g = p

Esu
p,g

Ec
p,g ,Ec

q,g
◦ (σu

p,q,g + id) is the

invariant continuous holonomy we are looking for, at least at the scale δ′. To define it
for all q ∈ Wu(p), we iterate forward and use invariance under f. Doing this, we have
automatically the invariance under f and the continuity with respect to the points. To prove
that Hu

q,r ◦ Hu
p,q = Hu

p,r , we can use the uniqueness of the invariant section. If the relation
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does not hold, we can modify the invariant section σ along the orbit of (p, r), replacing
it with the σ ′ corresponding to Hu

q,r ◦ Hu
p,q . Then the invariant section σ is not unique,

which is a contradiction.
The invariant holonomy which we obtain is Hölder because of the norm we use in the

application of the invariant section theorem and the fact that the center bundle is Hölder,
and by results in [7, 8], it is the unique Hölder invariant holonomy. If f is dynamically
coherent, then this unique holonomy has to be exactly the derivative of the holonomy
between the center leaves.
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