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Abstract. We prove that for C!%, 9-bunched, dynamically coherent partially hyperbolic
diffeomorphisms, the stable and unstable holonomies between center leaves are C!,
and the derivative depends continuously on the points and on the map. Also for C'*9,
6-bunched partially hyperbolic diffeomorphisms, the derivative cocycle restricted to the
center bundle has invariant continuous holonomies which depend continuously on the map.
This generalizes previous results by Pugh, Shub, and Wilkinson; Burns and Wilkinson;
Brown; Obata; Avila, Santamaria, and Viana; and Marin.
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1. Introduction
Let M be a compact smooth Riemannian manifold.

Definition 1.1. A diffeomorphism f : M — M of the compact Riemannian manifold M is
called partially hyperbolic if the tangent bundle admits a continuous D f -invariant splitting
TM = E* @ E° @ E" such that there exist continuous functions 0 < Ag(x) < A (x) <
AT (x) < Ay (x), with A5 (x) < 1 < A, (x), satisfying the following conditions:

(1) IDF V|| < Ag(x)s

() Az () < IDF V| < AF (1)

(3 IDf || = Aulx),

for every x € M and unit vectors v* € E*(x)(x = s, ¢, u).

Here, E° and E* are uniquely integrable, generating the stable and unstable foliations
W* and W*. A partially hyperbolic diffeomorphism is called dynamically coherent if there
exist invariant foliations W and W tangent to E° = E° @ E* and E* = E° ® E".
The intersection of W and W is the central foliation W¢° tangent to E°. In this
case, W is subfoliated by the stable and central foliations WW* and W€, while W is
subfoliated by the unstable and center foliations YW* and W¢.

Definition 1.2. A partially hyperbolic diffeomorphism is -unstable bunched, 6 > 0 if
+

A
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Similarly, we define #-stable bunching if Af < A7 /Af, and 6-bunched means both stable
and unstable bunched.

Given f: M — M partially hyperbolic and dynamically coherent, p € M,
q € W"(x, f), we can define the unstable holonomy h’;’q’f : Wi (p) = WE(q) between
the center leaves. We are addressing the question of differentiability of the holonomy along
the center leaves, and the continuity of the derivative with respect to the points and the

map.

THEOREM 1.3. Suppose that f is a C'*? partially hyperbolic diffeomorphism which is
dynamically coherent and 0-unstable bunched, 6 € (0, 1]. Then h’[‘,’ of is C1HHOlMder g s
derivative depends continuously on f, p, q with g € W"(p). A similar statement holds for
the stable holonomy under the 0-stable bunching condition.

Remark 1.4. The continuity means that if f, is inside a C'*? neighborhood of f and
converges to f in the C! topology, x,, converges to x, y, € Wi (xn), and y, converges to

u u
y, then thn,yn,fn converges to th,y,f'

Even if f is not dynamical coherent, one can always construct fake foliations which
are locally invariant under f and are almost tangent to the invariant bundles (see [4] for
example). The fake foliations are a fundamental tool for the study of ergodic properties of
partially hyperbolic diffeomorphisms.

COROLLARY 1.5. Suppose that f is a C'*? partially hyperbolic diffeomorphism which
is O-unstable bunched, 6 € (0, 1]. Then the fake unstable holonomy between fake center
leaves is uniformly C'*HOUer (in particular Lipschitz). A similar statement holds for the
stable holonomy under the 0-stable bunching condition.

Independently, if f is dynamically coherent or not, one can have invariant holonomies
of the continuous cocycle defined by Df | ge.

Definition 1.6. Let £ be a continuous vector bundle over M and F : £ — £ a continuous
linear cocycle over the partially hyperbolic diffeomorphism f : M — M. An invariant
unstable holonomy for F is a family of linear maps {H)’C{y Ex)—>E(y): xeM,
y € W (x)} satisfying the following conditions:

(1) HY,=id, HJ o H{, = H{;

@) FoH{,=H, p 0 F;

3) H;?,y is continuous in x, y under the condition y € W _(x);

In addition, we say that an unstable holonomy is S-Holder (along the leaves of W") if
it satisfies the following additional property: the vector bundle is 8-Holder and for any
R > 0, there exists K such that

(H4) ||H)’C"y —id|| < Kd(x,y)? foranyx € Mandy € Wg(x).
The invariant stable holonomy is defined in a similar manner.

One can also consider the projectivized bundle PE over M, with fibers PE(x) (the
projective space of £(x)), which is also a continuous bundle (with smooth fibers) over M.
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The projectivization of the cocycle F, PF, is a continuous cocycle in PE. If H is an
invariant unstable holonomy for the cocycle F, then its projectivization PH is an invariant
unstable holonomy for the cocycle PF (see for example [1] for more details on cocycles
with holonomy and applications to the study of central Lyapunov exponents).

If f is partially hyperbolic, then the center bundle forms a continuous (in fact, Holder
if £ is C'*?) vector bundle £¢(f) over M and Df| E<(f) 1s a continuous (Holder) linear
cocycle over f. A by-product of the proof of Theorem 1.3 is the following result.

THEOREM 1.7. Suppose that f is a C'70 partially hyperbolic diffeomorphism which is
0-unstable bunched, 0 € (0, 1]. Then Df|gc and PDf |pgc have unique Holder invariant
unstable holonomies. The holonomies are also continuous with respect to the map in the C'
topology restricted to a C' T neighborhood of f. A similar statement holds for the stable
holonomy under the 6-stable bunching condition. If f is dynamically coherent, then the
invariant holonomy coincides with the derivative of the holonomy between center leaves.

Remark 1.8. Theorems 1.3 and 1.7 work in particular for C*> maps and the regular (1-)
bunching condition.

Let us make some historical remarks about these results. The differentiability of
the holonomies along center leaves was established in [16] for C? partially hyperbolic
diffeomorphisms which are 1-bunched; however, the continuity of the derivative with
respect to the points or the maps was not considered. The continuity of the derivative with
respect to the points was proven in [14] under the additional assumptions of «-bunching
and a-pinching for some « > 0. The case of C!*? partially hyperbolic diffeomorphisms
was addressed in several papers like [2, 3]. The differentiability of the holonomy and the
continuity of the derivative with respect to the point was obtained under the assumption of
6-bunching together with more restrictive assumptions of pinching. The continuity of the
derivative of the holonomy with respect to the map has not been addressed to the best of
our knowledge.

Regarding the invariant holonomies, there are also various works establishing the
existence and the continuity with respect to the map (the continuity with respect to the
points is included in the definition), see for example [1, 7, 8, 10, 11, 13]. The existence
on invariant holonomies is known for C? general linear cocycles which are §-bunched.
Furthermore, there is a unique invariant holonomy which is 6-Holder. If we consider
the particular case of the center derivative cocycle, the existence is known under the
assumptions of C> smoothness, #-bunching, and 6-pinching. Again there is a unique
invariant holonomy which is Holder. It seems to follow from the construction that in the
dynamical coherent case, the invariant holonomy of the center bundle cocycle coincides
with the derivative of the regular holonomy between the centers of the original partially
hyperbolic diffeomorphism.

Our contribution is to get rid of the unnecessary and restrictive pinching conditions, and
to establish the full continuity (including with respect to the map) of the derivative of the
holonomy and of the invariant holonomy, assuming only #-bunching and C'*? regularity
of the map. We also give a unified presentation of both the differentiability of the holonomy
between centers and the existence of invariant holonomies for the center derivative cocycle.
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1.1. Ideas of the proofs. The main difficulty in the proof is the lack of sufficient regular-
ity of the invariant bundles. The center bundle is Holder continuous, but the Holder expo-
nent is smaller than 6 in general, and this makes it difficult to use the control which comes
from the #-bunching and the C? regularity of the derivative. A first idea which we use is to
consider the invariant holonomy together with a correction of the potential error coming
from the variation of the center bundle with respect to the points (the projection from one
bundle to the other, roughly along the unstable leaf is good enough). We can expect that the
difference has better regularity along the unstable leaves. This observation together with a
(more or less) standard application of the invariant section theorem [6] gives us the exis-
tence and continuity of the invariant holonomies (Theorem 1.7 without the identification
with the derivative of the regular holonomy in the dynamically coherent case).

The differentiability of the regular holonomy requires more work. Previous works
usually start with a good approximation of W* inside W< -leaves, and iterate it forward.
Unfortunately, again the leaves of W and W€ are only C'*¢ for some o < 6, and this
fact limits the regularity of the approximation to C!'**, and consequently we loose the
control when we iterate forward. The second idea of this paper is to start with a smooth
approximation of both W*- and YW-leaves and iterate it forward. It is important that
these approximations are uniformly smooth, which makes the construction a bit more
technical. When we iterate forward the approximation of WW<“-leaves and its subfoliation,
the bunching condition helps us keep uniform C!'*? control of the holonomy along the
subfoliation. This argument will give us that the holonomy is Lipschitz, with uniform
bounds on the Lipschitz constants.

To upgrade to differentiability, we use the ideas from [6] on Lipschitz jets. The
continuity of the derivative and the identification with the invariant holonomy is obtained
again using the invariant section theorem.

1.2. Several applications. We list a couple of applications of the above results.

(1) The ergodicity of C'*? accessible #-center bunched partially hyperbolic diffeomor-
phisms can be obtained under weaker assumptions, without the condition that the
invariant bundles are C? [4, 17].

(2) The existence of invariant holonomies for the derivative cocycle on the center
bundle for partially hyperbolic diffeomorphisms can be also obtained with weaker
assumptions, without the #-pinching condition (and in C'*? regularity). This applies
for example to various results concerning the continuity and the non-vanishing of
central exponents of partially hyperbolic diffeomorphisms with two-dimensional
center [1, 7, 10, 11, 13].

(3) We establish the continuity of the derivative of the holonomies with respect to the
points and the map, under more general conditions. This is a useful tool which
can be applied to obtain perturbation results related to the uniqueness of u-Gibbs
or MMEs for some classes of partially hyperbolic diffeomorphisms (for example
along the lines of [5, 12, 15]) or related to the accessibility of partially hyperbolic
diffeomorphisms [9].

1.3. Organization of the paper. In §2, we present some tools which we will use in the
proof. In particular, we discuss the regularity of the holonomy along a subfoliation of a
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submanifold, and how to approximate immersed submanifolds with smooth ones. In §3,
we present the proofs.

2. Preparations

2.1. Regularity of holonomy along a subfoliation: some general comments. We will start
with a discussion about the regularity of the (derivative of) holonomy along a subfoliation
of a submanifold in RY.

Assume that we have a C! embedded submanifold WV inside R¢. Assume that F is a
C! subfoliation of W. Given two points x, y on the same leaf of F, and two transversals
T, Ty to F inside WV passing through x and y, let hi T T, — T, be the holonomy given
by F.

Let Dy = T, T\ and Dy = T, T, the tangent planes to T, Ty in x and y. Let Dhﬁ T
D, — D, be the derivative of the holonomy h;’; T, Clearly, it depends only on D, and
D,y and not on the transversals 7\ and T, which is why we will also use the notation
Dhgx’ Dy Given a decomposition A @ B = R?, we denote by pg : RY — A the projection
to A parallel to B. If we want to specify that we consider the restriction of pg to a subspace
A’, we will denote it as pf,’A.

Let dr be the distance induced on the leaves of F.

Definition 2.1. Let x € W, A be a continuous cone field inside 7V uniformly transverse
to F, E, transverse to Ay and § > 0. We say that Dh” s (Cr, 0)-Holder along Fat x
with respect to A, Ex and at scale § if

||Dh£hDy (X)—ng_,py” < Crdr(x,y)? forally € Fs(x), forall Dy € Ay, Dy € A,.
2

If instead of R we are in a smooth Riemannian manifold, the definition is similar, with
the requirement that the condition in equation (2) holds in an exponential chart at x of
size §.

Let us remark that given a C? submanifold W with a C? subfoliation F, the continuous
cone field A, and a subspace E, containing T, F (x), there exist Cr, § > 0 such that Dh”
is (Cr, 6)-Holder along F at x with respect to A, E, and at scale § (we can actually take
6 = 1). The following lemma explains this fact in more detail.

We need a bound on the transversality between E, and A at the scale §:

1

l(Ex, A, 8) = sup {m

Dy eWsx), Dy € Ay}.

In particular, we have
||pg§ | < t(Ey, A,5) forall ysuchthatd(x,y) <.

We also consider a bound on the transversality between A and F:

1
Sn( (T, 7o), Dy - DY € Ay}'

t(F,A) =sup {
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We say that ¢:RY— RY is a linear parameterization of (W,F) if
¢(RdimW % {O}dfdim W) =) and ¢(Rdim}' x {b} x {O}dfdim W) = F(¢(0, b, 0))
for all b € RUIMW=dim 7 (4 pagically straightens both VW and F). If ¢ is defined only
between balls of radius § at the origin and x, we say that it is a §-linear parameterization
of W, F) at x.

LEMMA 2.2. Let W be a C? submanifold in R? and F a C? subfoliation of W. Let A
be a continuous cone field in TV transverse to F, x € W and E a subspace containing
T F(x) and transverse to Ay for all y € Fs(x) for some § > 0. Let ¢ be a C? §-linear
parameterization of (W, F) at x. Then Dh” is (Cr, 0)-Holder along F at x with respect

to A, Ex and at scale § for Cr = ||$|2,,, - ll¢™" ||2C+16 t(Ex, A, 8) - 1(F, A) - 87,

Proof. Denote % the push-forward under ¢! of the objects *. Observe that

F E
Dhr . = pEr
Dy,Dy p Dy,D,

because E, contains the plane parallel to the linear foliation F. Denote D' = D¢()?)By
and D' = D¢_1(x)Dy. Since DYE, = E,, we have

Es 8 B _

pDX,Dy = D¢(x)|f)/ © P[)Xﬁ, o D¢ 1(x)|DX
= X ~ EX E,\' -1
=Do®lp 0Py 5o Py, 5, P Wb,
= Plyp, 0 DO@lp 0 Pt 5 0 DS (W)l

D',Dy Dy Dy,Dy X"
Then
E, ~ T _ E,
1D, b, = Pyt p, I = ID$ ()5, 0 DIy, 5 0 DY~ Wl = i |

= I(DSG) |5, — Pl p, 0 DEDI5) 0 P’ 5 0 Dd™ @p,|

< lppill- ID$(F) = DH(E)]| - ||pf;jv|| ID¢~ @)
1(Ex, A, 8) - gl crso - 197" 17 - 67
- sin(Z(Dy, TF))
< 16lIg1so - 17 G - 1(Exy A, 8) - 1(F, A) - 87
We used the fact that
sin(L(Dy, TyF)) < sin(Z(Dy, TF))| Dg|| - | Do~ . O

We want to study the behavior of the regularity of foliations under the push-forward of
a diffeomorphism. Assume that JV is contained in the open set U and f : U — F(U) isa
C'*9 diffeomorphism. We will use the following notation for the bounds of Df along A
and T F:
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AL(f.x.8) == sup [ DF(Y)la,ll:
d(x,y)<8

-1
ra(fox8) = swp IDFMIa)™)

d(x,y)<é8
-1
rr(fox 8= (s 1DF gzl
d(x,y)<d

The following lemma is one of the main tools behind our proof. It keeps track on how
the constant C = changes under iterations.

LEMMA 2.3. Let F be a foliation as above such that Dh” is (Cz, 0)-Hélder along F at
x € R" with respect to A, Ex and at scale 8. Let f : U — f(U) C R" be a C'*? diffeo-
morphism. Then for any A’ C fiA and 8' < Ar(f, x,8)8, Dh/*7 is (Cy, 7, 0)-Holder
along f.F at f(x) with respect to N, fEy and at scale §', where

c AN X, 8)CF 4+ 1(Ex, A, 8)t (fuEy, N, DS lice
s ha(f 22 )AF(f . x. 8)7

Proof. Denote E, = Df (x) Ex, D, = Df (x) Dy, D}, = Df (y) Dy, D = Df (x)Dy. Since
Df (x) takes the decomposition E, @ Dy to E'. & D!, we have that

3)

Pp0, © DY@, = P, © DF W), 0 P -
We also have |
dp, 7(fx), f(0) = Ar(f) d(x, y).
For simplicity, we will use the notation Ai, Ar. We have
1DhG = Pt oy | = 1D (I, © Dty (¥) o (DFON) ™" = pi
< IDf I, o (D}, 1 () = pp p) o (Df®)p) 7|

E, - E}
+IDf Wb, 0 Py’ p, © PF@)Ip) ™" = ppi ol

E'.
< I(DfMIp, opf)j,,Dy = Pp,p, © DfF®OIp)(DfX)Ip)~ I+ TCfdf(x »?
B A
AX o, |1 E,
< chd]-'(x’ y) +E||Df(y)lpy ° Pp..p, pD D o Df(x)|p, opD 0,
)\'+ 0 Ey
< /\—Cfdf(x y) +—||pD, I 1Df Wb, — Df )yl - lIpp: p,l
R .
AMCr  ((E ,A,8>r( Ex, N, 8| Dfllco
< é + X f*_x f C df*]-—(f(x)7 f(y))9 D
AN AN
AF AF

2.2. Smooth approximations of invariant submanifolds. ~The center-unstable leaves YW
of the partially hyperbolic diffeomorphism f are subfoliated by the unstable leaves
W, but unfortunately they are not smooth enough to carry out the ideas from the
previous sub-section. This is why we need to construct smooth approximations of the
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center-unstable leaves, together with a smooth approximation of the unstable subfoliation.
We need to approximate pieces of YW which are arbitrarily large in the center direction,
while making sure that the C? bounds of the approximations are uniform. The reader can
keep in mind some specific examples where the smooth approximations are more or less
straightforward: fake foliations—cu-subspace subfoliated by u-subspaces; perturbations
of linear maps—the linear foliations of the original linear map. The case of partially
hyperbolic diffeomorphisms which are fibered over hyperbolic homeomorphisms is also
easier, because the center leaves are uniform C1 embeddings of the same compact fiber,
and one can use a standard smooth approximation. Our construction is a bit more technical
because we want to include possible large pieces of the center manifolds with possible
complicated topology.
Let us make some preparations.

Definition 2.4. A C" submanifold W has size greater than § at x if within the exponential
chart at x, W contains the graph of a C” function g from the ball of radius § in 7\ WV to the
orthogonal complement T, W+,

If the ball of radius § at x in the C" submanifold W can be written, in an exponential
chart at x € M, as the graph of a C” function g from an open subset of T,V to the
orthogonal complement T W, then the (C”, x, 8) size of W is Wlcrxs = llgllcr.

Eventually modifying the Riemannian metric, we can assume that the invariant
subspaces are close to orthogonal.

Definition 2.5. The continuous cone field A} over M is defined in the following way:
A¥(x) contains the subspaces of T, M which have the same dimension as E*(x) and are
e-close to E*(x), * € {s, ¢, u, cs, su, cu}.

For € small, we have that A? and A" are forward invariant, while A{ and AZ® are
backward invariant.

Fix €, 8o > 0 and a C'*Y neighborhood 2/( f) of f such that:
e the s, sc-cones of size 2¢g are backwards invariant while the u, cu-cones are forward

invariant for all g € U(f);
e the cone fields A; ¢ are uniformly transverse for all *x € {s, c, u, cs, su, cu} at the

scale 8, meaning that for every x € M, within the exponential chart at x, A} @ (x) and

A;;O (y) are uniformly transverse for d(x, y) < 8¢: 1 (A% A% 80) < 2, where

2ep> 20

t(A;EO, A;;O, 8p) = sup l 1 d(x, y)<do, DleAéeo(x), DzeAiO(y)};

1
sin(Z(D1, D7)
e the bunching condition holds at the (2¢q, 6g)-scale for all g € U(f), meaning that

+
)\'qu) (g’ -x’ 80)

<u<1 forallg elU(f), forallx e M; (4)

dae (2% 800h5 (8, 80)°
2¢() 2¢q

e the center bundle is uniformly C% and the local center manifolds are uniformly C!+¢,
meaning that there exists C, > 0 such that for every g € U(f) and every x,y € M,
d(E“(x, 8), E°(y, 8)) = Cad(x, y)* and [[Wy; (x, &)llc1+e c a5y < Ca-
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The following lemma is an immediate consequence of the transversality. We say that
the submanifold W is tangent to the cone field A if T, W € A(y) forally € W.

LEMMA 2.6. (Local product structure) There exist 6, > 0 such that for any 0 < § < ),
any x,y € M withd(x, y) < 8, any Was(x) C' manifold of size 28 at x tangent to AZ‘O, and
any Was(y) C manifold of size 28 at y tangent to A:(;
combinations of {s, c, u}, then Was(x) and Wys(y) intersect transversally in a unique

point.

where % and %" are complementary

Now we are ready to construct the smooth approximations.

2.2.1. Smooth uniform approximation of center manifolds. The first step is to approx-
imate large pieces of center manifolds with smooth ones, while keeping control on the
smoothness of the approximations.

Fix a smooth approximation E*" inside A%y There exists 0 < €] < € such that for
every p € M, the family {exp, (B, ES“(x)): x € W¢(p)} subfoliate a tubular neighbor-
hood of W¢(p). Let ** be the holonomy generated by this subfoliation.

LEMMA 2.7. For any € > 0 small enough, any p € M, and any R > 0, there exists a
smooth approximation of size € of Wx(p), meaning the following. There exists a smooth
immersed manifold (possible with self-intersections) W;é’ . (p) tangent to A¢, together with
a local diffeomorphism ﬁi“ given by the local h**-holonomy.

Furthermore, the approximations are uniform in the following sense. For every
X € VNVE,E (p), we have ||V~VICQ’6 (Pllcive s, < C, for some C, independent of p, R, €, f,
and ”W;?,e Plc2xs, = 6(e)f0r some C(€) independent of p, R, f (but depends on €).

Proof. Cover M by a finite number of foliation charts of YW¢ with center leaves of size o,
say U1, Ua, . . ., Ur. Then Wl‘é(p) is covered by finitely many plaques Wgo (x;),1<i <K
from these foliation charts. Let B; = Wg&) (x;) and Wy (p) C Wp = Ulel B;.

Each B; is (contained in) the graph of a function y; : Bss, E€(x;) — E (x;) with
uniform C'** bounds. We will use the following standard regularization procedure.
Suppose thaty : U — Elisclte, B3s,E C U C E,anditis also C* on some subset
V C U.Forany € > 0 sufficiently small, we can use the standard regularization and obtain
¥’ whichis C* and C! close to y. Let p be a smooth bump function which is one on Bys, E
and zero outside B3s, E. Use p to interpolate between y” and y, and obtain a new function
7 which is C'** on Bys, E, C™ on Bys, E U V, and satisfies:
IV = vlct = €*llylici+a on U;
IV llcr+e = 2[y 1+« on U;

17 1Bys, EUV [l c2 = C(€) max{[ly | cr+e, [V VIl c2}s
y = y outside B3, E,

where C(¢) > 2 depends only on € (and p).

We proceed with perturbing the leaves in U;. Let I; = {1 <i <k: Wgo (x;) € Uj}.
By performing the perturbation described above to each B;,i € I;, we obtain new
submanifolds Bl.1 which are graphs of the functions yl.l in exponential charts at x;. The
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holonomy ﬁ‘i“ of length smaller than 2¢*C,, (in the exponential chart at x;) is well defined
between B; and Bil. Let

W1=W0\(UBZ~>U(UB}).

iel iel

Then W is an immersed submanifold of M, possible with self-intersections. Observe that
we can extend fz‘i” as the identity outside [ J;. I Bi1 and obtain a local diffeomorphism
between Wy and W;. Let A| = Ui el Gr(yl.1| Bas, Ec(x;)) (the smooth part of W). For
i ¢ I, define B} = 1i*(B;) C Wi. Then W is the union of B!, and each B! is related to
B; by fz{“. If 7; is the projection on the first coordinate in the exponential chart at x;, then
Bi] is the graph of a function yl.] : m(Bi]) — E (x;) satisfying:
Basy—e; E(xi) C i(B}) C Basyte; E€(x0);
i = v'ller < €1/2;
1y llcrve < 2CyCas
1% Ly 810y lc2 < C(€)CuCa,
where Cjs depends on the Riemannian manifold M and 8¢ (measures the size of the change
of coordinates between nearby exponential charts) and €; = 2¢*Cy;C,. Furthermore,
each B; is diffeomorphic to Bl.1 by the holonomy fzi” of length less than €. Observe
that if € is small enough so W, stays C! close to W€, then we have that A; contains
Uier, h‘i”(wgao—zel (xi)).

Now we proceed with perturbing the leaves corresponding to U;. In a similar manner,
we obtain a submanifold W, related to WW; by the holonomy fz‘z'” of length €; = 46“C12w Cq,
and containing a smooth part Ay C W,. Here, W, is the union of Bl.2 = ﬁ%" (Bl.l), and each

Bi2 is the graph of a function yl.z : ni(Biz) — E° (x;) satisfying:
Basy—e,—e, E€(x;) C 7i(B}) C Basyye,+e, E€(xi);

Iy = v2ller < e2/2:

72l ci+a < 4C3Cas

1Y |2y 810y lc2 = C(€)*CyCa

If € is small enough so that W, stays C! close to W¢, then

U B 0 i3 V55 e 26, (xi)) C Aa
iel Ul

Continue by induction, perturbing on each U; until we reach Uy. We get a submanifold
W related to Wy by the holonomy ﬁi" of length ¢, = Zke"Cﬁ,ICa, and containing a
smooth part Ay C Wg. In particular, W is related to Wy by the holonomy #** of length
€= Zle €;. Furthermore, W is the union of Bl.k = ﬁi”(Bffl), and each B{‘ is the graph
of a function yl.k : n,-(Bik) — E (x;) satisfying:
®  Busy—eE°(xi) C mi(Bf) C Busyse E“(x1);

v = vhller < e/2 50 llvi = vl ller < €/2;
1yl < 26C3,Cas
”yiklm(Bl.'ﬂAk)”Cz = C(E)kcjlf/lca-
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If € is small enough, then we also have

U %o o ﬁj“(wgsofzg(x,-)) C Ag.
iel

We can make this construction until the end for any € small enough such that € < §y/2
(and W is close to W€ so the estimates on the smooth part hold).

If x = (a, y*(a)) € WK (in a chart at x;), let xo = (a, yi(a)) € W°(x;). We have
d(E(x), E(x0)) < Cq€® and d(E(xp), Gr(Dyl.k(a))) <é€, so Wy is tangent to
A;—H"Ca

Since lim¢_,¢ € + €*C, = 0, the conclusions of the lemma hold with € = € + €“C,,
W o(p) = Wi, B =hi"o---0h}", Cy=2C)['Cq, and C(&) = C(e)*C}f" Co

O

2.2.2. Smooth uniform approximation of center-unstable manifolds and of unstable
foliation. The second step is to use the smooth approximation of the center to construct
smooth approximations of local center-unstable pieces together with a subfoliation close
to the unstable one.

Fix a smooth global approximation E* of E", say within A €0/10° We know from

the previous step that W .(p) are uniformly C %o for all p, R, €, f. Then there exists

0 < 87 < min{dp, 8} such that, for every p, R, €, f, the family {exp(B(;FE“(x))
WIC? e( p)} foliates a smooth submanifold inside a tubular neighborhood of W ( p) we

denote this submanifold W;{”E (p), and the foliation .7-'1“3,6’,,. By assuming that € < (60/10)

and eventually making § » smaller, we have that Wf{‘g (p) is tangent to Al and Fp ep

tangent to A¢ . We also have that W;&’; (p) and F p are uniformly C”, r > 2 with respect
to p, R, f (the C” bounds do however depend on ¢).

LEMMA 2.8. For any € > 0 small enough, there exists a constant Cy(€) > 0 such that
for every p, R, f and any x € Wy (p), there exists a § p-linear parameterization ¢ of

(Wi (p). Fi.,) at xwith [llc2. 67" < Cyle).

Proof. For simplicity of the notation, we will work in an exponential chart at x, and we
will make an abuse of notation using the same notation for the objects in M and in the
exponential chart.

Choose a decomposition E| @ E» @ E3z = RY(= T, M) with E; = T,C);VIC-‘,’6 (p),
E? = E~)'j, and E3 orthogonal on Eq, E>. Let « : B,ngd x By Ey — R4 be a smooth
parameterization of the family {exp(Bs - E! (»)): y € Bs fRd }, in other words, a(y, -) is
a parameterization of exp(Bs - E" (). We can assume that a(y, 0) =y, so Dya(y,0) =
idgd, and Dy,a(y, 0) is a linear map from E» to E “, uniformly bounded from zero and
infinity. In particular, Dy,«/(0, 0) is an automorphism of E>. The map « is C*°, and its
size depends only on the Riemannian structure on M and the choice of E“.

Let y : BsE1 — E> @ E3 be a smooth function such that its graph is the local
manifold er, -(p) in a neighborhood of x. Then y has the C I+ size bounded by 2C,
and its C? size bounded by 2C (e).
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Let¢ : Bs,RY — RY,
& (1, y2, ¥3) = (@((y1, y(y1)), ¥2) + ¥3.

It is clear from the definition that ¢ is a § 7-linear parameterization ¢ of (W}’;’ [(p), F 113, . p)

at x. The C? size of ¢ is bounded by some Cy(€) which depends on C (), the Riemannian
structure of M, and the choice of E¥. The C!T¢ size of ¢ is bounded by some constant
which depends on C («), the Riemannian structure of M, and the choice of E“.

‘We have
idg, 0 0
Dp0)y=| 0 Dya0,00 O
0 0 idg,

The determinant is uniformly bounded away from zero, so eventually readjusting §r, we
have that the C'! size of ¢! is uniformly bounded. This finishes the proof. O

We claim that W{ W45 _ (p) and W;”E (p) are related by local stable holonomy for some
r > 0 and €, § sufficiently small.

LEMMA 2.9. Suppose that € is small enough and r —2¢ > §r, § + € < §r/4. Then for
any p, R, f, with R > r, the stable holonomy of size 2(§ + €) gives a local homeomor-
phism from W§Wyg,_ . (p) to (a subset of) W' (p).

Proof. Let x € W§_.(p) and y € Wy (x). Let x’ = hi*(x) € W (p), so d(x, x') < €.
Then WIC?’ .(p) has size at x” at least r — 2¢ > 8. This implies that nge (p) has size at
x" at least § /2. However, d(y, x') <8 + ¢ < §5/4. The local product structure from
Lemma 2.6 implies that WV, )(y) intersects transversely the disk centered at x” of

(8+€
size 2(5 +€) < 38x/2 in chelfe(P) in a~ point h§(8+€)(y). Then h§(3+e)(y) is a local
homeomorphism from Wi Wy _ (p) to chelfe (p). ]
3. Proofs

We divide the proof of Theorem 1.3 into several steps.

3.1. Approximation of the unstable holonomies: construction of hg’q. We start with the
construction of an approximation of the unstable holonomy inside center-unstable leaves.
From now on, we fix r =257 and 0 < € =§ < (§r/10) small enough so that all the
conclusions from §2.2 hold.

Let p e M, g € W{(p), x € Wi(p), z=h}, ,(x) € Wis(q), and R, =35 sup,cy
|Df~"|Ege|l + r. We start iterating back by f~". Denote

Wa = WiWs _,(f " (p)).

Observe that f~"(W5s(p)), f~"(Wj35(q)) C Wi.

As in the previous section, we consider the approximation WE’:’G( f7HPp) =W,y
and its subfoliation Fp,  ¢r-n(p) = Fp. Lemma 2.9 implies that the stable holonomy
of size (smaller than) 48, hj;: W, — W,, is a local homeomorphism. Denote
¥y = My (f7" (%) e W for x € {p, q, x, z}.
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Let Tp, = hy (f 7" Wss(p))) and T, = hy(f 7" (W55(q))), they are C!* transver-
sals to the foliation F, in W, (they are in fact tangent to AY).

Now we iterate W, and F, forward by f". Denote %, = f"(%,) = hfm?a(*) for
* € {p, q, x, z} (the stable holonomy commutes with f and is uniformly contracted). Also
denote T), = f"(T3,) = hf‘)\ga(Wgs(p)) and T,, = f"(T,) = hixgs(wﬁé(g))’ they are
again C ! transversals to [l Fy inside f "W

The partial hyperbolicity implies that:

Pn» qn and x,, converge exponentially to p, g, x;
Ty, and T,, converge to W;5s(p) and Wis(q) in the C! topology;

° hfuw(WfO“C (p)) C f"Why converges to W, " (p) in the C! topology;

e flFunloc converges to W in the following sense: if a, converges to a, then
S Fuloc(ay) converges to WIL(‘)C (a) in the C! topology.

Let Tl/,n = hiki’ sOWs5(p)) C Tp,. Then for n sufficiently large, there exists a
well-defined holonomy of the foliation f;'F, between the transversals 7, and T,,. We
denote this holonomy h,{fﬁ and observe that it is C!*?.

Define i’} , Wi (p) = W5s(q),

g = s © () © M. 5)

In other words, to obtain hg’q (x) for x € Wy (p), we move with the stable holonomy of

size 4176 to Tl/,n C f"W,, then we move with the holonomy given by the foliation f]'F,

of f"(W,) between the C! transversals T, and T,,, and then we move back by the stable
holonomy of size 4A{§ to Wi, (q).

Clearly, h’[’,’q is continuous, since the stable holonomies are Holder continuous, while

the holonomy h[{:ﬁ is C149.

3.2. h';,’q converges uniformly to hz’q. This follows immediately from the remarks in
the previous section.

3.3. h;’,’q is Lipschitz.  We first show that Dhﬁfﬁ (x5,) is bounded uniformly in n, x;,.

Let A,, = Agg N TW,, C AEEO be a cone field tangent to W,. Let E; = E;n &)
Ty, Fn. Since the cone fields A% @ are uniformly transverse at the scale §p, we have
t(Ez,, An, §) < 2and t(Fy,, An) < 2. In view of Lemmas 2.8 and 2.2, we have that Dh7n
is (Cr, 0)-Holder along F, at x,, with respect to A, E %, and at scale § for some constant
C r independent on p, n, X, and g in U(f).

Let Aﬁ =Ag N TkaVn C Agéo be a cone field tangent to fkl;\/n. Observe that
Aﬁ-irl C fe Afl because of the backward invariance of Ag. Since T ff]-"n stays tangent
to Ag,, we also have uniform transversality between AF and both f¥F, and fFE;, at
scale 8: t(fFE; , A, 8) <2 and t(fXF,, Ak) < 2. Due to the fact that F,, is uniformly
expanding, we can apply successively Lemma 2.3 and using the bunching condition,
we conclude that Dh/¥Fn is (Cp, 0)-Holder along fl'F, at f"(x,) = x, with respect
to Ag, fiEs,, and at scale § for the constant Co = Cx + (4[| Df||co /(1 — wIDfHD
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independent of p, n, X,,. The constant also works for g within the neighborhood U( f) of
f (eventually readjusting U/ (f) or Cp). Then Dh {,’; “ (x,) is bounded uniformly by some

constant L, so hf,"; 4 1s Lipschitz with constant L uniformly in 7.

J&Fn

Now the fact that h;’ ¢ 1s Lipschitz is just a simple consequence of the fact that Ay,

are uniformly Lipschitz. We have that d (hf}g{;:'( n)> h Pn qn (x )) < Lod(xy, x,,) uniformly

in n. Since x, converges to x, x, converges to x’, h Posin (x,,) converges to h (x), and
hf,"; ar (x;,) converges to h, (x/), it follows that d (k) , (x), h', , (x") < Lod(x, x/).

3.4. Estimate on the Lipschitz jet of h; g Letus remember the definition of Lipschitz
jets. Let M, N be two metric spaces, p € M, g € N. Two functions f, g : M — N such
that f(p) = g(p) = q are equivalent if lim sup,_, ,(d(f(x), g(x))/d(x, p)) = 0. The
equivalence classes form the space J(M, p, N, q) of Lipschitz jets at p, g. The distance
between two Lipschitz jets is d(J(f), J(g)) = lim supx_)p(d(f(x), g(x))/d(x, p)), it
can be infinite and is independent of the representatives f and g. A Lipschitz jet is bounded
if the distance to the jet of the constant function is finite. The space of bounded Lipschitz
jets at p, q, J°(M, p, N, q), is a complete metric space. If M, N are differentiable man-
ifolds, then the space of differentiable Lipschitz jets at p, ¢, J4(M, p, N, q), is formed
by the jets which have a representative which is differentiable. Here, J¢(M, p, N, q) is a
closed subspace of J*(M, p, N, q).

For simplicity, let us denote Dy, = Tx,T,,, Dy, = Ty,T,,, where y, = hgf{;’,’ (xn),
Ey, = f'Ez, k' =hl:7" We have
— Exn
IDR" () = P Il < Cod (s )" (6)

In particular, we have that D,, and Dy, converge exponentially to £°(x), E°(z) when n
goes to infinity, while E, converges exponentially to E*(x) @& E*(x).

We will work in an exponential chart at p,, and we will make an abuse of notation
keeping the notation of the points. Let B),,, By, be the balls or radius § in D,,, D,,. We
can choose C'** maps o, : B, — T}, and oy, : By, — T, such that:

o p+x'—o0, (") eE, forallx’ € By,;
o g +y —o0y,()€E,, forally € B,.
In other words, they are parameterizations of 7, T, given by the projection from
Bpn, By, parallel to Ep,. Using them, we can deﬁne &n: TI;n — Ty,, & =0y, 0

Pp b, ©0p- This means that g, has Dg(pa) = . We will analyze the

oD

Lipschitz jets of h, and g, at p,,. o
We will use the notation x, = o, (x},), yn = 0y, (y,,). We can see that:

® Op, (0) = pn, Oy, (0) = qn;

e Do, (0) =idp,, Do, (0) =idp, ;

Doy, () =pp . Doy, 00 = S

- prn,an : Bp, = Dgy,. We have that G,(0) =0 and
IDGA ()] < Cod(pn, gn)°. We have

— Tn
Let G, = oqnl oh oop,
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_ —i Ep,
IDG, (x|l = Doy, o DA (xa) 0 Do, (x;) = pp" p_ |

qn
_ Epy 7 _ L Ey Epy Epy Ey, _ Epn Epy
= ”qu o (Dh (x) prn,Dyn) ° pr,, +pp o (PDXWDY” prn’Dyn) °Pp I

n qn

E’n E n
<lpp Il 1pp" I - (Cod (Xns yu)° + 2d(Ep,, Ex,)

4qn

< 4(Cod (xn, yn)? + 2d(E,,, Ex,)).

Xn

There exists y > 0 depending on d(p, g¢) such that for all n sufficiently large and all
Xy € TI’,n with d(x,, pn) < v, we have:

o d(xn, yn) <2d(p, q);
o 8d(Ey,, Ex,)) < Cod(p, q)°.

We deduce that if d(x,, pp) < y, then |DG(x,)| < 5Cod(p, q)?, or G is Lipschitz
with constant 5Cod(p, q)?. Then

-1 _7n / Ep, /
d(aq” oh oop,(x,), prn,an(X"))

=d(G(x}), G(0)) < 5Cod(p,q)’d(x},0) < 10Cod(p, ¢)’d(xy, pn)
and furthermore

A" (), ga () - . d(og ! oh" (xn), 05" 0 gn(xn))
sup S Llp(GQtl) sup
dnpm<y 4Gy Pn) den.pn)<y d(xn, pn)

< 20Cod(p, q)°.

In other words, d(J(h"), J(gn)) < 20Cod(p, q)? in J*(Tp,, pu, Ty,» qn) (in fact in
J d(Tp”, Pns Ty, » gn)). Since y is independent of n, this relation can be passed to the limit
when n goes to infinity and we get
d(hl;} q(x), 8p.q (x))

sup : <20Cod(p, q)’,
d(x,p)<y d(x,P)

Su

where g,, =040 pEc(;’;’)Ec(q) oo, !. This means that d(J(h% ), J(gpg)) <20
Cod(p, q)? forall p € M and g € W¥ (x).

Remark 3.1. The g, is differentiable and the derivative is ppe ) (- The bound
obtained also works for the neighborhood /().

3.5. h;q is differentiable. We will use the invariant section theorem. Let

. . . ES‘M
g € W§(p), q # p. For simplicity, let us denote ggn(p), rn(q) = &n» pEc(I(f;’)Ec(q) = 7,.
The base is Z with the discrete topology, and the base map is 7, the translation by one.
The fiber over n is

By = B(J(g2), C1d(f"(p), f"(@))") C J*ONV5(f"(p)), " (p), W5 (" (@), £ (q))

if n <0, where C1 = 20Cy. In particular, we have J(h’},, (P f" (q)) € B,. Observe that
since C; > Cyp, we have
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4ulIDf Nl co
IDf1
The subset Z~ = Z \ N is overflowed by 7. The bundle map is

F(n,J(h)=m+1,J(foho fh).

C+ (N

We claim that F is well defined. For this, we have to prove that if d(J(h), J(g,)) <

Cid(f"(p), f™(q)), thend(J (foho f~1), J(gnt1)) < C1d(f" 1 (p), f"*1(¢)). Observe
that

d(J(foho f7), J(gut1)
<d(J(foho ™), J(fogno f N +dU(fognof™"), J(gnt1).
On one hand, we have
d(J(foho f™), J(fogno fh)
< Lip(f, f"(@)) - d(J(h), J (gn)) - Lip(f ', "t (p))
Azgeo (f, P 80)
<
)Lgc (f’ P 80))“114 (fv P 80)0
2¢( 2¢(
< uCd(f"p), (@)
On the other hand, since g, and g, are differentiable, we have

dJ(fogno f™ 1, J(gn+1) = ID(fogno f1) — Dgusill

Cid(f" M (p), @)’

Ent1 n n B p) -1
= lpge ~(Df (@) = Df S (P)) - pge " - Dfge, |l
Ry @) 1+ 1p)
4M||Df||c9 1 1 0
< — - d(f"(p). " (@)
)"AC (fa p, SO)AAM (fa p7 80)6
2¢( 2¢(
4pllDf llco 1 1 0
< —————d(f"(p), M@
IDf
The estimates above together with the condition in equation (7) imply that F' is indeed

well defined.

Next, we modify the distance inside each fiber B,, we let d, = d/d(f™(p), f"(¢q))°.
Let X% be the space of sections over Z~, with the supremum distance dsup = SUp,cz- dy.
It is clear that (X, dsup) is a complete metric space. We claim that F' is a uniform bundle
contraction over Z,~.

Let J(0), J(6') € B,. Then

dnt1(J(foo o f1, J(foo o f71)
d(f"(p), f"t1(q)’
d(f"(p), "))’
d(f"(p), "1 (q)’

dop1(J(fooof N, J(foo o f )=

< Lip(f, f"(¢)) - Lip(f ™", " (p)) -

_ d(J (o), J(c"))
d(f(p), f™(q))?
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AL (f.p.do)
< 2¢(
T Axe (fspi80)Ape (fs ps80)?
2¢( 2¢(

< pdy(J (), J(0")).

dn(J (0), J (")

This shows that F induces a contraction on %%, so there exists a unique invariant
bounded section o (n) € B,,.

Here, B, N Jd(Wg(f"(p)), f"(p), W5 (f"(q)), f"(g)) is a closed non-empty subset
of B,, so we can apply again the invariant section theorem to this closed sub-bundle, which
is clearly preserved by F, and we get that the unique invariant section must contain actually
differentiable jets at all points.

We can check that the jet of the holonomy is also an invariant bounded section of F.
Uniqueness of the invariant section implies then that the holonomy is differentiable at
every points p, g € W (p), and satisfies

su

E)
I DR} 4 (P) = PE{ el < Crd(p. q)’

Remark 3.2. We proved the differentiability of the unstable holonomy between (nearby)
center leaves. However, we can adapt the proof for any two transversals to YW* inside a
center-unstable leaf. A sketch of the proof is the following.

Let Ty, T, be two C ! transversals to W restricted to YW (p), and denote D, and D,
their tangent planes in p, g. Assume that D, D, € AEOM and d(p, q) < 6/4 (otherwise,

iterate back a finite number of times). Choose JJ* a smooth approximation of WW?* in
a tubular neighborhood of Wg"(p). The local WS holonomy takes T,,T; to the C !
transversals 7)), T)' to fi'Fy inside f"W,. If n is sufficiently large, f"W) is close to
W (p), and the local WS holonomy takes D, D, to subspaces DZ, DZ inside Aio o We
do have again the uniform control of the regularity of the f;' ¥, holonomy between TIZ’ and
Tq”, S0 we can pass it to the limit as before, and obtain that the unstable holonomy between

T, and Ty is differentiable with

SU

E
“Dhl%p,rq (p) — pD:Dq” < Cid(p, ‘])0-

In other words, Dh" is (Cy, 6)-Holder along W* at p with respect to E7, Ago /4 and at
scale §/4 for all p € M. The result holds for the neighborhood U/ ( f).

3.6. Dhj, , is continuous in p,q, f. We will apply again the invariant section theorem
in yet another space. First, let us refine the bunching bound from equation (4). Choose
w < p < 1. Since E€ is uniformly C* in a neighborhood of f, there exists 0 < §' < 8
such that forall g € U(f), p,q € M,d(p, q) < &', we have

Esu ESu M/
)24 p-8
WPig g I WP g I <
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The base space is N = M? x U(f), with the C! topology on /(f). The base map is
G(p,q,8) = (g(p), g(q), g), which is continuous. At each (p, g, g) € N, we consider
the fiber &, 4 , = E(E;’g), the linear maps from E[”,’g to itself, with the usual norm given
by the Riemannian metric. Since the center bundle is continuous with respect to the point
and the map, we obtain a continuous Banach bundle £ over N. Let N' = {(p, ¢, g) € N :
q € Wyi(p, g)}. Clearly, N is overflowed by G.

Let

loly =  sup llo(p,q, &l
pagen AP, q)°

and let £? be the space of sections in £ over N’ bounded in || - || (in particular, o € »b
implies o (p, p, g) = 0). This is a complete metric space. Here, £ N ©” is the space of
the sections which are both continuous and bounded in || - ||, and is a closed non-empty
subset of X (it contains the zero section).

The bundle mapis 7 : £ — &,

ESu Est
T(p.q.8 L (¢ . oD c P pe o(id+L)oDg(p)lg —id.
(p.q,8 L) = PE ) ES ) © g(q)lEq,gopEp‘g,qugo(l +L)o g(p)IEp’g 1
This is continuous in (p, ¢, g) € N', L € L(E}, ).

The corresponding graph transform acts on sections o € ©? and it is the following:

(To)(g(p), g(q@) )

Eql, EY . —1 .
= pEg(l) gE‘ o Dg(q)|E§’g ) pEé’;’E;g o(id+o(p,q, g)) o Dg(p)|E;,g —id.

8(q).878(p)-g

The connection with the holonomies is the following. If

ru

id+o(p,q,8) = PE( E§ H;,q,g’

where H [’j 4.8 " E[C, P E;’ ¢ is the candidate for the derivative of the holonomy, then

id + (To)(g(p), g(q), 8) = pEf(”)g g ogH)

8(9).g>"8(p)g
Eg(p) 8

—1
= Pgc e 0D8(4)|E5 OHpquODg(P)|E;-}’g~

8(q).8°g(p).g

Let us check that T applied to the zero section is in £?. We remark first that

ESL[ E.YM
id = f(p)g . D . fq . D 761 )
! pEg<q)gEg<p) ° g(p)lEq*’*’ ° pEp,g’Eq.g ° g(p)|Ep,g
Then,
lpgl™ pe o Dg(q)lEg opEe &, 0 Dg(p)lz! —id|
||T0||b — sup 2(9).8°"g(p).g -8
(8(p)-8(q).9)N’ d(g(p), g(q))9
”pngo(Dg(q) Dg(p))lEs, OPEL EC, ng(p)IEc [
< sup 7
(p.q.9)eN’ d(g(p). g(q))
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4D
< sup  — ”, glee —
(p.g.8)EN’ )"Ag (g’ P ) ))"Ag (g’ p; ) )
€0 €0
- 4M||Dgllce
Dg="l

Now let us check that T is a contraction in Z?:

IToy — Tozllp

€5 o De(@)lge. 0 Pl L o (o1 —02)(ps s 8)) 0 Dg(PIZ) |
E° E€ e ES . ES, 1 2)\P>4, 8 8p ES,
= sup 8(9).8>"g(p).g

N d(g(p), 8(q))°
/9 + /
n )‘Agéo(gv p.6")

IA

- - llor — o2llp
Whpe (8 P> 8z (8, P, 8
€0 €0

A

!/
< ullor — ozllp.

Since X is a complete metric space, we obtain that there is a unique invariant section
in X%, Continuous sections are preserved by 7, so we can also apply the Banach fixed
point theorem in £ N £¢, and we obtain that the unique invariant section in X¢ is in fact
continuous. However, the section

u _ P8 u — 1
0" (P 4. 8) = Pge g ©Dhpge—id

is an invariant section of T inside 2, so it must be the unique invariant section. Since

su
P’ pe s continuous in p, ¢, g, we obtain that Dh" is also continuous in p, ¢, g.

9.8 P8

If we consider the restriction to the base space M? x { f}, then we have a Holder map in
a Holder bundle, so the invariant section theorem will provide us with a Holder continuous
invariant section, which means that Dh; af is actually Holder in p, g. This finishes the
proof of Theorem 1.3.

3.7. Proof of Corollary 1.5. The proof is similar to the proof of Theorem 1.3. The
space is not compact (it is a disjoint union of R%), but the bounds are uniform. The
invariant foliations are globally defined graphs so in this case, the approximation of the
pair OV, W) is actually much easier. We can take W/ to be the cu-subspace passing
through the origin, and the subfoliation JF to be the subfoliation by u-subspaces. For more
details on fake foliations, we direct the reader to [4].

3.8. Proof of Theorem 1.7. The proof is actually contained in §3.6. Even if we do not
know that there exists a (differentiable) holonomy between center leaves, we still obtain

su

a continuous invariant section o of 7, and then H) , , = p g pe © (0 4.¢ T1d) is the
M P-8°74q.8 M

invariant continuous holonomy we are looking for, at least at the scale §'. To define it
for all ¢ € W"(p), we iterate forward and use invariance under f. Doing this, we have
automatically the invariance under f and the continuity with respect to the points. To prove

that Hj, o H, , = H,,,, we can use the uniqueness of the invariant section. If the relation
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does not hold, we can modify the invariant section o along the orbit of (p, r), replacing
it with the o’ corresponding to H, ¢ © Hp 4. Then the invariant section o is not unique,
which is a contradiction.

The invariant holonomy which we obtain is Holder because of the norm we use in the
application of the invariant section theorem and the fact that the center bundle is Holder,
and by results in [7, 8], it is the unique Holder invariant holonomy. If f is dynamically
coherent, then this unique holonomy has to be exactly the derivative of the holonomy
between the center leaves.
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