A NEW PROOF OF AN INEQUALITY OF HEINZ

P.S. Bulleni)

(received June 3, 1963)

In a recent paper, [1], Dixmier has proved Heinz'
inequality by deducing it from a lemma due to Thorin. In this
note it is proved directly from a convexity theorem.
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(iii) T(N f) = [\] TE.

Such an operator is said to be of type [(q(O), H(O)), (g, W]
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In a similar way given qj<0), I-LJ.(O): j=1, ..., m
we can define q(o) and p.(o).‘

THEOREM 1. If T is simultaneously of types
[(q,(o), p,(o), q.» ®,)] with constants K, j=1, ..., m, then
J J J ) J m i
(©)) (q, W] with constant T (x, .
j=1

T is of type [(q<o), n

The notation on this theorem is that of Stein and Weiss,
[2], and the theorem is a multilinear analogue of their theorem
2.11. The proof in the case m =2 follows theirs and the
general result is obtained by induction on m.
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1
THEOREM 2. Let H( ), e, H(n) be complex Hilbert

spaces, A a positive semi-definite self-adjoint operator in

—_— P
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H(p), 1<p<n. Let F(x( ), e x(n)) be a multilinear

form in H“) X ... X H(n)

such that
TR T S I |
e, ) < e, B

1 1 2
e P P TR T PN
Then if yp_>_0, 1<p<n, and y1+...+yn=1, we have
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This result is due to Dixmier, [1]. It is sufficient to
prove it in the finite dimensional case, (see [1]). Heinz'
inequality is an immediate corollary. We prove it by recog-
nizing it as a special case of Theorem 1. In fact the following
specializations are seen to effect the reduction.

(a) m=n

(b) M(o) = {1}, qj(o) =1, p_j(o) =1 on each point of
M 521, 2, ..., n
{c) Choose an orthonormal basis {ev(P)} in each H(P)
such that
A e ® _y (@ _ (p
p Vv v v
Then if x(p)=zg(p) (p)
v v
v
we have
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So take M to be the set of positive integers,

k=1, ..., n. Let qj(k)=2, k, j=1, ..., n and if k#j

take a measure of one on each integer. If however k =j take

(k)2

a measure of ()\v ) on the vth integer.

COROLLARY. Let H be a complex Hilbert space,
A and B two self adjoint semi-definite operators in H,
Q a linear operator in H such that |[Qx|| < [|Bx|| and
HQ*yH_<_ ||Ay]|| forall x and y in H. Then, for all
x and y in H and all 7, 0< 7T <1,

| <ox, y> | <||BPx]| [|a"Py]|.
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