A NEW PROOF OF AN INEQUALITY OF HEINZ

P. S. Bullen 1)

(received June 3, 1963)

In a recent paper, [1], Dixmier has proved Heinz' inequality by deducing it from a lemma due to Thorin. In this note it is proved directly from a convexity theorem.

Let $(M^{(k)}, \mathcal{M}^{(k)}, \mu^{(k)})$, $k = 0, \ldots, n$, be measure spaces and $L^{q^{(k)}}(M^{(k)}, \mathcal{M}^{(k)}, \mu^{(k)})$ be all the functions on $M^{(k)}$

such that
$$\left|\left|f\right|\right|_{q^{(k)},\;\mu^{(k)}} = \left(\int\limits_{M^{(k)}} \left|\widehat{f}\right|^{q^{(k)}} d\mu^{(k)}\right)^{\frac{1}{q^{(k)}}} < \infty$$
.

Let $\underline{M} = \underline{M}^{(1)} \times \ldots \times \underline{M}^{(n)}$ with elements $\underline{f} = (f_1, \ldots, f_n)$; also write $\underline{q} = (q^{(1)}, \ldots, q^{(n)}), \ \underline{\mu} = (\mu^{(1)}, \ldots, \mu^{(n)})$ and $\underline{L}^{\underline{q}}(\underline{M}, \underline{\mathcal{M}}, \underline{\mu})$ for $\underline{L}^{q^{(1)}}(\underline{M}^{(1)}, \underline{\mathcal{M}}^{(1)}, \mu^{(1)}) \times \ldots \times \underline{L}^{q^{(n)}}(\underline{M}^{(n)}, \underline{\mathcal{M}}^{(n)}, \mu^{(n)})$.

An operator T on \underline{M} to $\underline{M}^{(0)}$ is called sublinear if

(i) $\frac{Tf}{-j}$, j = 1, 2, being defined implies that $T(\frac{f}{1} + \frac{f}{2})$ is defined,

(ii)
$$\left| \frac{T(f_1 + f_2)}{-1} \right| \leq \left| \frac{Tf_1}{-1} \right| + \left| \frac{Tf_2}{-2} \right|$$

Canad. Math. Bull. vol. 7, no. 1, January 1964

¹⁾ This research was supported by the U.S. Office of Scientific Research.

(iii)
$$T(\lambda f) = |\lambda| Tf$$
.

Such an operator is said to be of type $[(q^{(0)}, \mu^{(0)}), (\underline{q}, \underline{\mu})]$ with constant K if it satisfies $||\underline{Tf}||_{q^{(0)}, \mu^{(0)}} < K \prod_{k=1}^{n} \left\{ ||f^{(k)}||_{q^{(k)}, \mu^{(k)}} \right\}$ for all $f \in L^{\underline{q}}(M, \mathcal{M}, \mu)$.

Given \underline{q}_1 , ..., \underline{q}_m and $\underline{i} = (i_1, \ldots, i_m)$, $i_j \ge 0$, $i_1 + \ldots + i_m = 1$ we define \underline{q} (or more precisely $\underline{q}(i)$) by $\frac{1}{q^{(k)}} = \frac{i_1}{q^{(k)}_i} + \ldots + \frac{i_m}{q^{(k)}_m}$, $k = 1, \ldots, n$.

Again, if we are given $\underline{\mu}_1$, ..., $\underline{\mu}_m$ and if $\underline{\mu}_\sigma = \underline{\mu}_1 + \ldots + \underline{\mu}_m$ we define $\underline{\alpha}_j = (\alpha_j^{\ 1}, \ldots, \alpha_j^{\ n})$ by $\mu_j^{\ (k)} = \int_E \alpha_j^{\ (k)} \, d\mu_\sigma^{\ (k)}$, $k=1,\ldots,n,\ j=1,\ldots,m.$ Now define $\underline{\mu}$ (or more precisely $\underline{\mu}(i)$) by

$$\mu^{(k)} = \int_{\mathbf{E}} \left\{ \prod_{j=1}^{m} (\alpha_j^{(k)})^{i_j/q_j^{(k)}} \right\}^{q^{(k)}} d\mu_{\sigma}^{(k)}, \quad k = 1, \ldots, n.$$

In a similar way given $q_j^{(o)}$, $\mu_j^{(o)}$, $j=1,\ldots,m$ we can define $q^{(o)}$ and $\mu^{(o)}$.

THEOREM 1. If T is simultaneously of types $[(q_j^{(o)}, \mu_j^{(o)}, q_j^{,\mu_j})] \xrightarrow{\text{with constants}} K_j, j = 1, \dots, m, \xrightarrow{\text{then}} T \xrightarrow{\text{is of type}} [(q^{(o)}, \mu^{(o)}) (\underline{q}, \underline{\mu})] \xrightarrow{\text{with constant}} \Pi (K_j^{j}) .$

The notation on this theorem is that of Stein and Weiss, [2], and the theorem is a multilinear analogue of their theorem 2.11. The proof in the case m=2 follows theirs and the general result is obtained by induction on m.

THEOREM 2. Let $H^{(1)}$, ..., $H^{(n)}$ be complex Hilbert spaces, A a positive semi-definite self-adjoint operator in $H^{(p)}$, $1 \le p \le n$. Let $F(x^{(1)}, \ldots, x^{(n)})$ be a multilinear form in $H^{(1)} \times \ldots \times H^{(n)}$ such that

$$|F(x^{(1)}, \ldots, x^{(n)})| \le ||A_1 x^{(1)}|| ||x^{(2)}|| \ldots ||x^{(n)}||,$$

$$|F(x^{(1)}, \ldots, x^{(n)})| \le ||x^{(1)}|| ||A_2 x^{(2)}|| \ldots ||x^{(n)}||,$$

$$|F(x^{(1)}, \ldots, x^{(n)})| \le ||x^{(1)}|| ||x^{(2)}|| \ldots ||A_n x^{(n)}||.$$

Then if $\gamma_p \ge 0$, $1 \le p \le n$, and $\gamma_1 + \ldots + \gamma_n = 1$, we have

$$|\,F(x^{(1)},\;\ldots,\;x^{(n)})\,|\,\leq\,|\,|A_1^{\;\;\gamma_1}\;x^{(1)}\,|\,|\;||A_2^{\;\;\gamma_2}\;x^{(2)}\,|\,|\ldots\,|\,|A_n^{\;\;\gamma_n}\;x^{(n)}\,|\,|\;.$$

This result is due to Dixmier, [1]. It is sufficient to prove it in the finite dimensional case, (see [1]). Heinz' inequality is an immediate corollary. We prove it by recognizing it as a special case of Theorem 1. In fact the following specializations are seen to effect the reduction.

(a) m = n

(b)
$$M^{(0)} = \{1\}, q_j^{(0)} = 1, \mu_j^{(0)} = 1$$
 on each point of $M^{(0)}, j = 1, 2, ..., n$.

(c) Choose an orthonormal basis $\{e_{\nu}^{(p)}\}$ in each $H^{(p)}$ such that

$$A_{p} e_{\nu}^{(p)} = \lambda_{\nu}^{(p)} e_{\nu}^{(p)}$$

Then if

$$x^{(p)} = \sum_{\nu} \xi_{\nu}^{(p)} e_{\nu}^{(p)}$$

we have

$$||A_{p}^{\tau} x^{(p)}|| = \left\{ \sum_{\nu} |(\lambda_{\nu}^{(p)})^{\tau} \xi_{\nu}^{(p)}|^{2} \right\}^{1/2}, \quad 0 \leq \tau \leq 1.$$

So take $M^{(k)}$ to be the set of positive integers, $k=1,\ldots,n$. Let $q_j^{(k)}=2$, $k,j=1,\ldots,n$ and if $k\neq j$ take a measure of one on each integer. If however k=j take a measure of $(\lambda_{\nu}^{(k)})^2$ on the ν th integer.

COROLLARY. Let H be a complex Hilbert space, A and B two self adjoint semi-definite operators in H, Q a linear operator in H such that ||Qx|| < ||Bx|| and ||Q*y|| < ||Ay|| for all x and y in H. Then, for all x and y in H and all τ , $0 < \tau < 1$,

$$| < Qx, y > | \le ||B^p x|| ||A^{1-p} y||.$$

REFERENCES

- 1. J. Dixmier, Sur une inégalité de E. Heinz. Math. Annalen, 126(1953), 75-78.
- 2. E. M. Stein and G. Weiss, Interpolation of Operators with Change of Measures. Trans. of the Amer. Math. Soc., 87(1958), pp. 159-172.

University of British Columbia