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Abstract

Let u be a supertemperature on an open set E, and let v be a related temperature on an open subset D of
E. For example, v could be the greatest thermic minorant of u on D, if it exists. Putting w = u on E\D
and w = v on D, we investigate whether w, or its lower semicontinuous smoothing, is a supertemperature
on E. We also give a representation of the greatest thermic minorant on E, if it exists, in terms of PWB
solutions on an expanding sequence of open subsets of E with union E. In addition, in the case of a
nonnegative supertemperature, we prove inequalities that relate reductions to Dirichlet solutions. We also
prove that the value of any reduction at a given time depends only on earlier times.
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1. Introduction, notation and terminology

It is an elementary fact that, if u is a superharmonic function on an open subset £ of R",
and B is a ball whose closure is contained in E, then replacing # on B by the Poisson
integral of its restriction to dB gives a superharmonic function which is majorized by
uon E. See, for example, [1, Corollary 3.2.5]. Moreover, that Poisson integral is the
greatest harmonic minorant of # on B, by [1, Theorem 3.6.5].

The situation in heat potential theory is more complicated. Let now u be a
supertemperature on an open subset E of R"*!, and let C = B x ]a, b[ be an open
circular cylinder whose closure is contained in £. We denote by d,C the normal
boundary dC\(B X {b}) of C. The Poisson integral of the restriction of u to 9,C exists
and is a temperature on C\d,C. If we replace u on C\d,C by that Poisson integral,
then the resultant function is a supertemperature which is majorized by u on E; see
[16, Theorem 10] or [17, Theorem 3.21]. Note that replacing u by its Poisson integral
only on C does not in general produce a supertemperature. Moreover, that Poisson
integral is not in general equal to the greatest thermic minorant of # on C, as is implied
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by [17, Remark 3.24]. A similar situation occurs if we use a rectangle instead of C, as
was noted in [12].

In this paper, we give the corresponding result for a heat ball. The heat ball is of
increasing importance, and can now be found in several books, including [5, 7, 8, 17].
It was first studied by Pini [11] in the case n = 1, and Fulks [10] for general n.
Specifically, we show that if u is a supertemperature on an open subset E of R"*!, and
Q = Q(p; c) is a heat ball whose closure is contained in E, then replacing u on Q by the
PWB solution S of the Dirichlet problem with boundary function the restriction of u
to 0Q, gives a supertemperature on E\{p} whose lower semicontinuous smoothing is
a supertemperature on E. Furthermore, S is the greatest thermic minorant of u on Q.
Thus, if we take a heat ball instead of a circular cylinder (or rectangle), we obtain a
much closer analogy with the superharmonic case.

The proofs are not elementary. On the way, we prove general results about changing
a supertemperature to a temperature on an open subset, and whether the resultant
function, or its lower semicontinuous smoothing, is a supertemperature. We also give
a representation of the greatest thermic minorant in terms of PWB solutions on an
expanding sequence of open subsets of E with union E. In addition, in the case of a
nonnegative supertemperature, we prove inequalities that relate reductions to Dirichlet
solutions. Finally, we show that the value of any reduction at a given time depends
only on earlier times.

Notation and terminology are the same as in [17], where full details can be found.
We acknowledge that Bauer’s theory of harmonic spaces [2] includes the heat equation.
However, his approach is very different, and in particular his notion of the Dirichlet
problem is different for a general open set. We illustrate this by the following simple
example, where E consists of two circular cylinders one on top of the other. Let B be
a ball in R”, and let E = B X (Ja,b[U]b, c[). We put E; = BX]a,b[, E; = BX b, c[
and, for any circular cylinder D = B X ]a, B[, we put 0,D = (B X {a}) U (0B X [a, B]).
If f € C(JE), then the restriction of f to JE; is continuous and real-valued, and hence
there is a function u(fl) € C(El) which is a temperature on E\0,E; and equal to f

on d,E;. Thus, we cannot hope to prescribe the boundary values of u}l) on OE\0,E.

Similarly, there is a function u}z) € C(Ez) which is a temperature on Fz\anEz and equal
to f on d,E,. The temperature u; on E that corresponds to f is given by uy = u(f’:) on
E; for each i € {1,2}. At all points of dB X (Ja, b[ U ]b, c[), the boundary values are

attained on any approach through E. For each point x € B,
up(y,s) = f(x,b) as(y,s)— (x,b+),
but in general
ur(y,s) 7 f(x,b) as(y,s) = (x,b-).

Thus, we can expect the boundary values to be attained on approach from above, but
not on approach from below. The version of the Dirichlet problem in [12, 17] takes this
into account, and considers all points of B X {b} to be regular. All points of B X {c} are
considered to be irrelevant. By contrast, the version adopted by Bauer [2], Doob [6]
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and others, treats all boundary points in the same way, requiring the boundary values to
be attained on any approach through E. They regard all points of B X {b} and B X {c} to
be irregular. Thus a parabolic problem is treated as if it were an elliptic problem. This
may be inevitable if one wants a theory which applies to both elliptic and parabolic
equations.

We do not need any results from harmonic space theory that are not also given for
the present context in [17]. Indeed, we make no reference to Bauer’s book [2] in any
of the proofs of our results. Moreover, the only essential references to Doob’s book
that we make in such proofs are to [6, page 287], an elementary lemma. For other
references to [6], we give alternatives.

We briefly list the notation and terminology that we shall use here.

We denote by W the fundamental temperature, defined for all (x, 1) € R+ by

—(n/2) I .
(4rr) exp(—z) if7>0,

0 ift <0.

Wi(x,t) =

Given any two points p = (x,7) and g = (y, s) in R**!, we put G(p; q) = W(x — y, 1 — 5).
For any point py = (xo, o) € R™*! and any positive number c, the set

Q(po; ©) = g € R"™' : G(po; q) > (4mc) "?)

is called the heat ball with centre py and radius c. The boundary of a heat ball is called
a heat sphere.
The fundamental mean value over the heat sphere 0€)(py; c¢) is defined by

M(u; po; ©) = (4re)y™ "2 f Q(po — p)u(p) do(p)
Q(po;c)
for any function u such that the integral exists. Here o~ denotes surface area measure
on dQ(po; ¢), p = (x,1) € 0Q(po; ¢) and
xo — xI?

O(po—p) = (4lxo — X2(to — )% + (x0 — X2 = 2n(ty — D))?)>

Let u be a lower finite and lower semicontinuous function on an open subset £
of R™! If, given any point p € E and a positive number e, there is a positive
number ¢ < € such that the closed heat ball Q( p;c)is a subset of E and the inequality
u(p) = M(u; p; c) holds, then u is called a hypertemperature on E. If, in addition,
u < +oo on a dense subset of E, then u is called a supertemperature on E. Bauer
[3] proved that our hypertemperatures are the same as his hyperharmonic functions
(associated with the heat equation). A more natural and elementary proof of this is
given in both [16] and [17].

The negative —u of a hypertemperature u is called a hypotemperature, and that
of a supertemperature is called a subtemperature. A function which is both a
supertemperature and a subtemperature is called a temperature, and is a solution of
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the heat equation. The use of the term ‘temperature’ for a solution of the heat equation
goes back at least as far as Widder’s paper [19], and our terminology above is a natural
extension of this.

Given an open subset E of R"™*! and a point p € E, we denote by A(p; E) the set of
points g € E that are lower than p relative to E, in the sense that there is a polygonal
path y € E joining p to g along which the temporal variable ¢ is strictly decreasing.

Given any point p = (x, 1) € R™! and a number r > 0, we denote by H(p,r) the
open lower half-ball B(p, r) N (R"X ]—c0, t[), and by H*(p, r) the open upper half-ball
B(p,r) N (R"*X ]t, +00[).

Let E be an open set, and let g € 0E. We call ¢ a normal boundary point if either
g is the point at infinity, or g € R"! and H(g, r)\E # 0 for each r > 0. Otherwise we
call g an abnormal boundary point. The abnormal boundary points are of two kinds.
If there is an r > 0 such that H*(¢q,r) N E = 0, then q is called a singular boundary
point. On the other hand, if for every r > 0 we have H*(g,r) N E # 0, then ¢ is called
a semisingular boundary point.

The set of all normal boundary points of E is denoted by 9, E, that of all abnormal
ones by d,FE, that of all singular ones by d;E and that of all semisingular ones by dgE.
Thus, 0E = 0,E U 0,E and 0,FE = 0,E U Oi-E. The essential boundary 0.E is defined
by 0.E = 0,E U OE.

Let f be a function on d.E. The upper class determined by f, denoted by UE,
consists of all lower bounded hypertemperatures on E that satisfy

liminf w(x,f) > f(y,s) forall (y,s)e€ d,E
(x.)—>(y.5)
and
liminf w(x,?) > f(y,s) forall (y,s) € dsE.
(.= (y,5+)
The lower class determined by f, denoted by ££, consists of all upper bounded
hypotemperatures on E that satisfy '

limsup w(x,?) < f(y,s) forall (y,s) € OLE
(x.D—=(,5)
and
limsup w(x, 1) < f(y,s) forall (y,s) € dsE.
(x,H)—=(y,5+)

The function U fE =inf{w:we HJ’E } is called the upper solution for f on E, and
lef =sup{w:we 53? } is called the lower solution for f on E. We say that f is resolutive
for E if LJ’f = Uf and is a temperature on E. In particular, if f € C(0.E) then f is
resolutive for E, by [17, Theorem 8.26]. For any resolutive function f, we define
S? = Ljf = Uj’f to be the PWB solution for f on E.

A point (v, s) € 0.E is called regular if, for every function f € C(0.E),

. E _
(x’tl)l_r)r(lm Si(x,0)=f0,s)
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if (y, s) € OyE, or
lim  SE(x1) = f(7.5)

(x,0)—(y,5+)

if (y, 5) € O E. The set E is called regular if every point (v, s) € d.E is regular.
If u is an extended real-valued function on an open set E, then the lower
semicontinuous smoothing u of u is defined by

u(p) = u(p) A liminf u(q)
q—p

for all p € E. It is the greatest lower semicontinuous minorant of u on E.

If u is a supertemperature on E that is minorized by a subtemperature on E, then
there is a greatest such minorant, which is in fact a temperature on E. It is called the
greatest thermic minorant of u on E.

Let u be a nonnegative supertemperature on an open set £. If L C E, then the
reduction of u over L (relative to E), denoted by RL, is the infimum of the family of
nonnegative supertemperatures on E that majorize u on L. The lower semicontinuous
smoothing k\ﬁ is called the smoothed reduction of u over L (relative to E).

The above form of the PWB solution gives more general results than the form
mentioned by Doob [6]. Here is yet another illustration of that fact. Here, and below,
we abbreviate (x,?) — (y, s+) to p — g+, respectively.

Lemma 1.1. Let u be a lower bounded supertemperature on an open set E, and let v
be its greatest thermic minorant on E. If there is a continuous function f on 0.E such
that lim,_, u(p) = f(q) for all q € 0,F and lim,_,,, u(p) = f(q) for all q € O<E, and
v is upper bounded on E, then f is resolutive for E with S? =vonkE.

Proor. Under these hypotheses, we have u € f and v € §. Therefore v < L} < Uf <
u on E, so that Uf is lower finite on E and is upper finite on a dense subset of E.
Hence, Uf is a temperature on E, by [18, Lemma 15] or [17, Lemma 8.15]. The
definition of v now shows that v = L_’)f = U_f , as required. m]

A similar result was claimed by Doob [6, Example (e), page 331] under the
hypotheses that f is continuous on dE and lim,_,, u(p) = f(q) for all g € OE.

2. Resolutivity and reductions

We begin with an essential lemma, which is more general than [15, Lemma 2] and
[17, Lemma 7.20].

Lemva 2.1. Let u be a supertemperature on an open set E, and let v be a
supertemperature on an open subset D of E. If

lim inlf) v(p) = u(q) forall g e ENo,D, 2.1)
]7—?q,p€

liminf v(p) > u(q) forall g€ ENdsD 2.2)
p—q+.peD
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and
liminf v(p) > —c0 forallge ENa,D, 2.3)
P—q-
then the function w, defined by
v A u)(q) ifq €D,
wig) = 1@ if g € E\(D U d.D),

(lim inf v(p)) Au(g) ifgeENa.D,
P—q-

is a supertemperature on E.

Proor. It is clear that w is a supertemperature on E\0D, and that w < +co0 on a dense
subset of E. Condition (2.3) ensures that w > —co on E.
If g € E N 0,D, then condition (2.1) implies that

w(g) = u(q) < (lim inf v(p)) A (lim inf u(p)) = lim inf w(p),
P—q,peD P—q pP—9q
so that w is lower semicontinuous at g. On the other hand, if ¢ € E N d,D, we have
w(g) = (lim inf v(p)) Aulg) < (lim inf v(p)) A (lim inf u(p)) = limiinf w(p),
P—q- p—q.pED rP—q rP—q

so that w is lower semicontinuous at g. Moreover, if g € E N d D, then condition (2.2)
implies that
w(g) < (lim inf v(p)) A (lim inf u(p)) A ( lim inf v(p)) — liminf w(p),
P—q- p—q p—q+.peD P—q
so that w is lower semicontinuous at g. Hence w is lower semicontinuous on E.

It remains only to check that the inequality w(g) > M(w; g; ¢) holds whenever
g € EN D and c is sufficiently small. If g € E N dD and w(q) = u(gq), then

w(q) = M(u; q;c) = M(w; g; ¢)

whenever ﬁ(q; ¢) CE. Otherwise g € ENAdD and w(qg) # u(g), so that g € 9,D
and w(q) = liminf,_,,_ v(p). Condition (2.3) shows that there is an open half-ball
H(q, ) € D such that v is lower bounded on H(g, §). We can assume that E(q, 0)CE.
We choose a positive number ¢( such that ﬁ(p; ¢) € H(g,0) whenever p € H(q,6/2)
and 0 < ¢ < ¢g. For all such p and ¢, we have v(p) > M(v; p; c) = M(w; p; ¢), so that
w(gq) > liminf,_,_ M(w; p;c). Since ﬁ(q, 0) C E, the function u is lower bounded on
H(q, 9), and so the same is true of w. We may therefore use Fatou’s lemma to obtain
w(q) = M(w; g; c). This completes the proof. O

Remark 2.2. If, in Lemma 2.1, v _is defined on an open superset of DN E, then
liminf,_,_ v(p) = v(q) for all g€ DN E, by [17, Lemma 3.16] or [16, Lemma 2].
Therefore w takes the simpler form

_JvAaug) ifge ENn(DUI,D),
WD =\ if g € E\(D U 8,D).
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Remark 2.3. If, in Lemma 2.1, d.D C E and u is lower bounded on d.D, then
conditions (2.1) and (2.2) combine with the minimum principle to show that v is lower
bounded on D, so that condition (2.3) is automatically satisfied. In particular, this
occurs whenever D C E.

Lemma 2.1 is necessarily more complicated than its superharmonic counterpart.
Doob [6, page 297] neglected this extra complication, and the following example
shows that his argument is flawed.

ExampLE 2.4. We choose a positive real number a, put H = R"X ]2a, +oo[ and denote
by xm the characteristic function of H. Then the function v = G(-;0) + yy is a
nonnegative supertemperature on R™!. We choose A = R" X {a, 3a}, g0 = (0,3a), and
put A = A(go; R™') = R"x ]—00, 3a[. According to Doob [6, page 297], if «’ is a
nonnegative supertemperature on A that majorizes v on A N A, and u is a nonnegative
supertemperature on R"*! that majorizes v on A, then the function

L on RMI\A,
uAu onA

is a supertemperature on R"*! that majorizes v on A. However, G(-; 0) is a nonnegative
supertemperature on A that equals v on A N A = R" X {a}, and so we can take v’ =
G(+;0). This gives

liminfu”(p) < lim G(p: 0) = G(go:0) < v(qo) < u(qo) = u"(qo).
so that u” is not lower semicontinuous. Of course, u” can be redefined on R” X {3a}
to make it lower semicontinuous, by putting u”(g) = liminf,_,,_(u A u’)(p) for all
q € R" x {3a}, but then u”” would not majorize v on A.

We use the following theorem in two situations, namely when u > 0 and f =0,
and when D C E. The analogous situations for superharmonic functions are treated
separately in both [1, page 191] and [6, page 122], but it seems desirable to have a
general result that covers both cases.

THEOREM 2.5. Let u be a supertemperature on an open set E, let D be an open subset of
E such that u is lower bounded on E N 0.D, and suppose that there is a lower bounded
Borel measurable function f on OE N 0.D such that

f(g) < liminf u(p) forall g€ 0E N O,D
p—q.peD

and
f(@) < liminf u(p) forall g€ OE N OgD.
p—q+,peD

If u is defined on 0.D by

__fju onENG.D,
u= f ondENé.D,
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then i is resolutive for D, and the function h, defined by

h= u onE\B,
~\S2 onD,

can be extended to a supertemperature majorized by u on E.

Proor. The function # is Borel measurable, and the conditions on f ensure that the
restriction of u# to D belongs to the class II,ZD . Therefore, U,é) < u < +oo0 on a dense
subset of D. Since i is also lower bounded, it follows from [17, Lemma 8.15] or
[18, Lemma 15] that U,? is a temperature on D. Now [17, Corollary 8.33] or [18,
Corollary 26] shows that i is resolutive for D.

Let v be any supertemperature in the class U2, and put m = infs,p . Then
liminf,_, v(p) > m for all points g € 0,D, and liminf,_, v(p) > m for all points
q € 0D, so that v >m on D by the minimum principle. Therefore v satisfies
all the conditions in Lemma 2.1, so that the function w = w, of that lemma is a
supertemperature on E, and w, > m on D. We now put

g = inf{w, : v is a supertemperature in IIHD J<w,=u

on E. Then g > m on D and, if K is any compact subset of E then g > m A (infg u) on
K, so that g is locally lower bounded on E. Now [17, Theorem 7.13] or [6, page 295]
shows that the lower semicontinuous smoothing g is a supertemperature on E, and is
equal to g at every point g where g(g) = liminf,_,, g(p). Clearly g =uon E \D, so that
g = u there too, in view of [17, Lemma 3.16] or [16, Lemma 2]. Moreover, on D we
have g = inf{v A u : v € UP}. Since u € U2 we have v A u € UP whenever v € U2, and
it follows that S? = inf{v A u : v € UP} = g =g on D. Hence, g = h wherever the latter
is defined. O

COROLLARY 2.6. Letu be a supertemperature on an open set E, and let D be a bounded,
regular open set such that D C E and 0,D = 0D. Then the restriction of u to 0D is
resolutive for D, and if

nolt on E\D,
“\SP onD,

then h is a supertemperature majorized by u on E.

Proor. By Theorem 2.5, the restriction of u to dD is resolutive for D, and § ,f) <uon
D. Since u is lower semicontinuous, D is regular, and d,D = dD, we have

liminf SP(p) > liminf u(p) > u(q)
pP—q p—q,pedD

for all g € D, by [17, Theorems 8.46 and 8.44]. Therefore, by [17, Lemma 7.20] with
V =Dandv=_SP, the function  is a supertemperature on E. O
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CoROLLARY 2.7. Let u be a supertemperature on an open set E, and suppose that there
is a lower bounded Borel measurable function f on 0.E such that

f(@) <liminfu(p) forall g € OE
P4

and
f(g) <liminfu(p) forall g < dsE.
p—a+

Then f is resolutive and S? <uonk.

Proor. Take D = E in Theorem 2.5. m]

In the next theorem, we obtain inequalities between two particular reductions of a
nonnegative supertemperature x on E, and the PWB solution on an open subset D of
E with boundary function as given in Theorem 2.5 with f = 0. The result is analogous
to [1, Theorem 6.9.1] and a result in [6, page 122], but is less satisfactory insofar as in
the superharmonic case there is an equality rather than two inequalities.

THeOREM 2.8. Let u be a nonnegative supertemperature on an open set E, let D be an
open subset of E, and let uy be defined on 0.D by

_ju onEnNG.D,
“0 =10 on 0E N 0.D.

Then uy is resolutive for D, and

RE\PURD) < gD < RENDUO.D) (2.4)
on D.
Moreover, if E N 0D is polar, then RE\(DuaaD) = RE\(Dua‘D) on E\OsD and equality
holds in (2.4).

Proor. The fact that u is resolutive for D follows from Theorem 2.5 by taking f = 0.
If v is a nonnegative supertemperature on E such that v > u on E\(D U d;D), then

liminf v(p) > v(q) > u(q)
p—q,peD

for all points ¢ € E N d.D, and

liminf v(p) >0
p—q,peD

for all g € E N 9D, so that the restriction of v to D belongs to the class H{fo . Therefore
on D we have v > §”, and hence RE\DPUD) 5 g e

On the other hand, if v is now any supertemperature in the class IIMDO , then v satisfies
all the conditions in Lemma 2.1. Therefore the function w, defined as in Lemma 2.1,
is a supertemperature on E. Since w = u on E\(D U 9,D), we have w > Rf \DUaD) o

E, and hence v > Rf“DUﬁaD) on D. It follows that S ulz > Rf\(Dua“D) on D.
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If E N gD is polar, we put L = E\(D U d,D) and Z = E N 0D, so that LU Z =
E\(D U d;D). Given a point py € E\Z, we can find a nonnegative supertemperature
w on E such that w = +oco on Z and w(pg) < +oo, by [12, Theorem 27] or [17,
Theorem 7.3]. If v is a nonnegative supertemperature on E such that v > u on L,
then for each € > 0 we have v+ ew >u on LUZ, and so v+ ew > REYZ on E. In
particular, v(pg) + ew(po) > REYZ(py) for all € > 0, so that v(py) > REY%(py), and hence
RE(po) > REYZ(p,). Therefore RE(pg) = REY%(py), because RE < REYZ on E. Thus,

Rf\(Dua“D) = Rf\(DuasD) on E\0iD, which gives the result. O

RemMark 2.9. Theorem 2.8 leaves open the question of whether the two reductions in
(2.4) are equal if E N dsD is not polar. For two arbitrary disjoint subsets L and Z
of E, the hypothesis that Z is not polar is insufficient to guarantee that RL # REVZ
on E. For example, if EN (R" X {a}) # 0, and we take L = E N (R"X ]—c0, a[) and
Z = E N (R" x {a}), then whenever v is a nonnegative supertemperature on E such that
v > u on L, for every point g € Z we have

v(g) = liminf v(p) > liminf u(p) = u(g),
P—q- P4

by [17, Lemma 3.16] or [16, Lemma 2]. Thus, v > u on L U Z, so that v > REYZ, and
hence RE > REYZ on E. The reverse inequality is always true, so that equality holds
even though Z is not polar.

The following example shows that the two reductions in (2.4) may not be equal. In
it, we are able to evaluate the reductions explicitly, and to show that S Lfg is equal to the
larger one.

ExampLE 2.10. Let F be a closed subset of R” with Lebesgue measure m,,(F) > 0, let
E =R"X]—co, 1[ and let D = E\(F % {0}). Then 9, D contains only the point at infinity,
05D =R" x {1} and 3D = F x {0}. Therefore E\(D U 8,D) = 0, so that R\ %P = 0
on E. Moreover, E\(D U d;D) = F x {0} and, if v is a nonnegative supertemperature
on E such that v > 1 on F X {0}, then

liminf v(x, ) > v(y,0) 2 xFx0;(v, 0)
(x,0)—(,0+)

for all y € R", where y4 denotes the characteristic function of a set A. It follows that,
if W is defined on E by

fW(x—y,t)dy ift >0,
F

0 ift <0,

then v > Wy on E by [6, page 287]. Since m,(F) > 0, we have Wg(x,#) > 0if t > 0,
and it follows that R™” > W > 0 = R on R"x ]0, 1[. Thus, RY\PV4P) 5 REPWAD)
on R"x ]0, 1[. Furthermore, given any function v as above, and any positive number c,
the function v, defined by

We(x,t) =

_fy(x, ) ift> —c,
Vel ) = {0 ifr < —c,
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satisfies the same conditions as v, so that v, > RfX{O} on E. Therefore, RfX{O}(x, Hn=0

whenever ¢ < 0. Because RfX{O} is a temperature on D, it follows that fow}(x, n=0

whenever (x, 1) € D and ¢ < 0. Furthermore, since the restriction of RIF X0 1o R 10, 1]
is a temperature that takes values only in the interval [0, 1], it is, in view of [13,
Theorem 5.5], the Gauss—Weierstrass integral of the function

f(x) =lim Oi?fRf “Ox, 1) < xr(x).

Therefore, fow} < Wr on R"Xx ]0, 1[, and so equality holds there. Thus,

Fx{0} _ We(x,t) ift+#0,
Ry (x’t)_{)(F(x) ifr=0.

We now put up =1 on F X {0} and ug(c0) = 0. Theorem 2.8 shows that ug is
resolutive for D, and that Sulz < Rf “Oh on D. If wis any supertemperature in the
class IIMDO, then w > 0 on D by the minimum principle, and w > W on R"*x ]0, 1[ by
[6, page 287]. Therefore, w > Wr on D, so that S£ > Wrp = RlFX{O} on D, and hence
equality holds.

3. Greatest thermic minorants

In this section, we first give a characterization of the greatest thermic minorant
of a given supertemperature on an open set. We then use the characterization to
show that, if u is a nonnegative supertemperature on £ and D is an open subset of
E, then replacing u on D by its greatest thermic minorant on D gives a function whose
lower semicontinuous smoothing is a supertemperature on E and equal to u on E \D.
Specializing to the case where D is a heat ball Q such that Q C E, we show that the
greatest thermic minorant of u on Q is equal to S<*. Furthermore, if we replace u
on Q by S£, then the resultant function, whose lower semicontinuous smoothing is
a supertemperature on E, is itself a supertemperature except at the centre of the heat
ball.

Theorem 3.1 is analogous to [1, Theorem 6.4.10], which is also mentioned in [6,
page 123].

THeEOREM 3.1. Let u be a supertemperature on an open set E, and let {E} be an
expanding sequence of bounded open sets such that E; U 0.E; C E for all k and
Ure Ex=E.

(a) For each positive integer m, the sequence {Sf" Vesm 1s decreasing on E,,.

(b) Ifthere is a point py € E such that
kh_{g, ka(PO) > —00,

then u has a thermic minorant on A(po; E).
(¢)  Ifu has a thermic minorant on E, then the greatest one is lim;_, e S Ex,
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Proor. For each positive integer k, d.E) is a compact subset of E, so that u is lower
bounded on d.E;. It therefore follows from Theorem 2.5 that the restriction of u to
0.E} is resolutive for E;, and that S,,E" <uonkE;. Ifwe ka”, then for all g € 0,E41
we have
lim sup(w — u)(p) < limsup w(p) — u(q) <0,
P4 P—q

and for all g € dEy+1 we similarly have lim sup g (W — u)(p) < 0. Therefore w < u
on Ej,| by the maximum principle [17, Theorem 8.2]. It follows that, for all g € 0, E},
we have

lim sup w(p) < lim sup u(p) < u(q),

P—4.PEE P—9q
and for all g € 0 Ey we similarly have limsup,,_, ., g, w(p) < u(q). Therefore, since w

is upper bounded, we have w € ﬁf". It follows that S f <8 f *on Ey. This proves (a).

To prove (b), we take any point gy € A(po; E) and choose a polygonal path y in E
which joins py to g along which the temporal variable is strictly decreasing. Since y
is compact, we can find a positive integer m such thaty C E,,,. If h = limy_,, S L on E,
then h(pg) > —oo, and so the Harnack monotone convergence theorem shows that % is
a temperature on A(py; E,;). This holds for all sufficiently large values of m, and so A
is a temperature on A(pg; E). Therefore, because ka < uon E; for all k, h is a thermic
minorant of # on A(pg; E).

To prove (c), we let w denote a thermic minorant of u on E. For each k, d.E; is
a compact subset of E, so that w is upper bounded on d.E;. Therefore the maximum
principle implies that w is upper bounded on E;. Moreover, for any g € d.E; we have
lim,,_,; yeg, w(p) = w(q) < u(g), and so it follows that w € Qf ¥. Therefore w < Sf" on
E;, and sow < limy_,o0 Sf" onE. O

THEOREM 3.2. Let u be a supertemperature which has a thermic minorant on an open
set E, and let D be an open subset of E. If h is the greatest thermic minorant of u on
D, and

_|h onD,
“\u onE\D,

then the lower semicontinuous smoothing W is a supertemperature on E such that
w=won E\OD.

Proor. We first consider the case where u > 0 on E. By [17, Theorem 8.50], we can
write D as the union of a sequence {D;} of bounded open sets such that, for each &,
Dy C Dy, 0Dy = 0 and 94Dy, has only finitely many points. By Theorem 2.8, for
each k, the restriction of u to d.Dy is resolutive for Dy and, because dsDy is polar
and d;Dy = 0, we have SuDk = Rf\Dk on Dy. Therefore, IE‘?\D" = ka on Dy, by [17,
Theorem 7.27(d)] or [6, page 297].

Since {E\Dy} is a contracting sequence of subsets of E, the sequence of smoothed
reductions {k\f \D *} is decreasing on E, and therefore tends to a limit v on E. Moreover,

for each k the function ﬁf\D" is a supertemperature on E, which is equal to Rf\Dk =u
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on E\Dy by [17, Theorem 7.13] or [6, Theorem 1.XVIIL.2], and hence on E\D.
It follows that Ef\Dk =u on E\D, and hence v =u on E\D. Furthermore, by
Theorem 3.1,
h = lim SP* = lim RE\?x =y
k—oo k—o0

on D. Since the sequence {E’f\Dk} is decreasing on E, and its limit v=w on E, it
follows from [17, Theorem 7.13] or [6, page 295] that w is a supertemperature on E
and equal to w on E\dD.

We now consider the general case. If g is the greatest thermic minorant of u on E,
then the case just proved can be applied to u — g. Thus, if

f= h—g onD,
“lu—-g onE\D,

then fis a supertemperature on E such that ]"\: f on E\OD. Since g is continuous
on E, we have f + g =w on E. Hence, w is a supertemperature on E and equal to
f+g=won E\0D. O

Cororrary 3.3. Let u be a supertemperature on an open set E, let D be a bounded
open set such that D C E, and let h be the greatest thermic minorant of u on D. If

_|h onD,
“\lu on E\D,

then W is a supertemperature on E and equal to w on E\OD.

Proor. Since D is a compact subset of E, we can find a bounded open superset C of D
such that C C E. Since C is compact, u is lower bounded on C. Applying Theorem 3.2
to u on C, we deduce that w is a supertemperature on C and equal to w on C\dD. The
result follows easily. O

Theorem 3.4 is the analogue for heat balls of [1, Theorem 3.6.5], but is far harder
to prove.

Tueorem 3.4. Let u be a supertemperature on an open set E, and let Q) = Q(py; co) be
a heat ball such that Q C E. Then the greatest thermic minorant of u on Q is S

Proor. By Theorem 2.5, the restriction of u to 9Q (= 0.Q) is resolutive for Q, and the
function A, defined by
= {u on E\Q,
S8 onQ,

can be extended to a supertemperature v < u on E. By Corollary 3.3, if w = u on
E\Q, and w is equal on Q to the greatest thermic minorant of u on Q, then W is
a supertemperature on E and equal to w on E\0Q. By [14, Theorem 2] or [17,
Theorem 6.43], the functions M(w; po; -) and M(v; py; ) are continuous at ¢y, so that

M(W; po; co) = cgrcrol+ M(u; po; ) = M(v; po; co)-
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Sincew>S®¥=vonQ,andw=u=vonE \Q, we have w > v almost everywhere on
E, so that [17, Theorem 3.59] implies that w > v everywhere on E. Furthermore, [14,
Theorem 4] or [17, Theorem 6.45] shows that, whenever 0 < ¢ < ¢y,

MOW; po; ¢) = W(po) = MW; po; co) = M(v; po; co) = v(po) = M(v; po; c).

Since W — v is nonnegative and continuous on €, it follows that w = v on Q, as asserted.
O

Theorem 3.4 shows that the greatest thermic minorant of u on Q is equal to S
regardless of whether the set of irregular points of 9Q, namely {py}, is a null set for the
Riesz measure associated with u. This is in contrast to an observation made by Brelot
[4, page 116] concerning a formula of Frostman [9], for the superharmonic case.

We can now prove an analogue for heat balls of the elementary result [I,
Corollary 3.2.5]. It is not, of course, covered by [2, Satz 4.1.4], because that result
says nothing about the function values on 9<Q.

Tueorem 3.5. Let u be a supertemperature on an open set E, and let Q = Q(py; ¢) be
a heat ball such that Q C E. Then the function w, defined by

S2 onQ,
w =
u on E\Q,

is a supertemperature on E\{po), and its lower semicontinuous smoothing w is a
supertemperature on E.

Proor. Theorem 2.5 shows that the restriction of u to 9.Q is resolutive for Q.
Theorem 3.4 shows that S is the greatest thermic minorant of u on Q. Therefore,
Corollary 3.3 shows that W is a supertemperature on E and equal to w on E\0Q. By
[17, Corollary 3.41], every point g € 0Q\{po} is a regular point for Q. It therefore
follows from [17, Theorems 8.46 and 8.44], or [12, Theorem 34 and Lemma 32], that

liminf $¥(p) > liminf u(p) > u(q)
pP—q p—q,pedQ

for every such point g. The lower semicontinuity of # on E\Q now implies that w is
lower semicontinuous at every point g € dQ\{po}, and hence on E\{po}. Thus w =w
on E\{py}, which proves the result. O

RemMark 3.6. In the context of Theorem 3.5, we cannot generally conclude that w is a
supertemperature on E. For example, if u(p) = —|p — pol>, then ®u < 0 on an open
neighbourhood E of py. If Q = Q(po;co) is chosen such that QCE, and we put
v=u—-S&on Q, then v is a positive supertemperature on Q because @v < 0. If w
was a supertemperature on E, then it would be lower semicontinuous at py, and we
would have
0 < lim supv(p) = u(po) — liminf S2(p) <0,
P=po p=po

so that v would be a barrier at py. The point py is irregular for Q by [17, Example 8.36],
and so [12, Theorem 34] or [17, Theorem 8.46] shows that there is no barrier at p.
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4. Reductions and the temporal variable

If the temporal variable truly represents time, then we would expect the values of
the nonnegative supertemperature u(y, s) for s > a to have no effect on the values of
the reduction Rﬁ(x, t) for ¢ < a. The next theorem implies that this is indeed the case.

THeoREM 4.1. Let u be a nonnegative supertemperature on an open set E, and let L be
any subset of E.

(@) If D is an open subset of E such that E 0 8.D = 0, then R = RE"D on E N D.

(b)  More generally, if there is an expanding sequence { Dy} of open subsets of E such
that E N 8.Dy = 0 for all k, and M = \J2.| Dy, then RL = RE"M on E 0 M.

Proor. (a) Since L N D C L, we have RE"? < RL on E.

Let v be a nonnegative supertemperature on E such that v > u on L N D. The
condition E N d.D = 0 implies that END = E N (D U d,D) and E\D = E\(D U 8,D).
Therefore, if w is defined by

W= VAU onEOB,
" \u on E\D,

then w is a nonnegative supertemperature on E, by Lemma 2.1. Since v > u on L N D,
we have w > u on LN 5, and clearly w = u on L\B. Therefore w > Rj on E, and in
particular v > w > RL on E N D. It follows that RE"P > RL on E N D, and so equality
holds there. _

(b) By part (a), we have RL = RIL;OD “ on E N Dy for all k. The sequence {L N Dy}
is expanding and its union is L N M, so that [6, page 318, (e)] or [17, Theorem 9.33]

shows that limy_,. R, = RL"M

integer k, such that p € EN Dy for all k > k,. Since Rﬁ(p) = L”Dk(p) for all such k,

on E. Given any point p € E N M, there is a positive

Ri(p) = Jim R"(p) = R, (p),

as required. O

ExampLE 4.2. In the context of Theorem 4.1, if b € R and D = {(x,t) € E : t < b}, then
E N 8.D =0, so that Theorem 4.1(a) shows that R = RSP} on ((x, 1) € E - 1 < b).
Moreover, if Dy ={(x,7) € E:t <b—(1/k)} for all k, then the sequence {D;} is
expanding and E N d.Dy = 0 for all k. Therefore, since J;_, Dy ={(x,H) € E :t<b)},
Theorem 4.1(b) implies that RE = RI®<L<M) on p,

ExampLE 4.3. In the context of Theorem 4.1, if py € E and A = A(po; E), then
ENd.A=0 by [17, Lemma 8.4] or [12, Lemma 1], so that Theorem 4.1(a) shows
that RE = RE™A on E n'A. More generally, let Dy = U  A(gj; E) for some points
qi>---,qr € E. If g € 0,Dy, then for every r > 0 we have H(q, r)\Dy # 0, so that
H(q,r)\A(qj; E) # 0 for any j, which implies that ¢ € 8,A(g;; E) for some j, and
hence g € .E by [17, Lemma 8.4]. On the other hand, if g € d;sDy, then for every
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r > 0 we have H*(q,r) N Dy # 0. Therefore there is an integer jo, and a sequence {p;}
in H*(g,1) N A(gj,; E) such that p; — g as [ — co. This implies that g € .A(qj,; E),
and so g € 0.E by [17, Lemma 8.4]. Thus, E N d.Dy = 0 for all k, and Theorem 4.1(a)
shows that RL = RE"™* on E N Dy

Since A(po; E) = U pea(po:e) Ap; E), the Lindeldf property of R"*! shows that there
is a sequence of points {g;} in A(po; E) such that A(po; E) = U;‘;l A(gj; E). Taking
D, as above, the sequence {Dy} satisfies the hypotheses of Theorem 4.1(b), and so if
M =2, Dy then RL = REM on the proper subset E N M of A(po; E).

For the case considered in Example 4.2 we can go further, as follows.

THEOREM 4.4. Let u be a nonnegative supertemperature on an open set E, let L C E,
let b e R, and let D ={(x,t) € E : t < b}. Then the reduction of u over L relative to E,
is equal on D to the reduction of u over L N D relative to D.

Proor. For any open subset C of E, we denote the reduction of u over L N C relative
to C by “RELNC,

If v is a nonnegative supertemperature on E such that v > u on L, then its restriction
to D is a nonnegative supertemperature on D such that v>u on L N D. Therefore
v >P RLD on D, and it follows that £RE >P READ on D,

To prove the reverse inequality, we now suppose that w is a nonnegative
supertemperature on D such that w > u on L N D. For each positive integer k, we
put By ={(x,r) e E:t<b—-(1/k)} and Dy = {(x,1) € E : t < b — (1/k)}, and note that
E N 0Dy = 0 for all k. Therefore, if wy is defined on E by

w A u)q) if g € Dy,
u(q) if g € E\(Dy U 0,Dy),

wi(q) =
(MMMw@ﬂAmm if g € EN8,Dy,

P—4-
then wy is a supertemperature on E, by Lemma 2.1. Noting that liminf,_,_ w(p) =
w(q) for all g € E N 9,Dy, we see that wy can be written as

_JwAu onk,
WE= on E\E;.

Since w>uon LN DD LN E,, it is now clear that w; > u on L N E}, and hence on
L. Therefore, wy, >F Rﬁ on E, so that w >F Rﬁ on Ey, for every k, and hence on D. It
follows that PRE"P >E RL on D, and so equality holds. o
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