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Abstract

We determine all finite sets of equiangular lines spanning finite-dimensional complex unitary spaces for
which the action on the lines of the set-stabiliser in the unitary group is 2-transitive with a regular normal
subgroup.

2020 Mathematics subject classification: primary 52C35; secondary 05C25, 20B25, 81P15.

Keywords and phrases: 2-transitive, equiangular lines.

1. Introduction

A set L of equiangular lines in a complex unitary vector space V is a set of 1-spaces
that generates V such that the angle between any two members of L is constant. This
is a notion that has arisen in various contexts, from combinatorics [14, 18] to quantum
state tomography [16]. As in [11], this paper is concerned with sets of equiangular
lines exhibiting a significant amount of symmetry.

Two sets of lines are equivalent if there is a unitary transformation sending one
set to the other. The unitary automorphism group Aut(L) of L is the set of unitary
transformations sending L to itself; the automorphism group AutL of L is the group
of permutations of L induced by Aut(L). The purpose of this note is to deal with a
type of 2-transitive action of AutL not considered in [11].

THEOREM 1.1. Let L be a 2-transitive set of equiangular lines in the complex unitary
space V and such that the automorphism group of L has a regular normal subgroup.
Let |L| = n, dim V = d and 1 < d < n − 1. Then one of the following occurs:

(i) n = 4 and d = 2;
(ii) n = 64 and d = 8 or 56;
(iii) n = 22m and d = 2m−1(2m − 1) or 2m−1(2m + 1) for m ≥ 2; or
(iv) n = p2m and d = pm(pm − 1)/2 or pm(pm + 1)/2 for a prime p > 2 and m ≥ 1.

For each pair (n, d) in (i)–(iv), there is a unique such set L up to equivalence.
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We are assuming that AutL is finite and 2-transitive. Such a group has either
a nonabelian quasi-simple socle (the so-called quasi-simple type) or it possesses a
normal, regular subgroup (the so-called affine type). This note deals with the affine
type. The quasi-simple type occurs in [11]. The case n = d2 is completely settled in
[22] producing (i), (ii) (and the case n = 32 = d2 of (iv)), while the corresponding
question over the reals is implicitly dealt with in [18] (producing (iii)). The assumption
1 < d < n − 1 excludes degenerate examples (see [11]).

The proof of the theorem uses the classification of the finite 2-transitive groups
(a consequence of the classification of the finite simple groups), together with mostly
standard group theory and representation theory. We start with general observations
concerning a 2-transitive line set L in a complex unitary space V. In Section 2.3, we
show that Aut(L) = Z(U(V))G, where G is a finite group 2-transitive on L, and then
that V is an irreducible G-module. The set-stabiliser H = G� of � ∈ L has a linear
character λ such that, if W is the module that affords the induced character λG, then
W = V ⊕ V ′ for a second irreducible G-module V ′ (Proposition 2.6(d)), which explains
why 2-transitive line sets occur in pairs in the theorem. (See [11, page 3] for another
explanation of this fact using Naimark complements.) Then we specialise to the case
where AutL has a 2-transitive subgroup with a regular normal subgroup.

Section 2 contains group-theoretic background and Section 3 describes the exam-
ples in Theorem 1.1(iii) and (iv), while Section 4 contains the proof of the theorem. In
the theorem, Aut(L) and AutL are as described in the following remark.

REMARK 1.2. For L in Theorem 1.1, Aut(L) = GZ, Z = Z(U(V)) where G = E � S
with a p-group E and H = G�, � ∈ L, is Z(G) × S, where Z(G) = E ∩ Z. In Section 4,
we prove that the following statements hold for the various cases in the theorem:

(i) E = Q8, |S| = 3 and Z(G) = Z(E) has order 2;
(ii) E is the central product of an extraspecial group of order 27 with a cyclic group

of order 4, S � G2(2)′ � PSU(3, 3) and Z(G) = Z(E) has order 4;
(iii) E is elementary abelian of order 22m+1, S � Sp(2m, 2) and Z(G) = E ∩ Z has

order 2; and
(iv) E is extraspecial of order p2m+1 and exponent p, S � Sp(2m, p) and Z(G) = Z(E)

has order p.

2. Group theoretic background

Many facts of this section are basic and covered in the books of Aschbacher [1]
and Huppert and Blackburn [10]. Our notation will follow the conventions of these
references. We also need the classification of the 2-transitive finite groups. The groups
of affine type are listed, for instance, in Liebeck [15, Appendix 1].

LEMMA 2.1. Let G be a finite 2-transitive permutation group and V � G an elementary
abelian regular normal subgroup of order pt for a prime p. Identify G with a group of
affine transformations x �→ xg + c of V = Ft

p, where g ∈ G0 and 0, c ∈ V. Then G is a
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semidirect product V � G0 with G0 ≤ GL(V), and one of the following occurs:

(i) G0 ≤ ΓL(1, pt);
(ii) G0 � SL(s, q), qs = pt, s > 2;
(iii) G0 � Sp(s, q), qs = pt;
(iv) G0 � G2(q)′, q6 = 2t, where G2(q) < Sp(6, q) ≤ Sp(t, 2);
(v) G0 is A6 � Sp(4, 2)′ or A7, pt = 16;
(vi) G0 � SL(2, 3) with t = 2 and pt = 52, 72, 112 or 232;
(vii) G0 � SL(2, 5) with t = 2 and pt = 92, 112, 192, 292 or 592;
(viii) pt = 34 and G0 has a normal extraspecial subgroup Q of order 21+4 such that

G0 = Q � S with S ≤ O−(4, 2) � S5 and |S| divisible by 5;
(ix) G′0 is SL(2, 13), pt = 36.

2.1. Some indecomposable modules. Let U be an elementary abelian p-group
(written additively) and S ≤ Aut(U), that is, we consider U as a faithful FpS-module.
We say that U is indecomposable if U is not the direct sum of two proper
S-submodules. We are interested in modules with the following property.

HYPOTHESIS (I). U has a trivial S-submodule U0 � 0, S acts transitively on the
nontrivial elements of V = U/U0 and the proper submodules of U lie in U0. The
possible pairs (S, V) are listed in Lemma 2.1 (S taking the role of G0). The module
U is an indecomposable module which extends a trivial module by V.

LEMMA 2.2. Let U be an indecomposable FpS-module satisfying (I) with dim U0 = 1.
Then p = 2 and

(a) S has a normal subgroup S0 and one of the following occurs:

(1) dim V = 2m, m > 1, S0 � Sp(2a, 2b)′, m = ab, or S0 � G2(2b)′, m = 3b; or
(2) dim V = 3, S = S0 = SL(3, 2).

(b) The module U exists in case (a) and is unique as an S0-module.
(c) Let S � Sp(2a, 2b)′, m = ab, or S � G2(2b)′, m = 3b. Then S has an embedding

into a group S� � Sp(2m, 2) and U is the restriction of the unique F2S�-module
(satisfying (I)) to S.

Before we start the proof, we recall a few basic facts about group representations and
cohomology. Let G be a finite group and V be an n-dimensional FG-module associated
with the matrix representation D : G→ GL(n, F). Define the map D∗ : G→ GL(n, F)
by D∗(g) := D(g−1)t. With respect to D∗, the space V becomes a G-module, the dual
module V∗ of V.

We describe the connection of the existence of indecomposable modules with
cohomology of degree 1 and follow Aschbacher [1, Section 17]. Let G be a finite group
and V a finite dimensional, faithful FpG-module. A mapping δ : G→ V is called a
derivation or 1-cocycle if δ(xy) = δ(x)y + δ(y) for all x, y ∈ G. If v ∈ V , then δv defined
by δv(x) = v − vx is also a derivation. Such derivations are called inner derivations
or 1-coboundaries. The set Z1(G, V) of derivations and the set B1(G, V) of inner
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derivations become elementary abelian p-groups with respect to pointwise addition.
The factor group

H1(G, V) = Z1(G, V)/B1(G, V)

is the first cohomology group of G with respect to V.
Suppose, V is a simple G-module. By Schur’s lemma, K = EndFpG(V) is a finite

field, say � Fpe , and e | dim V . For κ ∈ K, δ a derivation, define δκ : G→ V by
δκ(x) = δ(x)κ. Then δκ is a derivation and δvκ = δvκ. So Z1(G, V), B1(G, V) and
H1(G, V) become K-spaces.

We turn to Hypothesis (I) (S taking the role of G). By [1, (17.12)], we have the
following assertions:

(i) there exists an FpS-module with property (I) if and only if H1(S, V∗) � 0; and
(ii) every FpS-module with property (I) is a quotient of a uniquely determined

FpS-module W with property (I) such that dim CW(S) = dim H1(S, V∗).

If V∗ is simple then the module W in (ii) is even a KS-module, where now
K = EndFpS(V∗). So if U satisfies (I) and dim U0 = 1, then there exists a hyperplane W0

of CW(S) such that U � W/W0. If dimK H1(S, V∗) = 1, then the multiplicative group of
K acts transitively on the hyperplanes of CW(S), that is, U � W/W1 for any hyperplane
W1 of CW(S).

PROOF OF LEMMA 2.2. Assume the existence of a module U as desired. Then S has no
normal subgroup N � 1 with (|N |, p) = 1 and CV (N) = 0 as otherwise, by [1, (24.6)],
U = [U, N] ⊕ U0 is a G-decomposition. This excludes case (1) of Lemma 2.1 and
forces p = 2 (since Z(S) contains an involution z with CV (z) = 0 if p > 2).

So we have to consider cases (2)–(5) of Lemma 2.1 for S. Assume dimF2 V = 2t. In
cases (2)–(4), we have S0 � S with S0 � SL(a, 2b), ab = t, a > 2, Sp(2a, 2b)′, 2ab = t,
and G2(2b)′, 3b = t, and V is the defining F2b S0-module. In case (2), we get assertion
(a.2) by [12]. In cases (3) and (4), H1(S0, V∗) has dimension 1 over F2b by [12]. It
follows that a module with property (I) and dim U0 = 1 exists and is unique up to
isomorphism. We get assertions (a) and (b) once we exclude case (5). So assume
S � A7, U is a 5-dimensional F2S-module, U/U0 is simple and dim U0 = 1 for
U0 = CU(S). There are 16 hyperplanes in U that intersect U0 trivially. A permutation
representation of S of degree ≤ 16 has degree 1, 7 or 15. Hence, U0 has an S-invariant
complement in U and U is decomposable. This excludes case (5).

For (c), note that S � Sp(2a, 2b)′, ab = m, is a subgroup of S� = Sp(2m, 2) �
O(2m + 1, 2) [9, Hilfssatz 1] and so is S � G2(2b)′, 3b = m [15, page 513]. The
indecomposable S�-module U is the O(2m + 1, 2)-module [17, pages 55, 143]. As S
acts transitively on V � U/U0, we see that U is indecomposable as an S-module. �

2.2. On representations of extraspecial groups. A finite, nonabelian p-group E
( p a prime) is extraspecial if Z(E) = E′ = Φ(E) has order p (these groups have many
other names, such as ‘Heisenberg groups’, ‘Weyl–Heisenberg groups’ and ‘generalised
Pauli groups’). We consider the following property.
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HYPOTHESIS (E). Let p be a prime and m ≥ 1 an integer. If p > 2, then E is an
extraspecial group of order p1+2m and exponent p and if p = 2, then E is the central
product of an extraspecial group of order 21+2m with a cyclic group of order 4.

Assume Hypothesis (E) and let A = {α ∈ Aut(E) | αZ(E) = 1Z(E)} be the centraliser
of Z(E) in the automorphism group. Then (see [7, 21]),

A/Inn(E) � Sp(2m, p). (2.1)

Denote by ζk = exp(2πi/k) a primitive kth root of unity. Assertions (a) and (b) of the
next Lemma are [1, (34.9)] and [10, Satz V.16.14], whereas the last assertion follows
from [21, Theorem 1].

LEMMA 2.3. Assume Hypothesis (E) and let U be a pm-dimensional complex space.
Set Z(E) = 〈z〉.

(a) In the case p = 2, there exist precisely two faithful, irreducible representations
Dj : E → GL(U), j = 1, 3, and Dj(z) = ζ j

4 · 1U. Every faithful, irreducible repre-
sentation of E is of this form.

(b) In the case p > 2, there exist precisely p − 1 faithful, irreducible representations
Dj : E → GL(U), 1 ≤ j ≤ p − 1, and Dj(z) = ζ j

p · 1U. Every faithful, irreducible
representation of E is of this form.

For each j, there is an automorphism γj of E such that Dj can be defined by
Dj(e) = D1(eγj) for all e ∈ E, so Dj(E) = D1(E).

2.3. Basic properties of 2-transitive line sets. In this subsection, L denotes a
2-transitive set of n equiangular lines in a complex unitary space V of dimension d < n.
Let K be the kernel of the permutation action of Aut(L) on L, which clearly contains
Z := Z(U(V)).

LEMMA 2.4. We have K = Z.

PROOF. Let g ∈ K. Let m be the minimal number of nonzero ai in a dependency rela-
tion
∑

i aivi = 0, 〈vi〉 ∈ L. Apply g to obtain another dependency relation
∑

i kiaivi = 0
with the same m nonzero kiai; these relations must be multiples of one another by
minimality. Thus, restricting to nonzero ai produces constant ki.

Any two different members 〈vi〉, 〈vj〉 of L occur with nonzero coefficients in such
a relation. Then g acts on all members of L with the same scalar, and so is a scalar
transformation since L spans V. �

LEMMA 2.5. There is a finite group G such that Aut(L) = GZ.

PROOF. By [1, (33.9)], D = Aut(L)′ is finite. Let G ≤ Aut(L) be a finite group
such that D ≤ G and GZ/Z has maximal order in AutL = Aut(L)/Z. Suppose GZ <
Aut(L). Pick h ∈ Aut(L) − GZ. Then hm ∈ Z for some integer m, so there is z ∈ Z such
that hm = z−m. Since [G, hz] ⊆ D ≤ G, we get |〈G, hz〉| < ∞ and GZ/Z < 〈G, h〉Z/Z =
〈G, hz〉/Z, a contradiction. �
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PROPOSITION 2.6. Let G be as in Lemma 2.5 and let H = G�, � ∈ L, be the stabiliser
of a line. Let λ be the linear character of H afforded by �. Then:

(a) V is simple and a constituent of the module W which affords λG;
(b) W = V ⊕ V ′ with a simple module V ′ inequivalent to V;
(c) V and V ′ as H-modules afford λ with multiplicity 1; and
(d) there is a set L′ of n lines of V ′ on which G acts 2-transitively if d < n − 1.

PROOF. By 2-transitivity, G = H ∪ HtH for t ∈ G − H. Assume that V = V1 ⊕ · · · ⊕ Vr
for simple G-modules Vi. Let χi be the character of Vi.

Let � = 〈v〉. If v = v1 + · · · + vr with vi ∈ Vi, then each vi � 0 since 〈L〉 = V . As
λ(h)v = λ(h)v1 + · · · + λ(h)vr for h ∈ H, λ is a constituent of (χi)H . By Frobenius
Reciprocity, each χi is a constituent of λG.

We claim that λG = ψ1 + ψ2 for distinct irreducible characters ψi of G. For, by
Mackey’s theorem [10, Satz V.16.9], (λG)H = ((λ1−1

)H∩H1 )H + ((λt−1
)H∩Ht )H . By Frobe-

nius Reciprocity, (λG, λG) = (λ, (λG)H) = 1 + (λ, ((λt−1
)H∩Ht )H) and (λ, ((λt−1

)H∩Ht )H) =
(λH∩Ht , (λt−1

)H∩Ht ). Hence, (λG, λG) = 1 or 2. If λG is irreducible, then each χi = λ
G, so

d = rλG(1) = r|L| ≥ n. This contradiction proves the claim. By Frobenius Reciprocity,
(λ, (ψi)H) = 1 for i = 1, 2. Then (a)–(c) follow if r = 1.

We now assume r > 1. Each χi is in {ψ1,ψ2}. If {χ1, χ2} = {ψ1,ψ2}, then we would
have d ≥ χ1(1) + χ2(1) = λG(1) = |L|, which is not the case.

Since ψ1 � ψ2, we are left with the possibility χ1 = χ2 ∈ {ψ1,ψ2}, say χi = ψ1. Let
φ : V1 → V2 be a G-isomorphism. Since λ has multiplicity 1 in ψ1, the morphism φ
sends the unique submodule of (V1)H affording λ to the unique submodule of (V2)H
affording λ. Thus, v1φ = av2 with a ∈ C∗. Then

〈v1g + v2g | g ∈ G〉 = 〈v1g + a−1v1φg | g ∈ G〉 = V1(1 + a−1φ),

showing 〈L〉 ⊆ V1(1 + a−1φ) ⊕ V3 ⊕ · · · ⊕ Vr. This contradicts the fact that L spans V.
For (d), note that by (c), V ′ contains an H-invariant 1-space �′. Then �′G is

a 2-transitive line set of size n since dim V ′ = n − d > 1 and since H is maximal
in G. �

REMARK 2.7. λ is a nontrivial character for 1 < d < n − 1 (since ((1H)G, 1G) = 1 by
Frobenius Reciprocity).

3. Examples of 2-transitive line sets

In this section, we describe the examples listed in Theorem 1.1. See [8, 22] for
Theorem 1.1(i) and (ii).

EXAMPLE 3.1 (for Theorem 1.1(iii)). Let m > 1 and let E = F2m+1
2 . Then E is an

O(2m + 1, 2)-space with radical R [17, pages 55, 143]. Then S := O(2m + 1, 2) �
Sp(2m, 2) = Sp(E/R) is transitive on the d := 2m−1(2m − 1) hyperplanes of E of type
O−(2m, 2) and on the 2m−1(2m + 1) hyperplanes of type O+(2m, 2) [17, page 139]. Label
the standard basis elements of V = Cd as vM with M ranging over the first of these sets
of hyperplanes. Let S act on this basis as it does on these hyperplanes. This action is
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2-transitive (as observed implicitly for line sets in [18] and first observed in [5]), so the
only irreducible S-submodules of V are 〈v̄〉 and v̄⊥, where v̄ :=

∑
M vM .

Each such M is the kernel of a unique character λM : E → {±1}. Let e ∈ E act on
V by vMe := λM(e)vM for each basis vector vM . If 1 � r ∈ R, then λM(r) = −1 since
r � M, so r acts as −1 on V. If e ∈ E and h ∈ S, then (v̄e)h = v̄h · h−1eh = v̄eh, so S
acts on 〈v̄〉E, a set of 1-spaces of V. Since S is irreducible on v̄⊥, the set 〈v̄〉E = 〈v̄〉ES
spans V and 〈v̄〉 is the only 1-space fixed by S. In particular, 〈v̄〉 affords the unique
involutory linear character λ of H = R × S whose kernel is S. Clearly, (E/R) � S acts
2-transitively on the n = 22m cosets of S. These are the d-dimensional examples in
Theorem 1.1(iii). The 2m−1(2m + 1) hyperplanes of type O+(2m, 2) produce similarly
the (n − d)-dimensional examples.

EXAMPLE 3.2 (For Theorem 1.1(iv)). Let p > 2 be a prime, m a positive integer
and E an extraspecial group of order p1+2m and exponent p. Using Lemma 2.3, we
consider E as a subgroup of U(W), W a complex unitary space of dimension pm. By
[2], the normaliser of E in U(W) contains a subgroup G = E � S, G/E � Sp(2m, p)
inducing Sp(2m, p) on E/Z(E), with ES acting 2-transitively on the n = p2m cosets of
H = Z(E) × S. Moreover, Z(S) = 〈z〉 has order 2, and W = W+ ⊥ W− for the
eigenspaces W+ and W− of z (with dim W− = (pm − ε)/2 for ε ∈ {±1}, pm ≡ ε (mod 4));
these are irreducible S-modules (Weil modules) [2, 6].

Let U be one of these eigenspaces, say of dimension d. As G/E � S, we can consider
U as a G-module. Define V := W ⊗ U∗ ⊂ W ⊗W∗ (U∗ dual to U). If χ is the character
of S on U, then χχ̄ is the character of S on U ⊗ U∗. Trivially, ( χ χ̄, 1S) = ( χ, χ) = 1, so
there is a unique 1-space 〈v0〉 in U ⊗ U∗ (and hence in V) fixed pointwise by S (and it
is the only 1-space fixed by the group S). In particular, 〈v0〉 affords a nontrivial linear
character λ of H with kernel S. Since E is irreducible on W while S is irreducible on
U∗, the set 〈v0〉ES spans V. These are the examples in Theorem 1.1(iv).

LEMMA 3.3. Let p be a prime, m ≥ 1 an integer and G = ES as in Example 3.1 if
p = 2 and as in Example 3.2 if p > 2. Let L be a line set of size n = p2m in a complex
unitary space V with 1 < dim V < n − 1 such that G ≤ Aut(L) induces a 2-transitive
action on L. Then L is equivalent to a line set of Example 3.1 or 3.2.

Moreover, if λ is a linear character of Z(G) × S, ker λ = S, then every constituent
of the module associated with λG contains a G-invariant line set satisfying the
assumptions of this lemma.

PROOF. For i = 1, 2, let Li ⊆ Vi be line sets in complex unitary spaces and let
Gi = Ei � Si ≤ U(Vi), Si � Sp(2m, p) be isomorphic groups as in the examples with
a 2-transitive action on Li. Let �i ∈ Li and Hi = (Gi)�i . We assume that one of the
line sets belongs to an example and, arguing by symmetry, we can also assume
1 < dim Vi ≤ n/2, i = 1, 2.

Claim. L1 is equivalent to L2. By Proposition 2.6 and Remark 2.7, the representation
λi of Hi on �i is a nontrivial linear character of Hi. We have Hi = Zi × Si, Zi = Z(Gi).
Let α : G1 → G2 be an isomorphism.
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Case p > 2. The group Si is a representative of the unique class of complements of Ei
in Gi (note that S = CG(Z(S)) and Z(S) is a Sylow 2-subgroup of E � Z(S) � G).
So we can assume H2 = H1α, S2 = S1α. We also can assume Si = ker λi by
Lemma 4.1 below. By Lemma 2.3, there exists an automorphism γ of G1 such that
λ1(z) = λ2(zγ ◦ α) for z ∈ Z. So replacing, if necessary, α by γ ◦ α, we may assume
that λ1(z) = λ2(zα) holds. Define a representation D : G1 → GL(V2) by

vD(g) = v(gα), v ∈ V2, g ∈ G1.

Let W be the module associated with the induced character λG1
1 . By Proposition 2.6,

both G1-modules are isomorphic to the same irreducible submodule of W, that is,
V1 � V2. Hence, there exists a G1-morphism φ : V1 → V2 with �1π = �2 (λ1 has
multiplicity 1 in V1 and V2). The claim holds for p > 2.

Case p = 2. Assume first m > 2. Then S2 and S1α are complements of E2 in G2. By
[1, (17.7)], there exists β ∈ Aut(G2) with S2 = (S1α)β. So replacing α, if necessary,
by α ◦ β, we can assume H1α = H2 and S1α = S2. Note that H has precisely one
nontrivial linear character. Now arguing as in the case p > 2, we see that L1 and L2
are equivalent. In the case m = 2, replace Si by S′i . Then the argument from case m > 2
carries over and shows the equivalence of L1 and L2. The first assertion of the lemma
holds and the second follows from the preceding discussion. �

4. Proof of Theorem 1.1 and automorphism groups

In this section, p is a prime and L denotes a set of n = pt equiangular lines in a
complex unitary space V of dimension d with 1 < d < n − 1. By the assumptions of
Theorem 1.1 and the results of Section 2.3, there exists a finite group G ≤ Aut(L) with
a 2-transitive action on L. Set Z = Z(G). Then G/Z has a regular normal subgroup
and V is a simple G-module. We assume n � 4. As for n = 4, the results in [22] imply
assertion (i) of Theorem 1.1. It suffices to assume that no proper subgroup of G/Z has
a 2-transitive action on L and that no subgroup of Aut(L), which covers the quotient
GZ/Z, has order < |G|. We set H = G�, � ∈ L. Then the character/representation λ :
H → U(�) of H on � is nontrivial by Remark 2.7. Observe that there is some flexibility
in the choice of G: generators of G can be adjusted by scalars. We show that G can
be chosen such that G ≤ G̃ where G̃ is a group which is used to construct a line set in
Examples 3.1 and 3.2.

LEMMA 4.1. We may assume G = E � S, H = Z × S, where S is the kernel of the action
of H on �. Moreover, Z ≤ E and one of the following occurs:

(a) p = 2, E is an elementary abelian 2-group, |Z| = 2 and E as an S-module satisfies
Hypothesis (I); or

(b) t = 2m, E satisfies Hypothesis (E) and E/Z(E) is a simple S-module.
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PROOF. Let M be the pre-image of the regular, normal subgroup of G/Z. Since M/Z
is abelian, we have M = E × Zp′ with a Sylow p-subgroup E of M and Zp′ is the largest
subgroup of Z with an order coprime to p. Let L be the kernel of λ.

We may assume that E = M, Z ≤ E and S = L is a complement of Z in H. Clearly,
Z ≤ H ∩M and L ∩ Z = 1. As H/L is cyclic, we can choose c ∈ H such that H = 〈c, L〉.
Pick ω ∈ C of norm 1 such that S = 〈ωc, L〉 has a trivial action on �. Then G̃ = ES
is 2-transitive on L. Moreover, S ∩ E ≤ S ∩ (G̃� ∩ E) ≤ S ∩ Z(U(V)) = 1. Since
Z ≥ Z ∩ E = Z(G̃) ∩ E = Z(G̃) and G/Z � G̃/Z(G̃), we get |G̃| ≤ |G|. So we may
assume G = G̃ and H = (E ∩ Z) × S. In particular, Z ≤ E.

Assume first that E is abelian. Set Ω = 〈e ∈ E | |e| = p〉. This group is a charac-
teristic elementary abelian subgroup of E. If Ω ≤ Z, then E is cyclic, and S � 1 is a
p′-group (isomorphic to a subgroup of Aut(E) of order p − 1). By Remark 2.7, Z � 1.
This contradicts [1, (23.3)] (on automorphism groups of cyclic groups).

So E = ΩZ and, by the minimal choice of G, we obtain E = Ω. If Z has an
S-invariant complement E0 in E, then, by induction, G = E0S contradicting Z � 1. So
1 < Z < E is the unique composition series of E as an S-module and assertion (a)
follows as Z is cyclic.

Assume now that E is nonabelian. If N were a characteristic, normal, abelian
subgroup of E of rank ≥ 2, then 1 < NZ/Z ≤ E/Z would be an S-invariant series. By
our minimal choice N = E, this is absurd. So E is of symplectic type and therefore, by
[1, (23.9)], E = C ◦ E1 where E is extraspecial or = 1 and C is cyclic or p = 2 or C is a
generalised quaternion group, a dihedral group or a semidihedral group of order ≥ 16.

Suppose p > 2. By [1, (23.11)], E is extraspecial of exponent p. So assertion (b)
follows for p > 2.

Suppose finally p = 2. A standard reduction (see for instance [19, Lemma 5.12])
shows that E contains a characteristic subgroup F such that F is extraspecial of order
21+2m or satisfies hypothesis (E). By our choice of G, we have E = F as t = 2m > 2. If
E is extraspecial, then S cannot act transitively on the nontrivial elements of E/Z(E)
as there are cosets modulo Z(E) of elements of order 4 as well as cosets of elements of
order 2. So assertion (b) holds for p = 2. �

By Lemma 4.1, we distinguish the cases E abelian (p = 2), E nonabelian, p > 2,
and E nonabelian, p = 2. Then Lemmas 4.2 and 4.3 complete the proof of
Theorem 1.1. The proof of Lemma 4.2 is very similar to the proof of Lemma 3.3.

LEMMA 4.2. The following assertions hold.

(a) If E be abelian, then Theorem 1.1(iii) holds.
(b) If E be nonabelian and p > 2, then Theorem 1.1(iv) holds.

PROOF. If E is abelian, Lemma 2.2 applies. Case (a.2) of this lemma does not occur.
Let G = E � S, S � SL(3, 2), Z = CE(S) and E/Z be the natural S-module. A simple
E-module in V affords a nontrivial character χ of E and its kernel Eχ is a hyperplane
intersecting Z trivially. There are precisely 8 such hyperplanes. The group S acts
transitively on these hyperplanes (otherwise, as the smallest degree of a nontrivial
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permutation representation of S is 7, S would fix one of these hyperplanes and E would
not be an indecomposable S-module). Hence, dim V ≥ 8 = n, a contradiction.

So there exists an embedding ι : G→ G̃, G̃ = Ẽ � S̃, S̃ � Sp(2m, p) with Ẽ = Eι,
Sι ≤ S̃. This follows from (c) of Lemma 2.2 if p = 2 and for p > 2, it is clear by (2.1).
The linear character λ̃ of Hι defined by

λ̃(hι) = λ(h), h ∈ H, (4.1)

has a unique extension to H̃ = Zι × S̃ such that ker λ̃ = S̃. Let W̃ be the module
associated with the induced character (λ̃)G̃. By Proposition 2.6 and Lemma 3.3, we
have a decomposition into simple G̃-modules W̃ = Ṽ ⊕ Ṽ ′ and both modules contain
G̃-invariant line sets. We turn W̃ into a G-module by

w̃ · g = w̃(gι), w̃ ∈ W̃, g ∈ G.

By Mackey’s theorem [10, Satz V.16.9] and (4.1),

((λ̃)G̃)G = ((λ̃)H̃∩Gι)
G = (λH)G.

So W̃ as a G-module affords λG. Then by Proposition 2.6, V is isomorphic to Ṽ or Ṽ ′.
Say V � Ṽ . An isomorphism φ : V → Ṽ maps the line set L onto Lφ such that � and
�φ both afford as H-spaces the character λ. However, Ṽ contains a G̃-invariant line set
containing a line affording λ̃. Thus, by (4.1) and Proposition 2.6,Lφ is this G̃-invariant
line set. Using Lemma 3.3 again completes the proof. �

LEMMA 4.3. Let E be nonabelian and p = 2. Then (i) or (ii) of Theorem 1.1 hold.

PROOF. By Proposition 2.6, we may assume d = dim V ≤ n/2 = 22m−1. As E satisfies
Hypothesis (E), S is isomorphic to a subgroup of Sp(2m, 2) (see (2.1)). By Lemma 2.1
and by the minimal choice of G, we have H/Z(H) � SL(2, 2m) or � G2(2b)′ and
b = m/3. Let V = V1 ⊕ · · · ⊕ V�, a decomposition into irreducible E-modules. Clearly,
all Vi are faithful E-modules, in particular, d = 2m�. A generator of Z induces the same
scalar on each Vi as the eigenspaces of this generator are G-invariant. Lemma 2.3
shows that all Vi’s are pairwise isomorphic. If � = 1, then n = 22m = d2 and an
application of the main result of [22] proves the assertion of the lemma.

So assume � > 1. Denote by D the representation of G afforded by V and apply
[10, Satz V.17.5]. Then D(g) = P1(g) ⊗ P2(g) where the Pi terms are irreducible
projective representations of G and P2 is also a projective representation of S � G/E
of degree �. Denote by mS the minimal degree of a nontrivial projective representation
of S. By [10, Satz V.24.3], mS is the minimal degree of a nontrivial, irreducible
representation of the universal covering group of S. We have mS = 2m − 1 for S �
SL(2, 2m), m > 3 [20, Table 3], [13], mS = 2m − 2b for S � G2(2b)′, m = 3b, b � 2 [20,
Table 3], [13], mS = 2 for S � SL(2, 4), m = 2 [4], and mS = 12 for S � G2(4), m = 12
[4]. Since mS2m ≤ d ≤ 22m−1, only the last two cases may occur.

For S � G2(4), degree 12 is the only degree of a nontrivial, irreducible, projec-
tive representation of degree ≤ 64. By Proposition 2.6, there exists an irreducible
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G-module V ′ such that dim V ′ = 212 − d = 64 · 52 and 52 is the degree of of an
irreducible, projective representation of S, a contradiction.

Assume finally m = 2. It follows from [7, Theorem 4] that there exists a group
G = E � S, S � SL(2, 4), and this group is unique up to isomorphism. Using GAP or
Magma, one can compute characters of G. For H = Z(E) × S, there exist precisely two
linear characters of H with kernel S. For any such character λ, the induced character
λG is irreducible, which rules out this possibility too. �

4.1. Automorphism groups.

PROOF OF REMARK 1.2. For cases (i) and (ii), we refer to [8, 22]. For the remaining
two cases, we have, by Theorem 1.1, a finite subgroup G = E � S ≤ Aut(L), with
|E/(E ∩ Z)| = p2m, Z = Z(U(V)) and S � Sp(2m, p). The assertions follow in cases (iii)
and (iv) if E/(E ∩ Z) is normal in AutL, that is, if AutL has a regular, abelian normal
subgroup. Suppose AutL has a nonabelian simple socle. Then, by the classification
of the 2-transitive groups (see [3]), AutL is at least triply transitive. In that case,
the application of Proposition 2.6 (to a point stabiliser) forces dim V = d = n − 1, a
contradiction. �
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