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Abstract

Objective: The aim of this study was to summarize the literature on the applications of
machine learning (ML) and their performance in Emergency Medical Services (EMS).
Methods: Four relevant electronic databases were searched (from inception through January
2024) for all original studies that employed EMS-guided ML algorithms to enhance the
clinical and operational performance of EMS. Two reviewers screened the retrieved studies
and extracted relevant data from the included studies. The characteristics of included
studies, employed ML algorithms, and their performance were quantitively described across
primary domains and subdomains.

Results: This review included a total of 164 studies published from 2005 through 2024. Of
those, 125 were clinical domain focused and 39 were operational. The characteristics of ML
algorithms such as sample size, number and type of input features, and performance varied
between and within domains and subdomains of applications. Clinical applications of ML
algorithms involved triage or diagnosis classification (n=62), treatment prediction
(n=12), or clinical outcome prediction (n = 50), mainly for out-of-hospital cardiac arrest/
OHCA (n=62), cardiovascular diseases/CVDs (n=19), and trauma (n=24). The
performance of these ML algorithms varied, with a median area under the receiver operating
characteristic curve (AUC) of 85.6%, accuracy of 88.1%, sensitivity of 86.05%, and
specificity of 86.5%. Within the operational studies, the operational task of most ML
algorithms was ambulance allocation (n=21), followed by ambulance detection (n=5),
ambulance deployment (n =35), route optimization (n=>5), and quality assurance (n = 3).
The performance of all operational ML algorithms varied and had a median AUC of 96.1%,
accuracy of 90.0%, sensitivity of 94.4%, and specificity of 87.7%. Generally, neural network
and ensemble algorithms, to some degree, out-performed other ML algorithms.
Conclusion: Triaging and managing different prehospital medical conditions and
augmenting ambulance performance can be improved by ML algorithms. Future reports
should focus on a specific clinical condition or operational task to improve the precision of
the performance metrics of ML models.
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Machine Learning Algorithms in EMS

Introduction

Machine learning (ML) is a valuable and increasingly common tool
for modern health care systems. Across many medical areas, ML
algorithms have aided health care professionals to provide an
accurate diagnosis for a disease, make an appropriate clinical
decision for a case, and predict an outcome for a treatment
intervention.”” However, many of the applications of ML
algorithms have focused on improving the safety and quality of
care for patients within the in-hospital setting.>™* The potential
benefits of ML applications in the prehospital setting are not yet
well-established. In-depth knowledge regarding ML applications
on prehospital patient care is important for identifying effective
technologies and providing guidance for ML-driven research in
this specific domain.

Personnel from Emergency Medical Services (EMS) often
respond to prehospital cases requiring a rapid response time, early
recognition of a life-threatening condition, and timely treatments.
Across these time-sensitive tasks, there is evidence that ML
algorithms have the potential to augment EMS performance. For
example, the response time of a dynamic ambulance re-deployment
strategy has been reduced by 1.5 minutes using ML algorithms in
reference to conventional methods that are manually designed.” In
addition, dispatchers of EMS who used a clinical decision support
algorithm to recognize out-of-hospital cardiac arrest (OHCA) were
able to capture more cases within a shorter time interval than those
who used the conventional “No-No-Go” approach.® Despite this,
according to the 2015-2020 report for approving ML-based medical
products in the United States and Europe, none of the EMS-guided
ML applications have been translated into a real product.’

To date, few reviews have summarized the application of ML in
emergency medicine, but none is exclusive to prehospital
emergency medical care or ambulance service.>® While many
EMS-guided ML applications have been developed, it is difficult
to determine the value of each application in the absence of
consolidated evidence. This review, therefore, aimed to system-
atically review and describe the literature on EMS-guided ML
applications in both clinical and operational purposes, and further
to describe the characteristics of ML algorithms and their
performance.

Methods

The study approach involved conducting a scoping review of ML
applications in EMS, complemented by a quantitative synthesis of
their performance metrics. This review was conducted in
accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR)
guidelines.!’ The protocol of this review is registered with

PROSPERO (ID: CRD42021271256).

Search Strategy

The literature was systematically reviewed from inception until
January 9, 2024 across four databases, including: Medline (US
National Library of Medicine, National Institutes of Health;
Bethesda, Maryland USA); Scopus (Elsevier; Amsterdam,
Netherlands); CINAHL (EBSCO Information Services;
Ipswich, Massachusetts USA); and Computers and Applied
Sciences (EBSCO Information Services; Ipswich, Massachusetts
USA). A comprehensive search strategy was created using relevant
keywords, phrases, text terms, and subject headings
(Supplementary Material S1 Table; available online only). The
search strategy was designed to capture all reports related to EMS,

ambulance, or paramedic and ML algorithms, deep learning, or
neural networks. Search results were imported to the EndNote
reference software (Version X9; Clarivate Analytics; Philadelphia,
Pennsylvania USA). After removing duplicates, search results were
then imported to Covidence software (Covidence; Melbourne,
VIC, Australia) for managing and streamlining the review.?

Study Selection
Two independent reviewers (AA and ZA) initially screened the
titles and abstracts for eligibility. At this stage, a study was deemed
pertinent if it was written in English; original research; peer-
reviewed trials, observational, or experimental studies; and utilized
a data-driven methodology involving at least one ML algorithm
aimed to classify or predict an EMS-specific outcome related to
either clinical or operational applications specific to EMS use.
For a study to be classified under clinical application, the
implemented ML algorithm must have been engineered with the
aim of augmenting the predictive or classifying capabilities
concerning a clinical condition, a clinical intervention, or a
potential clinical outcome. For operational applications, the ML
algorithm must have been geared towards enhancing the opera-
tional efficiency of an EMS system’s resources such as optimizing,
streamlining, or improving the use of EMS resources.
Conference proceedings, news, case reports, editorial letters,
commentaries, reviews, and non-English reports were excluded.
Studies that have used EMS data to aid emergency department and
in-hospital outcomes were also excluded. After screening the titles
and abstracts, a full-text screening was carried out by the two
reviewers (AA and ZA) for final inclusion. Any disagreement was
resolved through consensus.

Data Collection

A standardized extraction form was developed to collect relevant
data from the included studies. Baseline characteristics such as the
first author, year of publication, study objective and design,
location, duration, data source, and the number of cases were
extracted. Information related to ML algorithms such as the
number and types of ML algorithms used, input features, output
outcomes, and model performance were also extracted.
Additionally, the values of the performance metrics were extracted.
This includes the values of the area under the receiver operating
characteristic curve (AUC), accuracy, sensitivity, specificity, and
positive predictive value. One reviewer extracted the relevant data
(ZA), and this was cross-checked by a second reviewer (AA).

Disagreements were resolved through consensus.

Data Synthesis

The applications of ML algorithms across EMS studies were
dichotomized into clinical and operational domains. Study
characteristics such as the year of publication, geographic region,
study design, data source, and number of ML algorithms employed
across these domains were summarized using descriptive statistics.
Numerical variables were, as appropriate, reported as medians and
ranges and categorical variables were reported as counts and
percentages.

The studies were then classified within the clinical domain into
subdomains based on the medical condition, including OHCA,
cardiovascular diseases (CVDs), trauma, and others (ie, including
unspecified medical conditions). Similarly, the studies were
classified within the operational domain into subdomains, and
this was based on the operational task, including ambulance
allocation (ie, ambulance demand forecasting and relocation),
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Abbreviations: ML, machine learning; EMS, Emergency Medical Services; CAS, Computer & Applied Sciences.

deployment (ie, ambulance dispatching), detection (ie, ambulance
recognition by image or siren capturing), route optimization (ie,
route selection), and quality assurance (ie, quality indicators or
documentation assessment). All subdomains were assessed, using
descriptive statistics as described above, against the following
variables: number of studies, clinical tasks, number of cases, the
number and type of input features, methods of ML algorithm, and
performance metrics.

The values of performance metrics were evaluated by estimating
the unweighted medians and ranges. The performance metrics
estimated included AUC, accuracy, sensitivity, and specificity for
the best ML algorithm as declared by individual studies. STATA
statistical software, version 16.0 (Stata Corp; College Station,
Texas USA) was used to carry out all statistical analyses.

Results

The search strategy identified 6,661 records, of which 1,478 were
duplicates and 5,183 were excluded in the title and abstract
screening. A total of 647 full-text articles were retrieved and
assessed for eligibility. Finally, a total of 164 studies were included
in this review (Figure 1).

Characteristics of Included Studies

Table 1 summarizes the characteristics of the included studies by
domain. Overall (n=164), the median year of publication was
2020 ranging from 2005 through 2024; the number of publications

exponentially increased after 2017. Figure 2 shows the distribution
of the included studies over the years for different characteristics of
the included studies. More EMS-guided ML applications were
reported in the Asia-Pacific region (37.2%) than those that were
reported in Europe (29.3%) and the United States (28.7%); most
studies were retrospective in design (94.5%) and the data were
mainly derived from the EMS records (45.1%) and registries
(40.9%); and 51.2% of the included studies used one ML
algorithm, whereas 48.8% of them used more than one. More than
two-thirds of the included studies deployed ML for a clinical
application (125 studies; 76.2%), while 39 (23.8%) studies applied
ML for an operational application. All included studies are listed
and described in Table S2 and Table S3 in the Supplementary
Material (available online only). Operational studies were reported
mostly in the Asia-Pacific (51.3%), whereas the United States and
Europe had a similar number of studies, with a predominant focus
on clinical research.

Characteristics of ML Algorithms in the Clinical Domain

Table 2 presents the characteristics of EMS-guided ML
algorithms applied in the clinical domain studies, categorized by
medical conditions, including OHCA (n=62 studies; 49.6%),
CVDs (n=19 studies; 15.2%), trauma (n =24 studies; 19.2%),
and others (n = 20 studies; 16.0%). The purpose of most studies in
this domain was to primarily triage or diagnose a medical condition
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4 Machine Learning Algorithms in EMS
Domain
Study Characteristics Overall Clinical Operational
Number of Studies, n (%) 164 (100) 125 (76.2) 39 (23.8)
Year of Publication, range 2005-2024 2005-2023 2009-2024
Study Design, n (%)
Retrospective Observational 155 (94.5) 117 (93.6) 38 (97.4)
Prospective Observational 9 (5.5) 8 (6.4) 1(2.6)
Study Duration in Years,? median 3.0 (0.1-16) 3.0 (0.1-16) 3.0 (0.3-10)
(range)
Region, n (%)
Asia-Pacific 62 (37.8) 42 (33.6) 20 (51.3)
United States 47 (28.7) 41 (32.8) 6 (15.4)
Europe 48 (29.3) 41 (32.8) 7 (17.9)
Others 7 (4.3) 1(0.8) 6 (15.4)
Data Source, n (%)
EMS Record 74 (45.1) 53 (42.4) 21 (53.9)
Registry 67 (40.9) 53 (42.4) 14 (35.8)
Publicly Available Data 9 (8.5) 5 (4.0) 4 (10.3)
Hospital 14 (8.5) 14 (11.2) 0 (0.0)
Number of Used ML Algorithms,
n (%)
Single 84 (51.2) 59 (47.2) 25 (64.1)
Multiple 80 (48.8) 66 (52.8) 14 (35.9)

Alrawashdeh © 2024 Prehospital and Disaster Medicine

Table 1. Baseline Characteristics of the Included Studies across the Two Domains
Abbreviations: EMS, Emergency Medical Services; ML, machine learning.

*Reported in 125 studies (n =104 for clinical domain and n =21 for operational).

(50.0%), followed by predicting a clinical outcome (40.3%) and a
clinical intervention (9.7%).

Among OHCA studies, the most frequent purposes were
predicting a clinical outcome (n=38; 61.3%) and detecting or
triaging OHCA (n = 22; 35.5%). Almost all CVD studies employed
ML for triage and diagnosis (n = 18; 94.7%). The purpose of most
studies concentrating on trauma was to triage traumatic cases
(n=11; 45.8%) or to predict a clinical outcome (n=9; 37.5%).

The median number of cases/instances for most studies within
the clinical domain was 3,405 (n=102 studies; range:
37-8,981,181). The sample size was larger among studies focusing
on trauma and other medical conditions than studies focusing on
OHCA and CVDs. When reported, the median number of input
features for studies within the clinical domain was 19 (n = 71 studies;
range: 1-886). The number of input features was larger for CVD
studies compared to other clinical conditions. Among all clinical
domain studies, the most frequent type of input features was clinical
(ie, demographics, vitals, and findings of physical examination)
obtained from EMS medical records (53.7%), followed by
electrocardiograph (ECG) strips (35.0%), text scripts (11.0%),
and audio recordings (5.1%). The majority of the studies focused on
OHCA involved ECG input features (n = 36; 59.0%), while most
studies related to all other conditions involved clinical features.

The most frequently employed ML algorithms were neural
network (n=60 studies; 50.0%), followed by random forest
(n =57 studies; 48.3%), logistic regression (n = 47 studies; 39.8%),
and support vector machine (n=43 studies; 36.4%). This
distribution was similar within all clinical conditions. To evaluate
the performance of the ML algorithms, the most frequently used

performance metric was AUC (n=76; 60.8%), followed by
sensitivity (n = 73; 58.4%) and specificity (n =67; 53.6%).

Performance of ML Algorithms in the Clinical Domain

In the clinical domain, the median AUC for the best ML
algorithms was 85.6% (n =76 studies; range: 64.0%-99.9%).
The median accuracy was 88.1% (n = 40 studies; range: 57.8%-
99.2%), sensitivity was 86.0% (n=73 studies; range: 38.8%-
99.7%), and specificity was 86.5% (n=67 studies; range:
11.0%-99.9%).

Figure 3 depicts the performance of the best ML algorithms
employed to triage and diagnose clinical conditions and predict
clinical outcomes across the clinical conditions and ML
algorithms. Overall, the medians of accuracy, sensitivity, and
specificity of the ML algorithms designed to triage and diagnose a
clinical condition (>90.0%) were higher than the algorithms
designed to predict a clinical outcome (<90.0%).

The median values of most performance metrics for ML
algorithms deployed to triage or diagnose clinical conditions were
highest in the context of OHCA and lowest in traumatic
emergencies. However, compared to algorithms predicting a
clinical outcome after OHCA, algorithms predicting a clinical
outcome after traumatic emergencies had a higher median AUC
(87.3% versus 90.5%, respectively) and sensitivity (81.7% versus
91.0%), but lower accuracy (86.3% versus 87.6%) and specificity
(80.3% versus 61.0%). Neural network, as well as ensemble
algorithms, appeared to outperform other ML algorithms across
clinical purposes and conditions.
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Abbreviations: ML, machine learning; EMS, Emergency Medical Services.

Characteristics of ML Algorithms in the Operational Domain

Table 3 presents the characteristics of EMS-guided ML
algorithms applied in the operational domain studies, categorized
by the operational task, including ambulance allocation (n=21
studies), ambulance detection (n =5 studies), ambulance deploy-
ment (n=>5 studies), route optimization (n=35 studies), and
quality assurance (n =3 studies).

The overall median sample size was 11,899 (n =20 studies;
range: 77-7,364,275) and the largest sample sizes were reported in
studies focusing on ambulance allocation and deployment. The
overall median number of input features was 10 (n =10 studies;
range: 3-9,224) and the largest median was found in ambulance
deployment studies (18.0; range: 8-9,224). Among studies within
the operational domain, the most frequent types of input features
were EMS-related data (n=17 studies; 43.6%), spatiotemporal
(n =13 studies; 33.3%), clinical findings (n =10 studies; 25.6%),
audio recordings (n=3 studies; 7.7%), and image (n=3
studies; 7.7%).

The neural network was the most frequently employed ML
algorithm (n=24 studies; 61.5%) across all operational
purposes. This was followed by ensemble algorithms (n=7
studies; 17.9%), support vector machine (n = 6 studies; 15.4%),
random forest (n =6 studies; 15.4%), and decision tree (n =4
studies; 10.3%). To evaluate the performance of the ML
algorithms, accuracy (n=17 studies; 43.6%) was the most
frequently used performance metric, followed by sensitivity
(n=10 studies; 25.6%) and specificity (n =6 studies; 15.4%).
Notably, a total of 18 (46.2%) studies did not report the
performance of their ML models.

Performance of ML Algorithms in the Operational Domain

For the operational domain, the median AUC of the best ML
algorithms was 96.1% (n=6 studies; range: 89.8%-99.0%),
accuracy was 90.0% (n=17; range: 24.5%-98.7%), sensitivity
was 94.4% (n=10; range: 83.0%-99.5%), and specificity was
87.7% (n = 6; range: 66.8%-99.4%).

Figure 4 illustrates the performance of the best ML models
categorized by operational tasks and types of ML algorithms. The
medians of accuracy metrics across studies related to ambulance
detection and deployment were higher than those related to
ambulance allocation, route optimization, and quality assurance.
The frequently applied algorithm was a neural network which,
along with the ensemble, out-performed other algorithms to a
certain level.

Discussion

The journey of prehospital emergency care for a patient, including
call receipt, dispatch, travel, triage, diagnosis, treatment, and
transport to appropriate definitive care, is efficiently managed by
multiple operational and medical components of EMS. This
review showed that ML algorithms were implemented in almost all
EMS components, including dispatch and communication system,
first responders, ambulances and paramedics, medical oversight,
and quality improvement. In addition, ML has the potential to
augment the decision-making capabilities of EMS personnel in
both clinical and operational domains or even supplement their
judgment in specific aspects of EMS components. However, the
integration of ML in EMS is still evolving, and further research,
development, and validation may be needed to fully leverage its
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6 Machine Learning Algorithms in EMS
Total OHCA CVDs Trauma Others

Number of Studies, 125 62 19 24 20

n (%)

Purpose of the ML

Algorithm, n (%)
Triage or Diagnose 62 (50.0) 22 (35.5) 18 (94.7) 11 (45.8) 11 (57.9)
Conditions
Predict Clinical 12 (9.7) 2(3.2) 1(5.3) 4 (16.7) 5 (26.3)
Interventions
Predict Clinical 50 (40.3) 38 (61.3) 0 (0.0) 9 (37.5) 3(15.8)
Outcomes

Model Task
Classification 62 (49.6) 26 (41.9) 13 (68.4) 12 (50.0) 11 (55.0)
Prediction 63 (50.4) 36 (58.1) 6 (31.6) 12 (50.0) 9 (45.0)

Number of Cases/ 3,405 (37-8,981,181) 1,376 (100-177,883) | 560 (48-3,178) | 21,874 (37-8,981,181) | 54,359 (1043-684,481)

Instances,® median

(range)

Number of Input 19 (1-886) 16 (1-886) 23 (5-557) 15.5 (4-84) 17 (2-86)

Features,® median

(range)

Types of Input

Features
Clinical Findings 66 (53.7) 24 (40.0) 12 (63.2) 18 (75.0) 12 (60.0)
ECG Strips 42 (35.0) 36 (59.0) 5 (27.8) 1(4.2) 0 (0.0)
Text Scripts 13 (11.0) 1(1.7) 3(16.7) 3 (12.5) 6 (35.3)
Audio Recordings 6 (5.1) 4 (6.8) 0 (0.0) 0 (0.0) 2(11.8)
Image 1(0.9) 0 (0.0) 0 (0.0) 0 (0.0) 1(5.9)
Other 13 (11.0) 6 (10.2) 1(5.9) 4 (16.7) 2 (11.1)

ML Algorithm, n (%)
Neural Network 60 (48.0) 30 (48.4) 6 (31.6) 16 (66.7) 8 (40.0)
Random Forest 57 (45.6) 25 (40.3) 11 (57.9) 12 (50.0) 9 (45.0)
Logistic Regression 47 (37.6) 20 (32.3) 7 (36.8) 13 (564.2) 7 (35.0)
Support Vector 43 (34.4) 23 (37.1) 7 (36.8) 9 (37.5) 4 (20.0)
Machine
Ensemble 33 (26.4) 16 (25.8) 5 (26.3) 6 (25.0) 6 (30.0)
Decision Tree 17 (13.6) 11 (17.7) 1(5.3) 4 (16.7) 1(5.0)
Bayesian 7 (5.6) 2(3.2) 0 (0.0) 3(12.5) 2 (10.0)
K-Nearest Neighbors 6 (4.3) 2(3.2) 2 (10.5) 2 (8.3) 0 (0.0)

Performance Metrics,

n (%)
AUC 76 (60.8) 33 (53.2) 13 (68.4) 19 (79.2) 11 (55.0)
Accuracy 42 (33.6) 16 (25.8) 11 (57.9) 7 (29.2) 8 (40.0)
Sensitivity 73 (58.4) 38 (61.3) 15 (78.9) 12 (50.0) 8 (40.0)
Specificity 67 (53.6) 33 (53.2) 15 (78.9) 12 (50.0) 7 (35.0)
Not Mentioned, Not 7 (5.6) 4 (6.5) 1(5.3) 0 (0.0) 2 (10.0)
Available

Table 2. Characteristics of EMS-Guided ML A
Abbreviations: OHCA, out-of-hospital cardiac arrest;

operating characteristic curve; ML, machine learning.
*Number of cases/instances is missing in 23 studies.
> Number of input features is missing in 54 studies.

capabilities in clinical and operational applications. Considerable
heterogeneity was observed in the included studies in terms of

Alrawashdeh © 2024 Prehospital and Disaster Medicine

lications across Studies in Clinical Conditions
, cardiovascular diseases; ECG, electrocardiography; AUC, area under the receiver

ML should be in-depth evaluated for each clinical condition,

outcome, or operational task.

population characteristics, the ML algorithms employed, input
features, and performance metrics which limited a more
comprehensive review. The implications and performance of

Several studies showed the potential of ML algorithms in
improving emergency medical response to OHCA. More than 15
studies concentrated on implementing ML for classifying cardiac
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Figure 3. Median and Range of the Best Machine Learning (ML) Algorithm amid to Triage or Diagnose the Clinical Condition

and Predict their Clinical Outcomes.

Abbreviations: OHCA, out-of-hospital cardiac arrest; CVD, cardiovascular diseases; AUC, area under the receiver operating characteristic curve.

arrest ECG rhythms or detecting the return of spontaneous
circulation aiming to improve resuscitation performance and
provide timely guidance for delivering electrical defibrillation.
Multiple ML algorithms exhibit outstanding performance
(AUC > 0.90), demonstrating remarkable accuracy and practical
applicability in the real-world context. For example, Jaureguibeitia,
et al proposed novel deep learning architectures (AUC = 98.6%)
for shock decisions using ECG segments as brief as one second,
which likely shorten interruptions in resuscitation for rhythm
analysis.!® Elola, et al also implemented deep neural networks for
pulse detection using only the ECG (AUC =86.2%),* while
Alonso, et al (AUC=92.6%) combined ECG and thoracic
impedance signals for superior pulse detection.!® Further, deep
neural networks have demonstrated the ability to detect OHCA at
the time of calling for help, arguably with greater accuracy and
speed than the EMS telecommunicators.®!1

Predictive ML models were also developed for three clinical
outcomes after OHCA, including the return of spontaneous
circulation, survival, and neurological recovery. Among many ML
models, deep neural networks achieved the highest performance
(AUC =0.84 to 0.90) in predicting the success of defibrillation
using ECG features.’®?° Acknowledging the limited number of
cases in most of these studies (n <500 cases), larger and more
diverse samples of cases are likely essential to limit the risk of bias

and to enhance the performance, reliability, and applicability of
ML algorithms in predicting defibrillation success.?!

Deep neural networks and ensemble ML algorithms performed
exceptionally (AUC=0.90 to 0.96) among others to predict
survival and neurological recovery using prehospital clinical and
EMS data.?>?* However, these predictive models exhibit consid-
erable heterogeneity in quality, type of population, input and
output features, and algorithm selection, potentially affecting
generalizability. Additionally, the complexity and lack of trans-
parency in certain ML algorithms might obstruct their integration
into clinical practice.?! Future ML studies should discuss features
attribution or explain the ML models output by using several
methods such as Shapley Additive Explanation, Local
Interpretable Model-agnostic Explanations, and integrated
gradients.

Most ML models have also been shown to improve the
detection of CVDs in the prehospital setting. A deep learning
model achieved an impressive AUC score of 0.997 in detecting ST-
elevation myocardial infarction (STEMI).?* This model has been
deployed in a prehospital 12-lead ECG device and resulted in a
shorter median time between first medical contact and hospital
arrival (18.5 minutes), compared to the weighted mean estimated
by a previous meta-analysis (41 minutes).?® Further, Bouzid, et al
have developed a fusion model to detect non-STEMI using
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Total Ambulance Ambulance Ambulance Route Quality
Allocation Deployment Detection Optimization Assurance
Number of 39 21 5 5 5 3
Studies, n
Number of Cases, 11,899 9,766 78,777 4,230.5 48,681.5 7,054.5
a1
median (Range) | (77,7354 075) | (108-7,364,275) | (3,573-421,804) | (1,234-26,675) | (42,363-55,000) (77-14,032)
Number of Input 10 7 18 - 9 6
Features,’median g ) ) ) )
(Range) (3-9,224) (4-92) (8-9,224) (9-9) (3-19)
Source of Input
Features, n (%)
EMS-Related 17 (43.6) 14 (66.7) 2 (40.0) - 1 (20.0) -
Spatiotemporal 13 (33.3) 9 (42.9) 1 (20.0) - 3 (60.0) -
Audio Recordings 3(7.7) - - 3 (60.0) - -
Clinical Findings 10 (25.6) 4 (19.1) 2 (40.0) - 1(20.0) 3 (100)
Image 3(7.7) - - 3 (60.0) - -
Traffic Reports 3(7.7) 1(4.8) - - 2 (40.0) -
Other 6 (15.4) (23.8) 1(20.0) - - -
ML Algorithm,
n (%)
Neural Network 24 (61.5) 13 (61.9) 4 (80.0) 5 (100) 2 (40.0) -
Support Vector 6 (15.4) 4 (191 1(20.0) - - 1(33.3)
Machine
Ensemble 7 (17.9) 4 (19.1) (40.0) - - 1(33.3)
Random Forest 6 (15.4) 4 (19.1) (20.0) - 1 (20.0) -
Decision Tree 4 (10.3) 2(9.5) (20.0) - 1(20.0)
K-Nearest 4 (10.3) 2(9.5) - - 1(20.0) 1(33.3)
Neighbors
Bayesian 5(12.8) 3(14.3) (20.0) - - 1(33.3)
Logistic 5(12.8) 3(14.3) - - - 2 (66.7)
Regression
Performance
Metrics, n (%)
AUC 6 (15.4) 2 (9.5) - 1 (20.0) 1 (20.0) 2 (66.7)
Accuracy 17 (43.6) 5(23.8) 3 (60.0) 4 (80.0) 4 (80.0) 1(33.3)
Sensitivity 10 (25.6) 3(14.3) 3 (60.0) 1(20.0) 1(20.0) 2 (66.7)
Specificity 6 (15.4) 3(14.3) 1(20.0) 1(20.0) - 1(33.3)
Not Reported 18 (46.2) 15 (71.4) 1(20.0) 1(20.0) 1(20.0) -

Alrawashdeh © 2024 Prehospital and Disaster Medicine

Table 3. Characteristics of EMS-Guided ML A}E)phcanons across Studies in Operational Subdomains

Abbreviations: EMS, Emergency Medical Service; M
*Number of cases is missing in 19 studies.
> Number of input features is missing in 29 studies.

prehospital 12-lead ECG which significantly outperformed the
performance of expert clinicians and commercial software.?” In
addition, prehospital stroke diagnostic ML algorithms have been
shown to be accurate in identifying and differentiating stroke using
prehospital clinical presentation variables.?83! Two studies have
shown that neural network algorithms out-performed other
available prehospital stroke prediction scales, such as the
Prehospital Acute Stroke Severity scale and the Cincinnati
Prehospital Stroke Severity scale.??’ However, a larger number
of parameters (ie, 18 variables) were included in these neural
network models, which demand more effort and time to be
collected by ambulance clinicians.

For traumatic conditions, ML models have been increasingly
applied to primarily improve the triage decision by dispatchers, first

machine learning; AUC, area under the receiver operating characteristic curve.

responders, and ambulance clinicians in various out-of-hospital
contexts (ie, general trauma, road accidents, and military). These
models were developed either to classify traumatic patients by their
level of severity (ie, Injury Severity Score)* or to predict the level of
treatment needed (ie, advanced life-saving interventions, trauma
team activation, and critical care)®>** or the clinical outcomes
(ie, survival).>> The input features in most models were relatively
limited and mainly consisted of demographics, vital signs, other
clinical manifestations, or accident-related variables. Neural net-
works and ensemble techniques (random forest, XGBoosting) were
frequently used and had the best performance compared to other
models. Two studies found that binary logistic regression performed
better than ML algorithms when classifying the severity of
injuries.>>3¢ This is likely attributed to the limited number of input
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Figure 4. Median and Range of the Best Machine Learning (ML) Algorithm Categorized by Operational Tasks and Algorithm Type.

Abbreviation: AUC, area under the receiver operating characteristic curve.

features in these studies. Overall, the contribution of ML seems to be
promising in this context, but further validation is required to better
understand the applicability of ML in supporting triage decisions
and optimizing resource allocation.

Several ML models have been implemented to solve operational
problems and augment the decision making of EMS personnel in
operational tasks. The over-arching aims of the operational studies
were to reduce ambulance travel time and deploy the appropriate
level of prehospital care to the right patients. A variety of
supervised, unsupervised, and reinforcement models have been
used to improve EMS demand forecasting in different settings to
optimize ambulance allocation strategies, and eventually reduce
response times. The characteristics of ML models forecasting
EMS demand varied in terms of time horizons (hourly, daily,
weekly, and monthly demand) and input features (geospatial,
temporal, metrological, and EMS data). Several studies aimed to
facilitate ambulance passage through traffic congestion by either
audio-based and/or visual-based detection. The audio-based
models using random forest, support vector machine, and neural
networks achieved AUC scores between 0.97-1.00.57* Visual-
based models mainly used deep learning with variable performance
(AUC =0.78-1.00)*"*> while hybrid models incorporated both
audio and image inputs and typically relied on deep learning yield
strong results (0.86-0.98).** The performance of these models
indicates the viability of employing ML to detect ambulances and
expedite their passage through intersections and traffic congestion.

Finally, the implementation of the developed ML models in real
time was rarely discussed in the included studies. Several challenges
such as the generalizability and explainability of these ML models
may complicate their implication in clinical and real time. Several
studies reported perfect discrimination, especially for operational

purposes, which warrant a critical examination of the underlying
data and methodologies employed. While perfect discrimination
can be attributed to factors like over-fitting, reliance on internal
validation, data leakage, or imbalanced datasets, it is imperative to
consider the broader context of its applicability, generalizability,
and potential limitations in real-world EMS scenarios. For
example, the generalization of ML algorithms for ambulance
detection using audio or image data may pose significant challenges
due to the wide variation in ambulance sirens and morphologies
across different EMS systems.

It is also important to acknowledge the complications and
limitations associated with the retrospective nature of most included
studies. Rich prehospital datasets are still necessary; however, they
are likely challenging to obtain, owing to limitations in data quality
and availability, patient privacy, and the heterogeneity of EMS
system data frameworks.** This necessitates collaborative efforts
among researchers, EMS systems, and other health care institutions,
as well as policymakers to establish data-sharing frameworks, best
practices, and governance models that facilitate the responsible and
impactful application of these technologies in the challenging and
dynamic landscape of EMS. For better explainability, future ML
studies should also discuss features attribution or explain the output
of ML models by using available methods such as Shapley additive
explanation, local interpretable model-agnostic explanations, and
integrated gradients.*®

Limitations

This review has several limitations. Of note, this review may have
some selection bias. It only included English peer-reviewed articles
identified by the search strategy. The variation in the terminology
of ML and EMS in the literature may also contribute to selection
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bias. The wide scope of this review may hinder proper
summarization of the applications and performance of the ML
in specific clinical conditions and operational tasks. For example,
the approaches for features selection, model validation, and
optimization used in the included studies were not detailed.
Future systematic reviews could be done to quantify the use of ML
in specific clinical conditions such as detecting OHCA or
predicting the clinical outcomes after OHCA.

Also not examined was the risk of bias and quality of the
included studies. This is attributed to the large number and the
wide variation in the objectives and characteristics of the included
studies. Although the performance of the ML algorithms
performed well in most applications, the issue of risk of bias
should be considered in most ML models, particularly within the
analysis domain.***’ Several studies had not reported all relevant
details such as sampling, input features selection, validation
procedures, and model performance, particularly for studies within
the operational domain. These missing data also limit the overall
analysis and the generalizability of the findings.

Conclusion
This systematic review highlights the diverse applications and
potential benefits of ML in EMS. Most studies focused on the use

of ML algorithms to enhance the clinical domain, particularly in
detecting and predicting the severity, treatment, and clinical
outcome of patients with OHCA, CVDs, and trauma. The
performance of ML models varied widely, indicating the need for
further research and standardization of ML algorithms in EMS.
Additionally, the review found that ML can improve the
operational management of ambulance services, including opti-
mizing ambulance allocations, reducing travel time, and enhancing
resource utilization. This review is expected to provide useful
benchmarks and implications for possible future research. Further
research is needed to investigate the implementation and quality of
ML in specific clinical conditions or operational tasks within

the EMS.
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