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Abstract

Previously [‘Radicals and idempotents I, II’, Comm. Alg. 49(1) (2021), 73–84 and 50(11) (2022),
4791–4804], we have studied the interaction between radicals of rings and idempotents in general or those
of particular types, for example, left semicentral. Here we carry out similar investigations for q-central
idempotents, that is, those idempotents e satisfying the condition (ea − eae)(be − ebe) = 0 for all a, b.
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1. Introduction

In [2], we studied connections between radicals and corners, subrings of the form eAe
where e is an idempotent of a ring A, including corner-hereditary radical classes, the
radical classes R satisfying the condition

e2 = e ∈ A ∈ R ⇒ eAe ∈ R
and corner-strict R, those satisfying

(e2 = e ∈ A & eAe ∈ R)⇒ eAe ⊆ R(A).

In [3], we investigated relative versions of these notions: hereditariness or strictness for
corners defined by idempotents of some specified kind, for example, left semicentral
idempotents. We also examined radical classes defined by the presence or absence of
idempotents of various kinds.

In the present paper we revisit some of these concerns in the context of q-central
idempotents as defined by Lam [5] for rings with identity. The q-central property is
weaker than that of being left or right semicentral, but it is easily seen that all radical
classes are hereditary for corners defined by q-central idempotents e since the map

A→ eAe : a �→ eae for all a
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is a homomorphism (endomorphism) of the ring A containing e precisely when e is
q-central.

We also investigate the property HPC (hereditary for phantom corners) of radical
classes R such that (in the notation of the Peirce decomposition)

(A ∈ R & A11 = eAe ∈ R)⇒ A22 ∈ R.

This property also has relative forms such as HPC for left semicentral idempotents.
In [3], it was shown that normal radicals have HPC and all radical classes have

HPC for left or right semicentral idempotents. Here, we show that all radical classes
have HPC for what we call Peirce trivial idempotents (definition in the next section).

Now Peirce trivial is a stronger property than q-central and we have been unable
to determine whether or not every radical class has HPC for q-central idempotents.
However, in the final section, we present the first example (to our knowledge) of a
radical class which lacks HPC.

Our notation and terminology are generally standard. Unexplained notions from
radical theory can be found in [4]. Note though that as usual, we denote classes by
upper case script rather than lower case Greek letters. The symbols �, <l and <r
denote ideals, left ideals and right ideals, respectively. The following notation is used
for particular radical classes:

B : prime; N : nil; G : Brown–McCoy; T : torsion.

2. q-central idempotents

Lam [5] calls an idempotent e of a ring A with identity q-central if it satisfies the
condition

eA(1 − e)Ae = 0.

(Such idempotents are called inner-Peirce-trivial in [1].) The paper [5] contains several
characterisations of q-central idempotents, some of which are related to the Peirce
decomposition and can be extended without difficulty from rings with identity to rings
in general.

The condition eA(1 − e)Ae = 0 is equivalent to

eA(1 − e) · (1 − e)Ae = 0.

The two factors here are terms in the Peirce decomposition and we shall use the
nonunital analogue of the second equation in our definition of q-central idempotents.

We first recall the Peirce decomposition. If e is an idempotent in a ring A, let

A11 = eAe; A12 = {ea − eae : a ∈ A};
A21 = {ae − eae : a ∈ A}; A22 = {a − ea − ae + eae : a ∈ A}.

Then A is the abelian group direct sum of A11, A12, A21 and A22, and the multiplicative
relationships between A11, A12, A21 and A22 ensure the partial matrix ring

[ A11 A12
A21 A22

]
is well defined, and, moreover, is isomorphic to A. Both the additive representation
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[3] Radicals and idempotents III 3

and the matrix form can be called the Peirce decomposition of A with respect to e.
In what follows, we shall always use the Aij notation (i, j = 1, 2) to describe Peirce
decomposition and our use of the same notation for all idempotents should not be
seriously ambiguous.

We define an idempotent e of a ring A to be q-central if

A12A21 = 0.

This is a good point to show the relationship between q-central idempotents and some
other types of idempotents. We have the following characterisation:

q-central : A12A21 = 0;
left semicentral : A12 = 0;

right semicentral : A21 = 0;
central : A12 = 0 and A21 = 0.

It will be observed that

central⇒ left semicentral⇒ q-central

and

central⇒ right semicentral⇒ q-central.

Indeed, the motivation in [5] for the term ‘q-central’ is that it is a weakening of
‘semicentral’ and could thus be thought of as ‘quarter-central’.

The next few results contain further characterisations of q-central idempotents,
analogous to unital results in [1, 5].

THEOREM 2.1. For an idempotent e in a ring A, the following are equivalent:

(i) e is q-central;
(ii) the map A→ eAe : a �→ eae is a ring homomorphism;
(iii) eabe = eaebe for all a, b ∈ A.

PROOF. Since eae · ebe = eaebe, items (ii) and (iii) are equivalent.
(i)⇒ (ii). For all a, b ∈ A,

0 = (ea − eae)(be − ebe) = eabe − eaebe − eaebe + eaebe
= eabe − eaebe = eabe − eae · ebe.

This argument is reversible, so also (ii)⇒ (i). �

Adapting the terminology used in [1] for rings with identity, we say that an
idempotent e in a ring A is Peirce trivial if

A12A21 = 0 and A21A12 = 0.

In rings with identity, e is Peirce trivial if and only if e and 1 − e are both q-central.
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THEOREM 2.2. For an idempotent e in a ring A, the following conditions are
equivalent:

(i) e is q-central;
(ii) A12 is a right ideal of A;
(iii) A21 is a left ideal of A.

PROOF. (i)⇔ (ii). We have

A12A11 = 0; A12A12 = 0; A12A22 ⊆ A12; A12A21 ⊆ A11.

Hence, A12 is a right ideal if and only if A12A21 ⊆ A12. However, A11 ∩ A12 = 0 so A12
is a right ideal if and only if A12A21 = 0, that is, e is q-central.

Similarly, (i)⇔ (iii). �

There is an analogous result for Peirce trivial idempotents.

THEOREM 2.3. For an idempotent e in a ring A, the following are equivalent:

(i) e is Peirce trivial;
(ii) A12 � A;
(iii) A21 � A;
(iv) A12 + A21 � A;
(v) A12 + A21 is an ideal of square zero.

PROOF. (i)⇒ (ii) and (iii). Since e is Peirce trivial,

A12A21 = 0; A21A12 = 0.

Thus,

AA12 = A11A12 + A12A12 + A21A12 + A22A12 ⊆ A12 + 0 + 0 + 0

and since A12 is a right ideal, A12 � A. Similarly, A21 � A.
Clearly, (ii) and (iii)⇒ (iv).
(iv)⇒ (i). If A12 + A21 � A, then

A12A21 ⊆ (A12 + A21)A21 ⊆ A12 + A21.

However, A12A21 ⊆ A11, so A12A21 = 0. Similarly, A21A12 = 0, so e is Peirce trivial.
Finally, if A12 + A21 � A, then

(A12 + A21)2 ⊆ A12A12 + A12A21 + A21A12 + A21A21 = 0,

so (iv)⇒ (v). �

Using Theorems 2.1, 2.2 and 2.3, we can see that for semiprime rings, all our
centrality properties coincide. For if e is a q-central idempotent of a semiprime ring
A, then A12 and A21 are one-sided ideals of square zero, so that A12 = 0 = A21 and e is
therefore central.
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[5] Radicals and idempotents III 5

3. Connections with radicals

Our first result is almost immediate.

THEOREM 3.1. Every radical class R is hereditary, but not necessarily very heredi-
tary, for corners defined by q-central idempotents.

PROOF. If e ∈ A ∈ R and e is a q-central idempotent, then eAe is a homomorphic
image of A and hence is in R. By [3, Theorem 2.1], radical classes need not be very
hereditary for corners defined by semicentral idempotents and hence for q-central
idempotents. �

THEOREM 3.2 (See [3, Proposition 2.3]). If S is the semisimple class corresponding
to a radical class R containing all nilpotent rings, then S is hereditary for corners
defined by q-central idempotents and hence R in strict for such corners.

PROOF. All rings in S are semiprime, so q-central = central for idempotents in rings
in S. The result now follows from [3, Theorem 2.1] and [2, Corollary 3.10]. �

PROPOSITION 3.3. Any nonzero q-central idempotent in a prime ring is an identity.

PROOF. Let e be a nonzero q-central idempotent in a prime ring A. Then as A is
semiprime, e is central, so that A = eAe ⊕ I for an ideal I. Since A is prime and e � 0,
we have I = 0 and thus e is an identity for eAe = A. �

In [3], we studied radical classes defined by the presence or absence of idempotents
of various kinds. This we shall now do for q-central idempotents, first showing that
these satisfy some conditions considered in [3, page 4795]:

I(i) if e is a q-central idempotent of A and I � A, then e + I is q-central in A/I;
I(ii) if e ∈ I � A and e is a q-central idempotent in A, then e is a q-central idempotent

in I;
I(iii) if e ∈ I � A and e is a q-central idempotent in I, then e is a q-central idempotent

in A.

Items I(i) and I(ii) are easily verified. If e is a q-central idempotent in I, then for all
a, b ∈ A, we have eabe = e(ea)(be)e = e(ea)e · e(be)e = eae · ebe.

By [3, Theorem 3.3], we have the following result.

THEOREM 3.4. Let Rq be the class of rings of which every nonzero homomorphic
image has a nonzero q-central idempotent. Then Rq is a radical class and by items
I(i), I(ii) and I(iii), its semi-simple class is

Sq = {A : A has no nonzero q-central idempotent}.
Our definition of Rq is analogous to the definitions, in [3, Examples 3.6 and 3.7], of

Rc (respectively Rlsc) as the class of rings, each nonzero homomorphic image of which
has a nonzero central (respectively left semicentral) idempotent.

Let R(q) = {A : no homomorphic image of A has a nonzero q-central idempotent}.
By [3, Theorem 3.8], and using items I(i)–I(iii), we have the following result.
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THEOREM 3.5. The class R(q) is a radical class and is the upper radical class defined
by the class of subdirectly irreducible rings whose hearts contain nonzero q-central
idempotents.

By Proposition 3.3, a q-central idempotent of a heart must be an identity. Thus,
using [3, Example 3.10] gives the following corollary.

COROLLARY 3.6. R(q) = G (= R(lsc) = R(c)), where R(c) and R(lsc) are the analogues of
R(q) for central and left semicentral idempotents, respectively.

In [3], we saw that Rc is the lower radical class defined by the rings with identity
(Example 3.6) and Rlsc is the lower radical class defined by all rings with left identities
(Example 3.7). It could be interesting to find a characterisation of Rq as a lower radical
class (or even as an upper radical class). The best we can do at present is to find an
upper radical class which is an upper bound of Rq.

PROPOSITION 3.7. If e is a nonzero q-central idempotent of a ring A, then A has a
prime ideal I such that e + I is an identity for A/I.

PROOF. Since A contains a nonzero idempotent element, it is not a prime radical ring.
Now,

e � B(A) =
⋂
{P : P is a prime ideal of A}.

Hence, there is a prime ideal I for which e � I. Then, A/I is a prime ring and e + I is a
q-central idempotent of an A/I by item I(i), so by Proposition 3.3, e + I is an identity
for A/I. �

COROLLARY 3.8. With the hypothesis of Proposition 3.7, A has a maximal ideal M
such that e +M is an identity of A/M.

PROOF. In Proposition 3.7, A/I has a maximal ideal K/I such that A/K � (A/I)(K/I)
has e + K as an identity. (Let K/I be maximal with respect to exclusion of e + I.) �

The Brown–McCoy radical class G is hereditary, so its upper radical class U(G) is

{R : R has no nonzero homomorphic image in G}.

THEOREM 3.9. We have Rq ⊆ U(G).

PROOF. If A ∈ Rq and B is a nonzero homomorphic image of A, then B has a nonzero
q-central idempotent and hence, by Corollary 3.8, a homomorphic image which is a
simple ring with identity. However, then B � G, so A ∈ U(G). �

The containment in Theorem 3.9 is proper, as we shall see in Section 5. This section
will also contain a counterexample to the converse of Proposition 3.7, that is, if a
prime, even simple prime, factor ring has an identity which lifts to an idempotent, the
latter need not be q-central.
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4. The phantom corners problem

In [3, page 4194], we defined, for a radical class R, the property

(HPC) (e2 = e ∈ A ∈ R & A11 = eAe ∈ R)⇒ A22 ∈ R.

This can be relativised in the obvious way. For example, normal radical classes have
HPC and all radical classes have HPC for left or right semicentral idempotents [3,
pages 4794–4795].

We now examine HPC for q-central idempotents. Note that as all radical classes
are hereditary for q-central idempotents, HPC for q-central idempotents requires that
A22 ∈ R for all A ∈ R and for all q-central idempotents.

PROPOSITION 4.1. Every radical class R has HPC for Peirce trivial idempotents.

PROOF. Let R be a radical class and e a Peirce trivial idempotent of a ring A ∈
R. By Theorem 2.3, A12 + A21 � A and so A11 ⊕ A12 � A/(A12 + A21) ∈ R, whence
A22 ∈ R. �

We have been unable to determine whether all radical classes have HPC for all
q-central idempotents, but there are affirmative answers in the presence of certain
hypotheses.

PROPOSITION 4.2. Every left or right hereditary radical class has HPC for q-central
idempotents.

PROOF. Let R be a left-hereditary radical class and e a q-central idempotent of a ring
A ∈ R. Then the map

A→ eAe = A11 : a �→ eae

is a ring homomorphism. Its kernel as a homomorphism of abelian groups is
[ 0 A12

A21 A22

]
,

so this is an ideal. Now,
[ 0 A12

0 A22

]
<e

[ 0 A12
A21 A22

]
�
[ A11 A12

A21 A22

]
� A,

so
[ 0 A12

0 A22

] ∈ R. Since

[ 0 A12
0 0

]
�
[ 0 A12

0 A22

]

and
[ 0 A12

0 A22

]
/
[ 0 A12

0 0

]
� A22,

we have A22 ∈ R as required. For the right hereditary case, use
[ 0 0

A21 A22

]
. �
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REMARK 4.3.

(i) The requirement that R be left or right hereditary is weaker than the requirement
that it be normal.

(ii) Whether N is normal or not depends on the Köthe problem, but N is certainly
left and right hereditary.

(iii) Radical classes which are left or right hereditary are corner hereditary for all
idempotents by [2, Proposition 3.1].

PROPOSITION 4.4. If a radical class R contains all nilpotent rings, that is, if B ⊆ R,
then R has HPC for q-central idempotents.

PROOF. Let e be a q-central idempotent of A ∈ R. Then A12 (respectively A21) is a
nilpotent right (respectively left) ideal of A by Theorem 2.2, so A12 + A21 ⊆ B(A).
Hence,

A/B(A) = (A11 + A12 + A21 + A22)/B(A)
= (A11 + A22 + B(A))/B(A)
� (A11 + A22)/((A11 + A22) ∩ B(A)).

Now,

(A11 + A22) ∩ B(A) ∈ B ⊆ R

as B is strongly hereditary, while

(A11 + A22)/((A11 + A22) ∩ B(A)) � A/B(A) ∈ R,

so

A11 ⊕ A22 = A11 + A22 ∈ R,

whence A22 ∈ R. �

REMARK 4.5.

(i) Although B ⊆ G, G is neither left nor right hereditary.
(ii) The radical class T is left and right hereditary, but B � T .
(iii) The results just proved show that if R and U are radical classes, R is left or

right hereditary and B ⊆ U, then R ∩U has HPC for q-central idempotents. For
instance, T ∩ G has HPC for q-central idempotents.

5. A useful ring

In this section, we shall study the partial matrix ring
[
Z Z
2Z 2Z
]
. We do not know

whether all radical classes have HPC for q-central idempotents. In fact, we do not
have any examples of radical classes without HPC, global or specialised. The next
result gives an example of nonsatisfaction of HPC.
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[9] Radicals and idempotents III 9

THEOREM 5.1. The upper radical class U({2Z}) defined by {2Z} is strict and
corner-hereditary but does not satisfy HPC.

PROOF. As all accessible subrings of 2Z are ideals, U({2Z}) is the class of rings which
do not have nonzero homomorphisms to {2Z}. Since

U({2Z}) = U({accessible subrings of 2Z}) = U({subrings of 2Z}),
we see that U({2Z}) is strict.

All rings with identity are in U({2Z}); in particular, all corners of all rings are in
U({2Z}) which is therefore corner-hereditary.

We now consider the Peirce ring
[ A11 A12

A21 A22

]
of
[
Z Z
2Z 2Z
]
. Let e =

[ 1 0
0 0
]
. Then,

A11 = e
[

A11 A12
A21 A22

]
e =
[
Z 0
0 0

]
.

Also, for all m, n, x, y ∈ Z,[ 1 0
0 0

][ m n
2x 2y

]
−
[ 1 0

0 0

][ m n
2x 2y

][ 1 0
0 0

]
=

[ 0 n
0 0

]
.

It follows that A12 =
[ 0 Z

0 0
]
. Similar calculations complete the demonstration that[

Z Z
2Z 2Z
]

itself is the Peirce decomposition matrix ring of our ring.
Let f :

[
Z Z
2Z 2Z
]→ 2Z be a ring homomorphism. Then as noted above, f (A11) = 0.

Now,

A11A12 = A12 and A21A11 = A21,

so f (A12) = f (A11) f (A12) = 0 and f (A21) = f (A21) f (A11) = 0. Finally, A21A12 = A22, so

f (A22) = f (A21) f (A12) = 0.

Thus, f = 0 and
[
Z Z

2Z 2Z
]

is in U({2Z}) as is its corner[ 1 0
0 0

][
Z Z

2Z 2Z

][ 1 0
0 0

]
.

However, A22 =
[ 0 0

0 2Z
]
� 2Z � U({2Z}). �

PROPOSITION 5.2. The ring
[
Z Z

2Z 2Z
]

has no nonzero q-central idempotents.

PROOF. The idempotents are the matrices
[ 1 0

z 0
]

and
[ 1 w

0 0
]
, where z ∈ 2Z and w ∈ Z.

The case z = 0 (= w) gives
[ 1 0

0 0
]
, which we shall continue to call e. We shall prove that

none of these idempotents is q-central by testing their ‘multiplicative property’ on the
matrices

[ 0 1
2 0
]
,
[ 0 1

2 2
]

and their product
[ 2 2

0 2
]
.

Now, for all (even) z,[ 1 0
z 0

][ 0 1
2 0

][ 1 0
z 0

]
·
[ 1 0

z 0

][ 0 1
2 2

][ 1 0
z 0

]

=

[ z 0
z2 0

][ z 0
z2 0

]
=

[ z2 0
z3 0

]
,
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while [ 1 0
z 0

][ 2 2
0 2

][ 1 0
z 0

]
=

[ 2 + 2z 0
2z + 2z2 0

]
.

Since the equation z2 = 2 + 2z has no even integer solutions, the products are unequal.
Also, for all w,[ 1 w

0 0

][ 0 1
2 0

][ 1 w
0 0

]
·
[ 1 w

0 0

][ 0 1
2 2

][ 1 w
0 0

]

=

[ 2w 2w2

0 0

][ 2w 2w2

0 0

]
=

[ 4w2 4w3

0 0

]
,

while [ 1 w
0 0

][ 2 2
0 2

][ 1 w
0 0

]
=

[ 2 2w
0 0

]
.

However, the equation 2 = 4w2 has no integer solutions, so again the products are
unequal.

This proves that
[
Z Z
2Z 2Z
]

has no nonzero q-central idempotents. �

COROLLARY 5.3.
[
Z Z
2Z 2Z
]
� Rq.

PROPOSITION 5.4.
[
Z Z
2Z 2Z
] ∈ U(G).

PROOF (OUTLINE). The calculations involved in showing this result are lengthy, so
we content ourselves with an outline. We have[ 2Z 2Z

2Z 2Z

]
�
[
Z Z

2Z 2Z

]

and [
Z Z

2Z 2Z

]/[ 2Z 2Z
2Z 2Z

]
�
[
Z2 Z2
0 0

]
,

which maps onto Z2. Hence,[
Z Z

2Z 2Z

]/[ 2Z 2Z
2Z 2Z

]
� G.

One shows that the ideals of
[
Z Z
2Z 2Z
]

have the form
[ pZ qZ

2rZ 2sZ
]
, where p, q, r, s ∈ Z,

and there are certain relationships between p, q, r and s. It then turns out that each[
Z Z
2Z 2Z
]
/
[ pZ qZ

2rZ 2sZ
]

can be mapped onto
[
Z Z
2Z 2Z
]
/
[ 2Z 2Z

2Z 2Z
]

or something similar and hence
is not in G. Since no nonzero homomorphic image of

[
Z Z

2Z 2Z
]

is in G, we have
[
Z Z
2Z 2Z
] ∈

U(G). �

By Theorem 3.9, Rq ⊆ U(G). The next corollary follows from Proposition 5.4 and
Corollary 5.3.

COROLLARY 5.5. We have
[
Z Z

2Z 2Z
] ∈ U(G)\Rq, so Rq � U(G).
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Our final result shows that the converse to Proposition 3.7 is false.

PROPOSITION 5.6. If a simple factor ring has an identity which lifts to an idempotent,
the latter need not be q-central.

PROOF. The ring [
Z Z

2Z 2Z

]/[ 2Z Z

2Z 2Z

]
� Z2

and under this homomorphism,
[ 1 0

0 0
] �→ 1. However,

[
Z Z
2Z 2Z
]

has no nonzero q-central
idempotents. �

In [2, Corollary 3.12], we showed that if a radical class R is very corner hereditary,
then bothR and its semisimple classS are corner-hereditary. The status of the converse
is unknown. We can get a partial converse using material from this section.

PROPOSITION 5.7. Let R be a radical class with semi-simple class S and suppose R
contains all rings with identity. If R and S are both corner-hereditary, then R is very
corner-hereditary.

PROOF. Let e be an idempotent in a ring A. Then eAe ∈ R. As S is corner-hereditary,
R is corner strict by [2, Corollary 3.10], so eAe ⊆ R(A). However, then R(eAe) = eAe =
eAe ∩ R(A), so R is very corner-hereditary. �

EXAMPLE 5.8. As U(2Z) is the upper radical class defined by the set of subrings
of 2Z, which is strongly hereditary, the corresponding semi-simple class is strongly
hereditary and hence corner-hereditary. All corners of all rings are in R, so R is
corner-hereditary. It follows that U(2Z) is very corner-hereditary.
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