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To the memory of Professor Hikosaburo Komatsu

Abstract. We define Bernstein–Sato polynomials for meromorphic functions

and study their basic properties. In particular, we prove a Kashiwara–

Malgrange-type theorem on their geometric monodromies, which would also

be useful in relation with the monodromy conjecture. A new feature in the

meromorphic setting is that we have several b-functions whose roots yield the

same set of the eigenvalues of the Milnor monodromies. We also introduce

multiplier ideal sheaves for meromorphic functions and show that their jumping

numbers are related to our b-functions.

§1. Introduction

The theory of b-functions initiated by Bernstein and Sato independently is certainly on

a crossroad of various branches of mathematics, such as generalized functions, singularity

theory, prehomogeneous vector spaces, D-modules, number theory, algebraic geometry, and

computer algebra. We often call them Bernstein–Sato polynomials. To see the breadth

of their influence to mathematics, we can now consult, for example, the excellent survey

articles by [2] and [6].

Let us briefly recall the definitions of classical Bernstein–Sato polynomials and some

related results. For this purpose, let X be a complex manifold, and let OX be the

sheaf of holomorphic functions on it. Denote by DX the sheaf of differential operators

with holomorphic coefficients on X. Let f ∈ OX be a holomorphic function defined on

a neighborhood of a point x0 ∈ X such that f(x0) = 0. Then the (local) Bernstein–Sato

polynomial bf (s) ∈ C[s] of f (at x0 ∈X) is the nonzero polynomial b(s) �= 0 of the lowest

degree satisfying the equation

b(s)fs = P (s)fs+1 (1.1)

for some P (s) ∈ DX [s]. In the algebraic and analytic cases, the existence of such b(s) �= 0

was proved by Bernstein and Björk, respectively. Then Kashiwara [18] proved that the roots

of the Bernstein–Sato polynomial bf (s) are negative rational numbers. Later Oaku found

an algorithm to calculate them. See [30] for the details. One of the most striking results on

bf (x) is the Kashiwara–Malgrange theorem in [19] and [23], which asserts that the set of

the eigenvalues of the local (Milnor) monodromies of f at various points x ∈ f−1(0) close

to x0 ∈ f−1(0) is equal to the one {exp(2πiα) | α ∈ (bf )
−1(0)}. Motivated by it, Denef and

Loeser formulated their celebrated monodromy conjecture in [11]. Later in [33] and [34],

Sabbah developed a theory of b-functions of several variables. More precisely, he considered

several holomorphic functions f1,f2, . . . ,fk ∈ OX (k ≥ 1) and proved the existence of a
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716 K. TAKEUCHI

nonzero polynomial b(s) ∈ C[s] = C[s1, s2, . . . , sk] of k variables s= (s1, s2, . . . , sk) satisfying

the equation

b(s)

(
k∏

i=1

fsi
i

)
= P (s)

(
k∏

i=1

fsi+1
i

)
(1.2)

for some P (s) ∈ DX [s] = DX [s1, s2, . . . , sk] (see also [16] for a different proof and some

additional results). The nonzero ideal I ⊂C[s], thus, obtained is now called the Bernstein–

Sato ideal of f = (f1,f2, . . . ,fk). The geometric meaning of this I was clarified only recently

in [10]. Moreover by Budur–Mustata–Saito [8], the theory of b-functions has been also

generalized to higher-codimensional subvarieties, that is, to arbitrary ideals J ⊂ OX of

OX . Their b-functions are related to the monodromies of the Verdier specializations along

J (see [6] and [8] for details).

The aim of this short note is to define Bernstein–Sato polynomials for meromorphic

functions and study their basic properties. For two holomorphic functions F,G ∈ OX such

that F �= 0, G �= 0 defined on a neighborhood of a point x0 ∈X and coprime to each other

such that F (x0) = 0, let us consider the meromorphic function

f(x) =
F (x)

G(x)
(1.3)

associated with them. Let D = F−1(0)∪G−1(0)⊂X be the divisor defined by F ·G ∈OX ,

and let

OX

[
1

FG

]
=

{
h

(FG)l
| h ∈ OX , l ≥ 0

}
(1.4)

be the localization of OX along D⊂X. Recall that this sheaf is endowed with the structure

of a left DX -module. Then the polynomial ring (OX [ 1
FG ])[s] over it is naturally a left DX [s]-

module. As in the classical case where G = 1 and f is holomorphic, on the rank-one free

module

L :=

(
OX

[
1

FG

])
[s]fs �

(
OX

[
1

FG

])
[s] (1.5)

over it, we define naturally a structure of a left DX [s]-module and can consider its DX [s]-

submodule DX [s]fs ⊂ L generated by fs ∈ L. However, in order to prove a Kashiwara–

Malgrange-type theorem (see Theorem 1.4) for b-functions on the geometric monodromies

of f in our meromorphic setting, we have to consider also other types of DX [s]-submodules

of L. Considering

1

Gm
fs+k =

fk

Gm
·fs ∈ L (1.6)

for various integers m≥ 0 and k ≥ 0, we obtain the following result.

Theorem 1.1. Let m ≥ 0 be a nonnegative integer. Then there exists a nonzero

polynomial b(s) ∈ C[s] such that

b(s)

(
1

Gm
fs

)
∈

+∞∑
k=1

DX [s]

(
1

Gm
fs+k

)
, (1.7)
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ON A BERNSTEIN–SATO POLYNOMIAL OF A MEROMORPHIC FUNCTION 717

that is, there exist P1(s),P2(s), . . . ,PN (s) ∈ DX [s] for which we have

b(s)

(
1

Gm
fs

)
=

N∑
k=1

Pk(s)

(
1

Gm
fs+k

)
. (1.8)

Although the proof of Theorem 1.1 relies on the classical theory of Kashiwara and

Malgrange, we need some new ideas to formulate and prove it. See §2 for details. This

could be the reason why Bernstein–Sato polynomials for meromorphic functions were not

defined nor studied before.

Definition 1.2. For m≥ 0, we denote by bmero
f,m (s) ∈C[s], the minimal polynomial (i.e.,

the nonzero polynomial of the lowest degree) satisfying the equation in Theorem 1.1 and

call it the Bernstein–Sato polynomial or the b-function of f of order m.

By a theorem of Sabbah [33], there exists a nonzero polynomial b(s1, s2) �= 0 of two

variables s1, s2 such that

b(s1, s2)F
s1Gs2 = P (s1, s2)F

s1+1Gs2+1 (1.9)

for some P (s1, s2) ∈ DX [s1, s2]. Then, by setting s1 = s and s2 =−s−m−2, we obtain the

desired condition

b(s,−s−m−2)

(
1

Gm
fs

)
=G2P (s,−s−m−2)

(
1

Gm
fs+1

)
. (1.10)

This important remark is due to Oaku. However, for the given F (x),G(x) ∈ OX , it would

not be so easy to verify that the polynomial b(s,−s−m− 2) ∈ C[s] of s thus obtained

is nonzero. Recall that by Bahloul [3], [4], Bahloul–Oaku [5], Oaku–Takayama [31], and

Ucha–Castro [37], we have algorithms to compute the Bernstein–Sato ideal I ⊂ C[s1, s2] at

least when F and G are polynomials. Motivated by this observation, instead of the equation

(1.7), one may also consider the simpler one

b(s)

(
1

Gm
fs

)
∈ DX [s]

(
1

Gm
fs+1

)
. (1.11)

Then, of course, the minimal polynomial b(s) �= 0 satisfying that it is divided by our

b-function bmero
f,m (s), but from the proof of Theorem 1.4, it looks that we do not have a

Kashiwara–Malgrange-type result as in it by this simpler definition of b-functions. This

explains the reason why the right-hand side of the equation (1.7) is not so simple. Note also

that if G = 1 and f = F
G = F is holomorphic, we have f ∈ OX ⊂ DX , and for any m ≥ 0,

our b-function bmero
f,m (s) coincides with the classical one bf (s)∈C[s] introduced by Bernstein

and Sato. But in the meromorphic case, the relation among bmero
f,m (s) for various m ≥ 0 is

not very clear so far. See Lemma 3.3 for a weak relation among their roots. Nevertheless, we

can prove a Kashiwara–Malgrange-type result as follows. First, recall the following theorem

due to [15].

Theorem 1.3. (Gusein-Zade, Luengo, and Melle-Hernández [15]) For any point x ∈
F−1(0) close to the point x0, there exists ε0 > 0 such that for any 0< ε < ε0 and the open

ball B(x;ε)⊂X of radius ε > 0 with center at x (in a local chart of X) the restriction

B(x;ε)\G−1(0)−→ C (1.12)
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718 K. TAKEUCHI

of f :X \G−1(0)−→ C is a locally trivial fibration over a sufficiently small punctured disk

in C with center at the origin 0 ∈ C.

We call the fiber in this theorem the Milnor fiber of the meromorphic function f(x) = F (x)
G(x)

at x ∈ F−1(0) and denote it by Mx. As in the holomorphic case (see [26]), we obtain also

its Milnor monodromy operators

Φj,x :Hj(Mx;C)
∼−→Hj(Mx;C) (j ≥ 0). (1.13)

Then we have the following result. Let Ef,x0 ⊂ C∗ be the set of the eigenvalues of the

monodromies Φj,x of f at the points x ∈ F−1(0) close to x0 and j ≥ 0.

Theorem 1.4. Let m≥ 0 be a nonnegative integer. Then we have

{exp(2πiα) | α ∈ (bmero
f,m )−1(0)} ⊂ Ef,x0 . (1.14)

If we assume, moreover, that m≥ 2dimX, then we have an equality

{exp(2πiα) | α ∈ (bmero
f,m )−1(0)}= Ef,x0 . (1.15)

Combining Theorem 1.4 with the results in [29] and [32], one may formulate a monodromy

conjecture for rational functions, like the original one in [11]. For previous works in this

direction, see, for example, [14] and [38]. Note that if in a coordinate system F and G

depend on separated variables, we can easily see that our bmero
f,m (s) coincides with the b-

function bF (s) of the holomorphic function F. At the moment, except for such trivial cases,

we cannot calculate bmero
f,m (s) explicitly. Instead, by [29, Th. 3.3 and Cor. 3.4], for many

f = F
G , we can calculate Ef,x0 completely. Namely, for m≥ 2dimX, the roots of bmero

f,m (s) of

such f can be determined up to some shifts of integers and multiplicities. Moreover, in §4,
we also give an upper bound

(bmero
f,m )−1(0)⊂Bπ

f,m ⊂Q (m≥ 0) (1.16)

for the roots of bmero
f,m (s) described in terms of resolutions of singularities π : Y −→X of the

divisor D⊂X such that π−1(D)⊂ Y is normal crossing. If G= 1 and f is holomorphic, this

corresponds to the negativity of the roots of b-functions proved by Kashiwara [18]. Indeed,

in particular, for m = 0, our upper bound means that the roots of bmero
f,0 (s) are negative

rational numbers. Moreover, by defining a reduced b-function b̃mero
f (s) of f , we obtain also

a lower bound

(b̃mero
f )−1(0)⊂ (bmero

f,m )−1(0)⊂Q (m≥ 0). (1.17)

This b̃mero
f (s) could be a candidate for the b-function of the meromorphic function f .

However to our regret, as we shall see in Proposition 4.5, it has much less information

on the singularities of f than bmero
f,m (s). See §4 for details. Finally, in §5, we introduce

multiplier ideal sheaves for the meromorphic function f = F
G and show that their jumping

numbers are contained in the set⋃
i=0,1,2,...

{
−(bmero

f,0 )−1(0)+ i
}
⊂Q>0. (1.18)

This is an analog for meromorphic functions of the main theorem of Ein–Lazarsfeld–Smith–

Varolin [13]. See Corollary 5.4 for details.
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After we posted this paper to the arXiv, we were informed from the authors Àlvarez

Montaner, González Villa, León-Cardenal, and Núñez-Betancourt of [1] that they were also

developing a theory of b-functions for meromorphic functions similar to but different from

ours. Among other things, for the meromorphic function f = F
G , they define their b-function

bF/G(s) ∈ C[s] to be the minimal polynomial b(s) �= 0 satisfying the equation

b(s)fs ∈ DX [s]fs+1 (1.19)

and apply it to the studies of the analytic continuations of archimedean local zeta functions

and multiplier ideals associated with f = F
G . Moreover, in [1, Th. 6.7], they obtain a result

on the jumping numbers of multiplier ideals similar to Corollary 5.4. Since our bmero
f,0 (s)

divides their bF/G(s), it is not clear if Corollary 5.4 follows from [1, Th. 6.7]. In addition,

our b-function bmero
f,0 (s) satisfies a nice relationship with the V-filtration of a holonomic

D-module (see Theorem 5.3). From this, we see also that the minimal jumping number

α> 0 is equal to the negative of the largest root of bmero
f,0 (s) (see Corollary 5.4). Altogether,

the results in [1] look very useful and complementary to ours. Especially for some basic

properties of the multiplier ideals, we refer to [1, §§6 and 7].

§2. Proof of Theorem 1.1

We follow the classical arguments of Gyoja [18], Kashiwara [23], Malgrange [16], and

Sabbah [25]. For the theory of D-modules, we refer to [12], [17], [20], [21], and [25] and use

freely the notions and the terminologies in them. Let C[s, t] be the C-algebra generated

by the two elements s, t satisfying the relation ts= (s+1)t, that is, [t,s] = t. Similarly, we

define C[s, t±], DX [s, t] and DX [s, t±]. Then there exists a natural isomorphism

C[s, t±]
∼−→ C[t,∂t]

[
1

t

]
(s 	−→ −∂tt) (2.1)

of C-algebras (see [16]) and the one

DX [s, t±]
∼−→ (DX ⊗CX

CX [t,∂t])

[
1

t

]
(2.2)

of DX -algebras associated with it. In the product space X ×C, we define a hypersurface

Z ⊂X×C by

Z = {(x,t) ∈X×C | tG(x)−F (x) = 0}. (2.3)

Note that Z is the closure of the graph of the meromorphic function f = F
G :X \G−1(0)−→C

in X×C. Let

H1
[Z](OX×C)�

OX×C[
1

tG−F ]

OX×C

(2.4)

be the first local cohomology sheaf of OX×C along Z ⊂X×C and define a regular holonomic

DX×C-module M by

M := {H1
[Z](OX×C)}

[
1

G

]
�

OX×C[
1

(tG−F )G ]

OX×C[
1
G ]

, (2.5)
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720 K. TAKEUCHI

which is endowed with the canonical section

δ(t−f(x)) :=

[
1

t−f(x)

]
=

[
G(x)

tG(x)−F (x)

]
∈M. (2.6)

Unlike the classical case where f is holomorphic, this section does not necessarily generate

M over DX×C (see Lemma 3.2). Nevertheless, as in [23] and [16], for any nonnegative

integer m≥ 0, there exists an isomorphism

DX [s, t±]

(
1

Gm
fs

)
∼−→ (DX ⊗CX

CX [t,∂t])

[
1

t

](
1

Gm
δ(t−f(x))

)
(2.7)

( 1
Gm fs 	−→ 1

Gm δ(t−f(x))) on a neighborhood of F−1(0)⊂X which is linear over DX [s, t±]�
(DX ⊗CX

CX [t,∂t])[
1
t ]. Since there is no nonzero section of M supported in G−1(0)×C ⊂

X ×C by Hilbert’s nullstellensatz, to show (2.7), it suffices to compare the annihilators

of the generators of its both sides on X \G−1(0). Here, the right-hand side of (2.7) is

understood to be a subsheaf of (M|{t=0})[
1
t ] and the multiplication by t on it corresponds

to the action s 	−→ s+1 on the left-hand side (see, e.g., [16] for details). Restricting the

isomorphism (2.7) to a subsheaf, we obtain an isomorphism

DX [s]

(
1

Gm
fs

)
∼−→DX [−∂tt]

(
1

Gm
δ(t−f(x))

)
. (2.8)

Now, let us consider the V -filtration {Vj(DX×C)}j∈Z of DX×C along the hypersurface {t=
0}=X×{0}⊂X×C. Similarly, we define a filtration {Vj(DX⊗CX

CX [t,∂t])}j∈Z of DX⊗CX

CX [t,∂t]⊂DX×C|{t=0}. Denote the section

1

Gm
δ(t−f(x)) ∈M|{t=0} (2.9)

of M|{t=0} simply by σm. Then, by t · δ(t−f) = f · δ(t−f), we obtain isomorphisms

V0(DX ⊗CX
CX [t,∂t])σm �

+∞∑
k=0

DX [s]

(
1

Gm
fs+k

)
, (2.10)

V−1(DX ⊗CX
CX [t,∂t])σm �

+∞∑
k=1

DX [s]

(
1

Gm
fs+k

)
. (2.11)

This implies that the V0(DX ⊗CX
CX [t,∂t])-module

K :=
V0(DX ⊗CX

CX [t,∂t])σm

V−1(DX ⊗CX
CX [t,∂t])σm

(2.12)

is isomorphic to ∑+∞
k=0DX [s]( 1

Gm fs+k)∑+∞
k=1DX [s]( 1

Gm fs+k)
. (2.13)

Here, we used the identification

V0(DX ⊗CX
CX [t,∂t])�DX [s, t] (2.14)
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given by −∂tt 	−→ s. Moreover, by Lemma 2.1, there also exists an isomorphism

(OX×C|{t=0})⊗OX⊗CX
CX [t]K �K∞ :=

V0(DX×C)σm

V−1(DX×C)σm
. (2.15)

By the classical result on the specializability of M along {t = 0}, there exists a nonzero

polynomial b(s) ∈ C[s] such that

b(−∂tt)σm ∈ V−1(DX×C)σm. (2.16)

This condition is equivalent to the one that the image

G := Im[b(−∂tt) :K∞ −→K∞] (2.17)

is zero. Note that the sheaf homomorphism

b(−∂tt) :K −→K (2.18)

is OX ⊗CX
CX [t]-linear and the above one in (2.17) is obtained by applying the tensor

product (OX×C|{t=0})⊗OX⊗CX
CX [t] (·) to it. Since OX×C|{t=0} is flat over OX ⊗CX

CX [t],

we thus obtain an isomorphism

G � (OX×C|{t=0})⊗OX⊗CX
CX [t] Im[b(−∂tt) :K −→K]. (2.19)

By G � 0 and the faithfully flatness of OX×C|{t=0} over OX ⊗CX
CX [t], we obtain also

Im[b(−∂tt) :K −→K]� 0. (2.20)

It follows from the previous description (2.13) of K that we have the desired condition

b(s)

(
1

Gm
fs

)
∈

+∞∑
k=1

DX [s]

(
1

Gm
fs+k

)
. (2.21)

This completes the proof. �

Lemma 2.1. There exists an isomorphism (OX×C|{t=0})⊗OX⊗CX
CX [t]K �K∞.

Proof. By our construction of the regular holonomic DX×C-module M in the proof of

Theorem 1.1, there exists a natural morphism

Φ :M0 :=
(OX ⊗CX

CX [t])[ 1
(tG−F )G ]

(OX ⊗CX
CX [t])[ 1G ]

−→M|{t=0} (2.22)

of OX ⊗CX
CX [t]-modules. Since F,G ∈ OX are coprime each other, the same is true also

for tG−F,G ∈ OX×C, and hence the morphism Φ is injective. Therefore, for j = 0,−1,

the V0(DX ⊗CX
CX [t,∂t])-module Vj(DX ⊗CX

CX [t,∂t])σm ⊂M|{t=0} is isomorphic to the

image of the morphism

Vj(DX ⊗CX
CX [t,∂t])−→M0 (P 	−→ Pσm). (2.23)

By the isomorphisms

(OX×C|{t=0})⊗OX⊗CX
CX [t] Vj(DX ⊗CX

CX [t,∂t])� Vj(DX×C)|{t=0} (j = 0,−1),

(2.24)

(OX×C|{t=0})⊗OX⊗CX
CX [t]M0 �M|{t=0} (2.25)
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722 K. TAKEUCHI

and the flatness of OX×C|{t=0} over OX ⊗CX
CX [t], we obtain isomorphisms

Vj(DX×C)σm =Im[Vj(DX×C)|{t=0} −→M|{t=0}]

�(OX×C|{t=0})⊗OX⊗CX
CX [t] Im[Vj(DX ⊗CX

CX [t,∂t])−→M0]

�(OX×C|{t=0})⊗OX⊗CX
CX [t] Vj(DX ⊗CX

CX [t,∂t])σm (j = 0,−1).

Then the assertion immediately follows.

§3. Proof of Theorem 1.4

First of all, we shall recall the classical theory of Kashiwara–Malgrange filtrations. For

more precise explanations on them, we refer to [19] and [25]. We assume first that M is

a general regular holonomic DX×C-module on the product of a complex manifold X and

Ct. Set θ = t∂t ∈ DX×C and for a section σ ∈M of M denote by pσ(s) ∈ C[s] the minimal

polynomial such that

pσ(θ)σ ∈ V−1(DX×C)σ. (3.1)

Furthermore, we set

ord{t=0}(σ) := p−1
σ (0)⊂ C. (3.2)

On the set C of complex numbers, let us consider the lexicographic order ≥ defined by

z ≥ w ⇐⇒ Rez > Rew or Rez =Rew, Imz ≥ Imw. (3.3)

Then, for α ∈ C, we define a V0(DX×C)-submodule Vα(M) of M by

Vα(M) = {σ ∈M | ord{t=0}(σ)≥−α−1}. (3.4)

We can easily see that there exists a finite subset A⊂ {z ∈ C | −1≤ z < 0} such that, for

any section σ ∈M of M, we have

ord{t=0}(σ)⊂A+Z. (3.5)

Moreover, for each element α ∈ A of such A, the filtration {Vα+j(M)}j∈Z of M is a good

V -filtration. For α ∈A+Z, we set

V<α(M) =
⋃
β<α

Vβ(M) = {σ ∈M | ord{t=0}(σ)>−α−1} (3.6)

and

grVα (M) = Vα(M)/V<α(M). (3.7)

Then grVα (M) is a regular holonomic DX -module and we can easily show that there exists

N � 0 such that

(θ+α+1)NgrVα (M) = 0. (3.8)

The following lemma is well known to the specialists.

Lemma 3.1. Let σ ∈M be a section of M such that DX×Cσ =M. Then:

(i) For any section τ ∈M of M, we have

ord{t=0}(τ)⊂ ord{t=0}(σ)+Z. (3.9)
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(ii) For any λ ∈ ord{t=0}(σ), we have

grV−λ−1(M) �= 0. (3.10)

(iii) Conversely, if grVα (M) �= 0, then we have

−α−1 ∈ ord{t=0}(σ)+Z. (3.11)

Now, we return to the situation in the proof of Theorem 1.1. Namely, for the meromorphic

function f = F
G , we have

M�
OX×C[

1
(tG−F )G ]

OX×C[
1
G ]

(3.12)

and

σm =
1

Gm
δ(t−f(x)) =

[
G

(tG−F )Gm

]
∈M (m≥ 0). (3.13)

Then we have the following result, whose proof is inspired from Sabbah’s exposition [35].

Lemma 3.2. Assume that m ≥ 2dimX. Then M is generated by the section σm ∈ M
over DX×C, that is, M=DX×Cσm.

Proof. Set g := (tG(x)−F (x)) ·G(x) ∈OX×C, and let bg(s) ∈C[s] be its Bernstein–Sato

polynomial. Then by [36, Th. 0.4], for any root α ∈Q of bg(s), we have

−dim(X×C) =−dimX−1< α < 0. (3.14)

Moreover, for any k ≥ 1, there exists Pk(s) ∈ DX×C[s] such that

bg(s−k) · · · · · ·bg(s−2)bg(s−1)gs−k = Pk(s)g
s. (3.15)

Set n := dimX. Then, by substituting s in the above formula by −n, we see that for any

k ≥ 1 the meromorphic function g−n−k is a nonzero constant multiple of Pk(−n)g−n. This

implies that

M�
OX×C[

1
(tG−F )G ]

OX×C[
1
G ]

(3.16)

is generated by its section [
1

gn

]
=

[
1

(tG−F )nGn

]
∈M (3.17)

over DX×C. On the other hand, the section ∂n−1
t σm ∈ M of M is a nonzero constant

multiple of [
1

(tG−F )nGm−n

]
∈M. (3.18)

Therefore, if m≥ 2n= 2dimX, it generates M over DX×C.

Now, let us prove Theorem 1.4. By the proof of Theorem 1.1 and the correspondence

s←→−∂tt=−θ−1, the Bernstein–Sato polynomial bmero
f,m (s) of f coincides with pσm(−s−

1). This, in particular, implies that we have

(bmero
f,m )−1(0) = {−λ−1 | λ ∈ ord{t=0}(σm)}. (3.19)
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Note also that for the DX -module M in the proof of Theorem 1.1, we have an isomorphism

DRX×C(M)�RΓ(X\G−1(0))×C(CZ)[n] (3.20)

and the nearby cycle sheaf ψt(DRX×C(M)) coincides with the meromorphic nearby cycle

ψmero
f (CX) introduced in [29] up to some shift. Assume first that m ≥ 2dimX. Then, by

Lemma 3.2, the section σm ∈ M generates M over DX×C and the second assertion of

Theorem 1.4 follows from Lemma 3.1, Kashiwara’s isomorphism⊕
−1≤α<0

DRX(grVα (M))� ψt(DRX×C(M))�
⊕

−1≤α<0

ψt,exp(2πiα)(DRX×C(M)) (3.21)

and [29, Lem. 2.1 (iii)]. If we do not have the condition m ≥ 2dimX, by considering

the DX×C-submodule DX×Cσm ⊂ M instead of M itself, we obtain the first assertion of

Theorem 1.4. This completes the proof. �

By the proofs of Theorems 1.1 and 1.4, we obtain the following weak relation among the

roots of the b-functions bmero
f,m (s) for various m≥ 0.

Lemma 3.3. Let m,m′ ≥ 0 be two nonnegative integers such that m ≥ m′. Then, for

some l� 0, we have an inclusion

(bmero
f,m′ )−1(0)⊂

l⋃
i=0

{
(bmero

f,m )−1(0)− i
}
. (3.22)

Proof. By the proofs of Theorems 1.1 and 1.4, we have bmero
f,m (s) = pσm(−s− 1) and

bmero
f,m′ (s) = pσm′ (−s−1). Moreover, by our assumption m≥m′, we have

σm′ =Gm−m′ ·σm ∈ OXσm ⊂ V0(DX×C)σm. (3.23)

Set N := DX×Cσm and N ′ := DX×Cσm′ . Then the V -filtration {Vj(DX×C)σm}j∈Z (resp.

{Vj(DX×C)σm′}j∈Z) of N (resp. N ′) is good. By Artin-Rees’s lemma, the V -filtration

{Uj(N ′)}j∈Z of N ′ defined by

Uj(N ′) :=N ′∩ (Vj(DX×C)σm) (j ∈ Z) (3.24)

is also good and satisfies the condition σm′ ∈ U0(N ′). Then there exists l� 0 such that

U−l−1(N ′)⊂ V−1(DX×C)σm′ ⊂N ′. (3.25)

This implies that we have

pσm(θ− l) · · ·pσm(θ−1)pσm(θ)σm′ ∈ V−1(DX×C)σm′ . (3.26)

Then the assertion immediately follows.

§4. Upper and lower bounds for the roots of b-functions

Recall that in [18], Kashiwara proved that if f is holomorphic, the roots of the Bernstein–

Sato polynomial bf (s) are negative rational numbers. In this section, we prove an analogous

result for the meromorphic function f = F
G . We can easily prove that the roots of our b-

function bmero
f,m (s) are rational numbers, but their negativity does not follow from our proof.

For this reason, here we only give an upper bound

(bmero
f,m )−1(0)⊂Bπ

f,m ⊂Q (m≥ 0) (4.1)
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for the set (bmero
f,m )−1(0) in terms of resolutions of singularities π of D ⊂ X. The precise

statement is as follows. Let π : Y −→X be a resolution of singularities of the divisor D =

F−1(0)∪G−1(0)⊂X, which means that π : Y −→X is a proper morphism of n-dimensional

complex manifolds such that π−1(D)⊂Y is normal crossing and π|Y \π−1(D) :Y \π−1(D)−→
X \D is an isomorphism. Then we define a meromorphic function g on Y by

g := f ◦π =
F ◦π
G◦π . (4.2)

From now on, we fix a nonnegative integer m≥ 0 and consider the (local) Bernstein–Sato

polynomials of g of order m. At each point q ∈ π−1(D) of the normal crossing divisor

π−1(D), there exists a local coordinate system y = (y1,y2, . . . ,yn) such that q = (0,0, . . . ,0)

and

(F ◦π)(y) =
n∏

i=1

yai
i (ai ≥ 0), (G◦π)(y) =

n∏
i=1

ybii (bi ≥ 0). (4.3)

Then we have (
1

Gm
fs

)
(y) =

n∏
i=1

y
(ai−bi)s−mbi
i . (4.4)

It follows that the set Kq ⊂Q of the roots of the (local) Bernstein–Sato polynomial of g at

q is explicitly given by

Kq =
⋃

i: ai>bi

{
mbi

ai− bi
− k

ai− bi
| 1≤ k ≤ ai− bi

}
⊂Q (4.5)

(see, e.g., [20, Lem. 6.10]). It is clear that this set Kq does not depend on the choice of the

local coordinates. For the point x0 ∈D, its inverse image π−1(x0)⊂ π−1(D) being compact,

we obtain a finite subset

K :=
⋃

q∈π−1(x0)

Kq ⊂Q. (4.6)

Theorem 4.1. For any m ≥ 0, the roots of the (local) Bernstein–Sato polynomial

bmero
f,m (s) of f at x0 ∈D are contained in the set

Bπ
f,m :=

⋃
l=0,1,2,...

(K− l) = {r− l | r ∈K, l = 0,1,2, . . .} ⊂Q. (4.7)

In particular, for m= 0, the roots of bmero
f,0 (s) are negative rational numbers.

Proof. Our proof is similar to the one in [18] for the case where f is holomorphic. But

we also need some new ideas to treat the meromorphic case. Recall that for the section σ :=

σm ∈M (see (2.5)) of the regular holonomic DX×C-module M, we denote by pσ(s) ∈ C[s],

the minimal polynomial p(s) �= 0 such that

p(θ)σ ∈ V−1(DX×C)σ (4.8)

and we have bmero
f,m (s) = pσ(−s− 1). Let i : Y −→ Y ×X (y 	−→ (y,π(y))) be the graph

embedding by π and p : Y ×X → X ((y,x) 	−→ x), the projection such that π = p ◦ i.
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We set also

ĩ := i× idC : Y ×C−→ (Y ×X)×C,

p̃ := p× idC : (Y ×X)×C−→X×C,

so that we have π̃ := π× idC = p̃◦ ĩ. As in the case of the meromorphic function f = F
G , we

define a regular holonomic DY×C-module N associated with g = F◦π
G◦π and its section

τ :=
1

{(G◦π)(y)}m δ(t−g(y)) ∈N . (4.9)

Then the roots of its minimal polynomial pτ (s) ∈ C[s] such that

pτ (θ)τ ∈ V−1(DY×C)τ (4.10)

is contained in the set {−r−1 | r ∈K} ⊂Q. Since π̃ : Y ×C−→X×C is an isomorphism

over (Y \π−1(D))×C� (X \D)×C, the section τ ∈ N is naturally identified with σ ∈M
there. Let

Dĩ∗N �H0Dĩ∗N = ĩ∗
(
D(Y×X)×C←Y×C⊗DY ×C

N
)

(4.11)

be the direct image of N by ĩ and

τ̃ := 1(Y×X)×C←Y×C⊗ τ ∈Dĩ∗N , (4.12)

its section defined by τ ∈N . Then it is easy to see that the minimal polynomial pτ̃ (s)∈C[s]

such that

pτ̃ (θ)τ̃ ∈ V−1(D(Y×X)×C)τ̃ (4.13)

is equal to pτ (s). Let us consider the DY×C-submodule N0 :=DY×Cτ ⊂N of N generated

by τ ∈ N . Then we have τ̃ ∈ Dĩ∗N0 ⊂ Dĩ∗N and D(Y×X)×Cτ̃ = Dĩ∗N0. Hence, we can

define a good V -filtration {Uj(Dĩ∗N0)}j∈Z of Dĩ∗N0 by

Uj(Dĩ∗N0) := Vj(D(Y×X)×C)τ̃ (j ∈ Z). (4.14)

Then it is easy to see that, for any j ∈ Z, we have

pτ (θ+ j)Uj(Dĩ∗N0)⊂ Uj−1(Dĩ∗N0). (4.15)

Let us consider the relationship between pτ̃ (s) = pτ (s) and pσ(s) = bmero
f,m (−s−1). For this

purpose, let

M′ :=H0Dπ̃∗N0 �H0Dp̃∗(Dĩ∗N0) (4.16)

be the zeroth direct image ofDĩ∗N0 by p̃ and as in Gyoja [16, §4.2] define its section σ′ ∈M′

to be the image of a section 1X←Y ⊗ τ ∈ p̃∗[Ω
n
Y×X/X ⊗OY ×X

Dĩ∗N0] by the morphism

p̃∗
[
Ωn

Y×X/X ⊗OY ×X
Dĩ∗N0

]
−→H0Dp̃∗(Dĩ∗N0) =M′.

For the construction of 1X←Y ⊗ τ , see [16, §4.2] for details. Note that on the open subset

(X \D)×C of X×C, we have M′ = DX×Cσ =M and σ′ coincides with σ. For j ∈ Z, we

denote by Uj(M′)⊂M′ =H0Dp̃∗(Dĩ∗N0) the image of the natural morphism

H0Rp̃∗
{
DRY×X/X

(
Uj(Dĩ∗N0)

)}
−→M′. (4.17)
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Then, by the proof of [25, Th. 4.8.1(1)], {Uj(M′)}j∈Z is a good V -filtration of M′; and for

any j ∈ Z, we have

pτ (θ+ j)Uj(M′)⊂ Uj−1(M′). (4.18)

Moreover, by our construction, the section σ′ ∈M′ is contained in U0(M′). Let

M′′ :=DX×Cσ
′ ⊂M′ (4.19)

be the DX×C-submodule of M′ generated by σ′. Then, by Artin–Rees’s lemma, the V -

filtration {Uj(M′′)}j∈Z of M′′ defined by

Uj(M′′) :=M′′∩Uj(M′) (j ∈ Z) (4.20)

is also good, and hence there exists l� 0 such that

U−l(M′′) =M′′∩U−l(M′)⊂ V−1(DX×C)σ
′. (4.21)

Combining these results together, we get

pτ (θ− (l−1)) · · ·pτ (θ−1)pτ (θ)σ
′ ∈M′′∩U−l(M′)⊂ V−1(DX×C)σ

′. (4.22)

This implies that the minimal polynomial pσ′(s) ∈ C[s] for the section σ′ ∈M′ divides the

product

pτ (s− (l−1)) · · ·pτ (s−1)pτ (s) ∈ C[s]. (4.23)

Now, according to Kashiwara [20], there exists an adjunction morphism

Dπ̃∗(Dπ̃∗M)−→M (4.24)

of DX×C-modules. Since Dπ̃∗M is isomorphic to N (use, e.g., the Riemann–Hilbert

correspondence) and N0 ⊂N , we obtain a morphism

Ψ :M′ =H0Dπ̃∗N0 −→M (4.25)

of DX×C-modules. Then the section Ψ(σ′) ∈M of M coincides with σ ∈M on the open

subset (X \D)×C⊂X×C. Moreover, by the isomorphism M�DX [∂t] on the open subset

(X \G−1(0))×C⊂X×C, this coincidence can be extended to (X \G−1(0))×C. Here, we

used the classical theorem on the unique continuation of holomorphic functions. Since we

have M�M[ 1G ], by Hilbert’s nullstellensatz, we get Ψ(σ′) = σ on the whole X×C. This

implies that the minimal polynomial pσ(s) = bmero
f,m (−s−1) divides the one pσ′(s). Now the

assertion is clear. This completes the proof.

We have seen that the roots of our b-functions bmero
f,m (s) are rational numbers. Let ρ :Q−→

Q/Z be the quotient map. Then Lemma 3.3 means that the subset Am := ρ {(bmero
f,m )−1(0)}⊂

Q/Z increases with respect to m ≥ 0. By Theorem 1.4, this sequence is stationary for

m≥ 2dimX.

Next, we shall give a lower bound for the subsets (bmero
f,m )−1(0) ⊂ Q. In the proof of

Theorem 1.1, we have seen that the minimal polynomial of s acting on the DX -module

K �
∑+∞

k=0DX [s]( 1
Gm fs+k)∑+∞

k=1DX [s]( 1
Gm fs+k)

(4.26)
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is equal to our b-function bmero
f,m (s). Localizing it along the hypersurface G−1(0) ⊂ X, we

obtain a new DX -module

K
[
1

G

]
�

{DX [s]( 1
Gm fs)}[ 1G ]

{DX [s]( 1
Gm fs+1)}[ 1G ]

(4.27)

on which s still acts. Obviously, we have bmero
f,m (s) = 0 on K[ 1G ]. By this observation, we

obtain the following result. We denote the localized ring DX [ 1G ] simply by D̃X .

Theorem 4.2. Let m ≥ 0 be a nonnegative integer. Then there exists a nonzero

polynomial b(s) ∈ C[s] satisfying the equation

b(s)

(
1

Gm
fs

)
= P̃ (s)

(
1

Gm
fs+1

)
(4.28)

for some P̃ (s) ∈ D̃X [s].

Definition 4.3. For m ≥ 0, we denote by b̃mero
f,m (s) ∈ C[s] the minimal polynomial

satisfying the equation in Theorem 4.2 and call it the reduced Bernstein–Sato polynomial

or the reduced b-function of f of order m.

Since P̃ (s) ∈ D̃X [s] in the equation (4.28) can be rewritten as

P̃ (s) =
1

Gm
◦ Q̃(s)◦Gm (Q̃(s) ∈ D̃X [s]), (4.29)

in fact, the condition on b(s) in Theorem 4.2 is equivalent to the existence of some Q̃(s) ∈
D̃X [s] satisfying the simpler equation

b(s)fs = Q̃(s)fs+1 (4.30)

independent of m≥ 0. This shows that we have

b̃mero
f,0 (s) = b̃mero

f,1 (s) = b̃mero
f,2 (s) = · · · · · · · · · . (4.31)

Therefore, we denote b̃mero
f,m (s) simply by b̃mero

f (s). Then, by our construction, for any m≥ 0,

our b-function bmero
f,m (s) is divided by the reduced one b̃mero

f (s). We thus obtain a lower bound

(b̃mero
f )−1(0)⊂ (bmero

f,m )−1(0)⊂Q (4.32)

for the subset (bmero
f,m )−1(0) ⊂ Q. Several authors studied (global) b-functions on algebraic

varieties. In particular, the result in [24] ensures the existence of b-functions on smooth

affine varieties (see [2] for a review on this subject). Since for algebraic X and f = F
G , the

variety X \G−1(0) is affine, our Theorem 4.2 could be considered as an analytic counterpart

of their result in a very special case.

Remark 4.4. It looks that the DX -modules K and K[ 1G ] above are regular holonomic,

but we could not prove it. We conjecture that they are regular holonomic.

From now on, we consider the special case where the meromorphic function f = F
G is

quasi-homogeneous. More precisely, for a local coordinate system x = (x1,x2, . . . ,xn) of X

such that x0 = {x = 0}, we assume that there exist a vector field v =
∑n

i=1wixi∂xi ∈ DX
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(w = (w1,w2, . . . ,wn) ∈ Zn
≥0 \{0} is a weight vector) and d1,d2 ∈ Z>0 with d := d1−d2 �= 0

such that

vF = d1 ·F, vG= d2 ·G, vf = d ·f �= 0. (4.33)

Let us calculate b̃mero
f (s) of such f following the arguments in [20, §6.4]. First, by the

condition vf = d ·f (d �= 0), we have isomorphisms

D̃X [s]fs � D̃Xfs, K
[
1

G

]
� D̃Xfs

D̃Xfs+1
, (4.34)

and for our reduced b-function b̃mero
f (s), there exists P̃ ∈ D̃X such that

b̃mero
f (s)fs = P̃ fs+1. (4.35)

In this situation, by the proof of [20, Lem. 6.6], we see that K[ 1G ] is a holonomic DX -module

and Theorem 4.2 can be proved also by using the trick in the proof of [20, Th. 6.7]. If we

set s=−1 in (4.35), we obtain

b̃mero
f (−1) = fP̃ (1). (4.36)

Restricting this equality to the subset F−1(0) \ G−1(0) ⊂ X \ G−1(0), we see that

b̃mero
f (−1) = 0. Namely, for a nonzero polynomial β̃mero

f (s) ∈ C[s], we have

b̃mero
f (s) = (s+1) · β̃mero

f (s). (4.37)

On the other hand, by (4.36), we have P̃ (1) = 0, and hence P̃ ∈
∑n

i=1 D̃X∂xi . Namely, there

exist Q̃i ∈ D̃X (1≤ i≤ n) such that P̃ =
∑n

i=1 Q̃i∂xi . Moreover, if we set

fi := fxi =
∂f

∂xi
=

FxiG−FGxi

G2
(1≤ i≤ n), (4.38)

then we have

∂xif
s+1 = (s+1)fif

s (1≤ i≤ n). (4.39)

Therefore, we obtain

β̃mero
f (s)fs =

n∑
i=1

Q̃ifif
s. (4.40)

Conversely, for Q̃i ∈ D̃X (1 ≤ i ≤ n) satisfying this equality, the differential operator P̃ =∑n
i=1 Q̃i∂xi ∈ D̃X satisfies the one (4.35). Consequently, our β̃mero

f (s) �= 0 is the minimal

polynomial b(s) ∈ C[s] satisfying the condition b(s)fs ∈
∑n

i=1 D̃Xfif
s. Since we have

v(fif
s) = (d−wi+d ·s)(fifs) (1≤ i≤ n), (4.41)∑n

i=1 D̃Xfif
s is a D̃X [s]-submodule of D̃Xfs �D̃X [s]fs. Set hi :=FxiG−FGxi =G2fi ∈OX

(1≤ i≤ n). Then the D̃X -module

R̃ :=
D̃Xfs∑n

i=1 D̃Xfifs
� D̃Xfs∑n

i=1 D̃Xhifs
(4.42)

has an action of s and the minimal polynomial of s on it is equal to β̃mero
f (s).
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Proposition 4.5. Let f = F
G be as above and assume moreover that f−1(0) = F−1(0)\

G−1(0)⊂X \G−1(0) is smooth. Then R̃= 0 and b̃mero
f (s) = s+1.

Proof. Let us consider the coherent DX -module

S :=
DX∑n

i=1DXhi
(4.43)

and its localization

S̃ := S
[
1

G

]
� D̃X∑n

i=1 D̃Xhi

. (4.44)

Note that R̃ is a quotient of S̃. Since f = F
G is quasi-homogeneous of degree d= d1−d2 �=

0, there is no singular point of f in X \ (F−1(0)∪G−1(0)). Then by the smoothness of

f−1(0) = F−1(0)\G−1(0)⊂X \G−1(0), we have

Sing f = {x ∈X \G−1(0) | h1(x) = h2(x) = · · ·= hn(x) = 0}= ∅. (4.45)

This implies that the support of the coherent DX -module S is contained in G−1(0) ⊂X.

Then, by Hilbert’s nullstellensatz, we get S̃ = 0; and hence, R̃= 0.

By using [29, Th. 3.3 and Cor. 3.4], we can construct many examples of f = F
G satisfying

the conditions in Proposition 4.5 and having a monodromy eigenvalue �= 1 at the point

x0 ∈X. By Theorem 1.4, for such f , we thus obtain

bmero
f,m (s) �= b̃mero

f (s) = s+1 (m≥ 2dimX). (4.46)

Namely, in the situation of Proposition 4.5 the reduced b-function b̃mero
f (s) captures only

the tiny (trivial) part s+1 of bmero
f,m (s) for m≥ 2dimX.

§5. Multiplier ideals for meromorphic functions

In this section, we define multiplier ideal sheaves for the meromorphic function f = F
G

and study their basic properties. Recall that multiplier ideals for holomorphic functions

were introduced by Nadel [28]. For their precise properties, we refer to the excellent book

[22] by Lazarsfeld. For the meromorphic function f = F
G , we define them as follows. Denote

by L1
loc, the set of locally integrable functions on X.

Definition 5.1. For a positive real number α > 0, we define an ideal J (X,f)α ⊂OX

of OX by

J (X,f)α :=

{
h ∈ OX | |h|2

|f |2α =
|h|2 · |G|2α

|F |2α ∈ L1
loc

}
(5.1)

and call it the multiplier ideal of f of order α > 0.

Let π : Y −→X be a resolution of singularities of the divisor D = F−1(0)∪G−1(0)⊂X

as in §4. Here, we assume, moreover, that the meromorphic function g = F◦π
G◦π has no point

of indeterminacy on the whole Y . Such a resolution π : Y −→X always exists. Let div g be

the divisor on Y defined by g. Then there exist two effective divisors (div g)+ and (div g)−
such that

div g = (div g)+− (div g)−. (5.2)
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By our assumption, their supports, which we denote by g−1(0) and g−1(∞), respectively,

are disjoint from each other. By using such a resolution π : Y −→X, we can easily see that

for α′ >α> 0, we have J (X,f)α′ ⊂J (X,f)α. Then, as in the case where f is holomorphic,

we can define the jumping numbers of the multiplier ideals {J (X,f)α}α>0. In the situation

as above, we have g−1(∞)⊂ (G◦π)−1(0) but g : Y \ (G◦π)−1(0)−→C can be extended to

a holomorphic function g̃ : Y \g−1(∞)−→ C. Let

ιg̃ : Y \g−1(∞)−→ Y ×C (y 	−→ (y, g̃(y))) (5.3)

be the graph embedding defined by g̃. From now, we shall use the terminologies of mixed

Hodge modules. For example, regarding the holonomic DX×C-module M as a mixed Hodge

module on X×C, for α ∈Q and p ∈ Z, we set

FpVαM= FpM∩VαM. (5.4)

We denote the normal crossing divisor (G ◦π)−1(0) in Y by E and consider the regular

holonomic DY -module OY (∗E) as a mixed Hodge module. Then its Hodge filtration

{FpOY (∗E)}p∈Z satisfies the condition

FpOY (∗E)� 0 (p < 0), F0OY (∗E) �= 0. (5.5)

Moreover, F0OY (∗E) ⊂ OY (∗E) is the subsheaf of OY (∗E) consisting of meromorphic

functions on Y having poles of order ≤ 1 only along E ⊂ Y . See Mustata–Popa [27, Chap.

D] for the details about the Hodge filtration of OY (∗E). We denote the restriction of

F0OY (∗E) � OY (E) to Y \ g−1(∞) simply by E . Then the following proposition can be

proved just by following the arguments in Budur–Saito [9] (see also [7, §§3 and 4] for more

precise explanations). We set Y ◦ := Y \g−1(∞) and

� := (π× idC)◦ ιg̃ : Y ◦ −→X×C (y 	−→ (π(y), g̃(y))). (5.6)

Let KY/X be the relative canonical divisor of π : Y −→X.

Proposition 5.2. Let α> 0 be a positive real number. Then, for 0< ε� 1, there exists

an isomorphism

F1V−αM��∗
{
OY ◦(KY/X)⊗E ∩OY ◦ (−�(α−ε)(div g)+�)

}
. (5.7)

Now, let prX :X×C−→X be the projection. Then there exists an injective homomor-

phism of sheaves

γ :OX −→ (prX)∗M (h 	−→ h ·σ0), (5.8)

by which we regard OX as a subsheaf of (prX)∗M. By Proposition 5.2 and the local

integrability condition in Definition 5.1, we obtain the following analog for meromorphic

functions of Budur–Saito [9, Th. 0.1] (see also [7] for details). Note that by Proposition 5.2,

for any α > 0, we have

OX ∩ (prX)∗F1V−αM=OX ∩ (prX)∗V−αM. (5.9)

Theorem 5.3. Let α > 0 be a positive real number. Then we have

J (X,f)α =OX ∩ (prX)∗V<−αM= {h ∈ OX | ord{t=0}(h ·σ0)> α−1}. (5.10)
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By this theorem and

ord{t=0}(h ·σ0)⊂
⋃

i=0,1,2,...

{
ord{t=0}(σ0)+ i

}
(h ∈ OX) (5.11)

(see the proof of Lemma 3.3), we immediately obtain the following generalization of the

celebrated theorem of Ein–Lazarsfeld–Smith–Varolin [13] to meromorphic functions.

Corollary 5.4. The jumping numbers of the multiplier ideals {J (X,f)α}α>0 are

contained in the set ⋃
i=0,1,2,...

{
−(bmero

f,0 )−1(0)+ i
}
⊂Q>0. (5.12)

Moreover, the minimal jumping number α > 0 is equal to the negative of the largest root of

bmero
f,0 (s).
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[25] Z. Mebkhout and C. Sabbah, D-modules et cycles évanescents, Le formalisme des six opérations de
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