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Pointwise Characterizations of Even
Order Sobolev Spaces via Derivatives
of Ball Averages

Guangheng Xie, Dachun Yang, andWen Yuan

Abstract. Let ℓ ∈ N and p ∈ (1,∞]. In this article, the authors establish several equivalent charac-
terizations of Sobolev spaces W2ℓ+2,p(Rn) in terms of derivatives of ball averages. he novelty in the
results of this article is that these equivalent characterizations reveal some new connections between
the smoothness indices of Sobolev spaces and the derivatives on the radius of ball averages and also
that, to obtain the corresponding results for higher order Sobolev spaces, the authors ûrst establish the
combinatorial equality: for any ℓ ∈ N and k ∈ {0, . . . , ℓ − 1},∑2ℓ

j=0(−1) j(2ℓ
j )∣ℓ − j∣2k = 0.

1 Introduction

It is well known that Sobolev spaces are very useful tools of analysis. he theory of
Sobolev spaces on the Euclidean spaces Rn , whose elements are diòerentiable func-
tions, has been developed into a complete andmature theory in recent decades. Since
the diòerential structures are not available on metricmeasure spaces, the problem of
introducing Sobolev spaces on anymetricmeasure space is one of the central topics in
modern analysis. In 1996, Hajłasz [11] successfully introduced the concept of Hajłasz
gradients which are used to characterize the ûrst order Sobolev spaces in the setting
of an arbitrary metric space equipped with a Borel measure. hemain beneût of this
characterization is that it does not need any derivatives and can be generalized to any
metric measure space that might have no diòerential structure. his provides a new
view andmethod for studying Sobolev spaces on anymetricmeasure space. A�er the
pioneering work of Hajłasz [11], Shanmugalingam [23] introduced another kind of
the ûrst order Sobolev spaces via upper and weak upper gradients. More progresses
related to ûrst order Sobolev spaces can be found in, for example, [12, 15, 16,24].

Recently, Alabern et al. [1] established a new interesting characterization of Sobo-
lev spaces on Rn via ball averages, which provides a way to introduce Sobolev spaces
of any smoothness order on metricmeasure spaces. Inspired by [1], Sato [18–21] gave
a weighted generalization of themain results in [1]. Certainly, ball averages, as a use-
ful tool, can be used to characterize more function spaces. We refer the reader to
articles [4, 8, 10, 13, 14, 22, 26–28] for some recent progress on the characterizations
of Sobolev spaces in terms of ball averages. Some further characterizations of Besov
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and Triebel–Lizorkin spaces via ball averages were presented in a series of articles
[3,9,25,29]. Among these articles, Dai et al. [8] characterized Sobolev spaces via dif-
ferences involving ball averages and studied Sobolev spaces of smoothness order 2ℓ
(ℓ ∈ N) on spaces of homogeneous type in the sense of Coifman andWeiss in [5, 6].
In particular, when p ∈ (1,∞), it was proved in [8, heorem 1.1] that a measurable
function f belongs to Sobolev spaces W2,p(Rn) if and only if f ∈ Lp(Rn) and there
exists a non-negative function g ∈ Lp(Rn) such that, for any t ∈ (0,∞) and almost
every x ∈ Rn ,

∣
f (x) − Bt f (x)

t2
∣ ≤ g(x);(1.1)

moreover, ∥g∥Lp(Rn) is equivalent to ∥∆ f ∥Lp(Rn) with the positive equivalence con-
stants independent of f and g, where ∆ ∶= ∑

n
i=1(

∂
∂x i

)2 denotes the Laplacian. Here
and herea�er,we use the following notation:he symbol Lp(Rn),with any p ∈ (1,∞),
denotes the set of all measurable functions f on Rn such that

∥ f ∥Lp(Rn) ∶= {∫
Rn

∣ f (x)∣ p dx}
1/p

<∞,

and the symbol L1
loc(R

n) denotes the set of all locally integrable functions onRn . For
any t ∈ (0,∞), f ∈ L1

loc(R
n) and x ∈ Rn , let

Bt f (x) ∶=
1

∣B(x , t)∣ ∫B(x ,t)
f (y) dy =∶ −∫

B(x ,t)
f (y) dy,

here and herea�er, B(x , t) ∶= {y ∈ Rn ∶ ∣y − x∣ < t}.
Let I be the identity on Lp(Rn). A natural question is: In (1.1), ifwe replace I−B t

t2 by
1
t

∂
∂t (

I−B t
t2 ), whether or not such an inequality can still characterizes a Sobolev space?

If yes, which Sobolev spaces can be characterized?
In this article, we answer these questions aõrmatively. To be precise, we estab-

lish several new equivalent characterizations for Sobolev spaces W4,p(Rn), with p ∈
(1,∞), in termsof 1

t
∂
∂t (

I−B t
t2 ) (seeheorem1.1). he corresponding results for Sobolev

spaces W2ℓ+2,p(Rn), with ℓ ∈ N and p ∈ (1,∞), are also obtained (seeheorem 1.4),
via ûrst establishing a combinatorial equality (see heorem 1.3). he novelty of this
approach exists in that these equivalent characterizations reveal some new connec-
tions between the smoothness indices of Sobolev spaces and the derivatives on the
radius of ball averages.

To state themain results of this article,we beginwith some basic notation. Inwhat
follows, we use C∞(Rn) to denote the set of all inûnitely diòerentiable functions and
C∞c (Rn) the set of all C∞(Rn) functions with compact supports. Let S(Rn) denote
the space of all Schwartz functions, namely, the set of all functions φ in C∞(Rn)

satisfying that, for any integer ℓ ∈ Z+ andmulti-index α ∈ (Z+)n ,

∥φ∥α ,ℓ ∶= sup
∣β∣≤∣α∣, x∈Rn

(1 + ∣x∣)ℓ ∣∂βφ(x)∣ <∞.

Here and herea�er, for any β ∶= (β1 , . . . , βn) ∈ (Z+)n , we let ∣β∣ ∶= β1 + ⋅ ⋅ ⋅ + βn , ∂β ∶=
( ∂

∂x1
)β1 ⋅ ⋅ ⋅ ( ∂

∂xn
)βn and β! ∶= β1! ⋅ ⋅ ⋅ βn!. hese quasi-norms {∥ ⋅ ∥α ,ℓ}α∈(Z+)n ,ℓ∈Z+ also

determine the topology of S(Rn). We use S′(Rn) to denote the dual space of S(Rn),
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namely, the space of all tempered distributions onRn equippedwith theweak-∗ topol-
ogy. For any φ ∈ S′(Rn), we use φ̂ to denote its Fourier transform, that is, for any
ξ ∈ Rn , φ̂(ξ) ∶= (2π)−n/2

∫Rn φ(x)e−ix ξ dx . Let α ∈ (0,∞), p ∈ (1,∞), and (−∆)α/2

be the fractional Laplacian deûned in terms of the distributional Fourier transform via
[(−∆)α/2 f ]∧(ξ) ∶= ∣ξ∣α f̂ (ξ) for any f ∈ S′(Rn) and ξ ∈ Rn . Recall that the Sobolev
spaceWα ,p(Rn) is deûned to be the set of all measurable functions f onRn such that

∥ f ∥Wα ,p(Rn) ∶= ∥ f ∥Lp(Rn) + ∥(−∆)α/2 f ∥Lp(Rn) <∞.

In what follows, t → 0+ means that t ∈ (0,∞) and t → 0.

heorem 1.1 Let p ∈ (1,∞). hen the following statements aremutually equivalent:
(i) f ∈W4,p(Rn);
(ii) f ∈ Lp(Rn) and there exist a set E ⊂ (0,∞) of Lebesguemeasure 0 and a function

g1 ∈ Lp(Rn) such that

lim
t∈(0,∞)∖E , t→0+

1
t
∂
∂t

(
f − Bt f

t2
) = g1 in S′(Rn

);

(iii) f ∈ Lp(Rn) and there exists a non-negative function g2 ∈ Lp(Rn) such that, for
almost every t ∈ (0,∞) and x ∈ Rn ,

∣
∂
∂t

(
f (x) − Bt f (x)

t2
)∣ ≤ tg2(x);

(iv) f ∈ Lp(Rn) and there exist a non-negative function g3 ∈ Lp(Rn) and positive
constants C1 and C2 (depending only on n) such that, for almost every t ∈ (0,∞)

and x ∈ Rn ,

−∫
B(x ,t)

∣
∂
∂t

(
f (y) − BC1 t f (y)

t2
)∣ dy ≤ t−∫

B(x ,C2 t)
g3(y) dy;

(v) f ∈ Lp(Rn) and there exist a non-negative function g4 ∈ Lp(Rn) and a positive
constant C3 (depending only on n) such that, for almost every t ∈ (0,∞) and
x ∈ Rn ,

∣−∫
B(x ,t)

∂
∂t

(
f (y) − BC3 t f (y)

t2
) dy∣ ≤ tg4(x).(1.2)

Moreover, if f ∈ W4,p(Rn), then, for any i ∈ {1, 2, 3, 4}, the function g i , in the above
statements, can be chosen such that ∥g i∥Lp(Rn) is equivalent to ∥∆2 f ∥Lp(Rn) with the
positive equivalence constants depending only on n and p.

Let q ∈ (1,∞), c ∈ (0,∞) and K ∈ (0,∞]. For any f ∈ L1
loc(R

n), the sharp
maximal function f K ,∗c ,q of f is deûned by setting, for any x ∈ Rn ,

f K ,∗c ,q (x) ∶= ess sup
t∈(0, K)

1
t
[−∫
B(x ,t)

∣
∂
∂t

(
f (y) − Bc t f (y)

t2
)∣

q

dy]
1
q

.

Applying heorem 1.1, we also obtain the following equivalent characterization of
W4,p(Rn) via the above sharp maximal function.
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Corollary 1.2 Let p ∈ (1,∞), q ∈ (1, p), c ∈ (0,∞) and K ∈ (0,∞]. hen f ∈

W4,p(Rn) if and only if f ∈ Lp(Rn) and f K ,∗c ,q ∈ Lp(Rn). Moreover, if f ∈ W4,p(Rn),
then ∥∆2 f ∥Lp(Rn) ∼ ∥ f K ,∗c ,q ∥Lp(Rn), with the positive equivalence constants depending
only on c, p, q and n.

We also consider the corresponding results for higher order Sobolev spaces. To
this end, we begin with some notions. For any ℓ ∈ N and t ∈ (0,∞), the higher order
average operator Bℓ ,t is deûned by setting, for any f ∈ L1

loc(R
n) and x ∈ Rn ,

Bℓ ,t f (x) ∶= −
2

(
2ℓ
ℓ )

ℓ

∑
j=1

(−1) j
(

2ℓ
ℓ − j

)B jt f (x).(1.3)

Here and herea�er, ( 2ℓ
ℓ− j) for any j ∈ {0, . . . , ℓ} denotes the binomial coeõcients; see

also [2,7–9]. Obviously, B1,t f = Bt f .
he following combinatorial result is apowerful tool to establish the corresponding

results as in heorem 1.1 for higher order Sobolev spaces. In what follows, we use 0⃗n
to denote the origin of Rn .

heorem 1.3 If ℓ ∈ N and k ∈ {0, . . . , ℓ − 1}, then ∑2ℓ
j=0(−1)

j(
2ℓ
j )∣ℓ − j∣2k = 0. Here

and herea�er, for any a ∈ R, a0 ∶= 1. Moreover, if φ ∈ S(Rn), then, for any ℓ ∈ N and
x ∈ Rn ,

∑
∣α∣=2ℓ

1
α!

∂αφ(x)−∫
B(0⃗n ,1)

yα dy =
aℓ
bℓ

(−∆)ℓφ(x),

where (2ℓ
j ) for any j ∈ {0, . . . , 2ℓ} denotes the binomial coeõcient and

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

aℓ ∶=
1

(
2ℓ
ℓ )

1 × 3 × ⋅ ⋅ ⋅ × (2ℓ − 1)
(n + 2)(n + 4) ⋅ ⋅ ⋅ (n + 2ℓ)

,

bℓ ∶=
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ] .

Using heorem 1.3,we can easily extendheorem 1.1 to high order Sobolev spaces.

heorem 1.4 Let p ∈ (1,∞) and ℓ ∈ N. hen the results of heorem 1.1 remains
true when W4,p(Rn), Bt f and t2 therein are replaced by W2ℓ+2,p(Rn), Bℓ ,t f and t2ℓ ,
respectively.

his article is organized as follows. he proofs of heorem 1.1 and Corollary 1.2
are presented in Section 2. To this end, we need to use some ideas from the proof of
[8,heorem 1.1], togetherwith an accurate estimate of φ(x)−B tφ(x)

t2 for any φ ∈ S(Rn),
x ∈ Rn and t ∈ (0,∞). Section 3 is devoted to proving heorems 1.3 and 1.4. A key
step of these proofs is to obtain the pointwise limit limt→0+

φ(x)−Bℓ ,tφ(x)
t2ℓ for any ℓ ∈ N,

φ ∈ S(Rn) and x ∈ Rn , by using the Fourier transform and the Taylor expansion.

Remark 1.5 (i) Recall that, recently, Alabern et al. [1] used some new square
functions associated with ball averages to characterize Sobolev spaces Wα ,p(Rn)
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with any given p ∈ (1,∞) and α ∈ (0,∞). For example, when α ∈ (0, 2), Alabern
et al. [1,heorem 3] used the following square function

Sα( f )(⋅) ∶= [∫

∞

0
∣
f (⋅) − Bt f (⋅)

tα
∣

2 dt
t
]

1/2

, ∀ f ∈ L1
loc(R

n
),

to characterize the Sobolev space Wα ,p(Rn) with p ∈ (1,∞) and α ∈ (0, 2) in the
following sense: f ∈ Wα ,p(Rn) if and only if f ∈ Lp(Rn) and Sα( f ) ∈ Lp(Rn). Its
proof strongly relies on the theory of vector-valued Calderón–Zygmund operators
and some subtle estimates, which is totally diòerent from the approach used in the
proofs of the above theorems. Combining both ideas, it is quite natural to askwhether
or not the following square function

S̃α( f ) ∶= [∫

∞

0
∣ t3−α

∂
∂t

(
f (⋅) − Bt f (⋅)

t2
)∣

2 dt
t
]

1/2

can characterize the Sobolev space Wα ,p(Rn) with any given p ∈ (1,∞) and α ∈

(0, 4). To limit its length, we will not pursue this question in this article.
(ii) We point out that the equivalence between (i) and (ii) ofheorem 1.1 (and also

ofheorem 1.4) are still true if we replace the underlying Euclidean space Rn by any
open set Ω ⊂ Rn , but the other equivalences are still unknown; see Remark 2.4 below
for more details.

We end this section with some conventions on some notions and notation. For
any φ ∈ S(Rn) and t ∈ (0,∞), let φt(⋅) ∶= t−nφ(⋅/t). For any f ∈ L1

loc(R
n), the

Hardy–Littlewoodmaximal function M f is deûned by setting, for any x ∈ Rn ,

M f (x) ∶= sup
B∋x

−∫
B
∣ f (y)∣ dy,(1.5)

where the supremum is taken over all balls B in Rn containing x. hroughout the
article, we always let N ∶= {1, 2, . . .} and Z+ ∶= N ∪ {0}. he symbol C denotes a
positive constant which may vary from line to line, but is independent of the main
parameters. We use the symbol f ≲ g to denote that there exists a positive constant C
such that f ≤ Cg . he symbol f ∼ g is used as an abbreviation of f ≲ g ≲ f . We also
use the following convention: If f ≤ Cg and g = h or g ≤ h, we then write f ≲ g ∼ h
or f ≲ g ≲ h, rather than f ≲ g = h or f ≲ g ≤ h. For any p ∈ [1,∞], let p′ denote the
conjugate number of p, that is, 1/p + 1/p′ = 1.

2 Proofs of Theorem 1.1 and Corollary 1.2

he following lemma, which is motivated by [8, Lemma 2.1], plays an important role
in our proofs.

Lemma 2.1 Let φ ∈ S(Rn) and let C̃ be a positive constant. hen

lim
t→0+

1
t
∂
∂t

(
φ − Btφ

t2
) = −

1
4(n + 2)(n + 4)

∆2φ in S(Rn
)(2.1)
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and

lim
t→0+

−∫
B(⋅,t)

1
t
∂
∂t

(
φ(y) − BC̃ tφ(y)

t2
) dy = −

C̃4

4(n + 2)(n + 4)
∆2φ in S(Rn

).(2.2)

Proof By the Taylor expansion of φ, for any given x, y ∈ Rn , we have

φ(y) = φ(x) + ∑
1≤∣α∣≤4

1
α!

∂αφ(x)(y − x)α(2.3)

+ ∑
∣α∣=5

1
4!

[∫

1

0
∂αφ(x + s(y − x))(1 − s)4 ds] (y − x)α .

Fixing t ∈ (0,∞) and x ∈ Rn , and taking the average over y ∈ B(x , t) on both sides
of (2.3), we obtain

Btφ(x) = φ(x) + ∑
1≤∣α∣≤4

1
α!

∂αφ(x)−∫
B(x ,t)

(y − x)α dy(2.4)

+ ∑
∣α∣=5

1
4! ∫

1

0
(1 − s)4−∫

B(x ,t)
∂αφ(x + s(y − x))(y − x)α dy ds.

Via some trivial computations, we ûnd that

∑
1≤∣α∣≤4

1
α!

∂αφ(x)−∫
B(x ,t)

(y − x)α dy =
t2

2(n + 2)
∆φ(x)

+ t4 ∑
∣α∣=4

1
α!

∂αφ(x)−∫
B(0⃗n ,1)

yα dy

=
t2

2(n + 2)
∆φ(x) +

t4

8(n + 2)(n + 4)
∆2φ(x).

From this and (2.4), we deduce that

∂
∂t

(
φ(x) − Btφ(x)

t2
)(2.5)

= −
t

4(n + 2)(n + 4)
∆2φ(x)

−
∂
∂t

⎛

⎝
∑
∣α∣=5

t3

4! ∫
1

0
(1 − s)4−∫

B(0⃗n ,1)
∂αφ(x + sty)yα dy ds

⎞

⎠

= −
t

4(n + 2)(n + 4)
∆2φ(x)

− ∑
∣α∣=5

3t2

4! ∫
1

0
(1 − s)4−∫

B(0⃗n ,1)
∂αφ(x + sty)yα dy ds

− ∑
∣α∣=5

t3

4! ∫
1

0
(1 − s)4−∫

B(0⃗n ,1)
∑
∣γ∣=1

∂α+γφ(x + sty)syγ+α dy ds.
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By Fubini’s theorem and integration by parts, we conclude that

∑
∣α∣=5

t3

4! ∫
1

0
(1 − s)4−∫

B(0⃗n ,1)
∑
∣γ∣=1

∂α+γφ(x + sty)syγ+α dy ds

= ∑
∣α∣=5

t2

4!
−∫
B(0⃗n ,1)

∫

1

0
[ ∑
∣γ∣=1

∂α+γφ(x + sty)tyγ
] s(1 − s)4 dsyα dy

= ∑
∣α∣=5

t2

4! ∫
1

0
(5s − 1)(1 − s)3−∫

B(0⃗n ,1)
∂αφ(x + sty)yα dy ds,

which, together with (2.5), implies that

∂
∂t

(
φ(x) − Btφ(x)

t2
) = −

t
4(n + 2)(n + 4)

∆2φ(x)(2.6)

− ∑
∣α∣=5

t2

12 ∫
1

0
(1 + s)(1 − s)3

× −∫
B(0⃗n ,1)

∂αφ(x + sty)yα dy ds.

Combining this, the deûnition of quasi-norms {∥ ⋅ ∥α ,ℓ}α∈(Z+)n ,ℓ∈Z+ and the fact that,
for any x1 , x2 ∈ Rn , 1+ ∣x1∣ ≤ (1+ ∣x1 + x2∣)(1+ ∣x2∣), we know that, for any β ∈ (Z+)n ,
m ∈ Z+, t ∈ (0,∞) and x ∈ Rn ,

∣∂β(
1
t
∂
∂t

(
φ − Btφ

t2
) − [−

1
4(n + 2)(n + 4)

∆2φ])(x)∣( 1 + ∣x∣)m

= ∣
1
t
∂
∂t

(
∂βφ(x) − Bt∂βφ(x)

t2
) − [−

1
4(n + 2)(n + 4)

∆2
(∂βφ)](x)∣(1 + ∣x∣)m

≤ ∑
∣α∣=5

t
12 ∫

1

0
(1 + s)(1 − s)3−∫

B(0⃗n ,1)
∣∂α+βφ(x + sty)yα ∣ dy ds(1 + ∣x∣)m

≲ t∥φ∥5+∣β∣,m ∫
1

0
(1 + s)(1 − s)3−∫

B(0⃗n ,1)

(1 + ∣x∣)m

(1 + ∣x + sty∣)m dy ds

≲ t(1 + t)m
∥φ∥5+∣β∣,m ,

which converges to 0 as t → 0+ . his proves (2.1).
Next we show (2.2). For any φ ∈ S(Rn), by the Taylor expansion, we obtain, for

any t ∈ (0,∞) and x ∈ Rn ,

φ(x) − Btφ(x) = − ∑
∣α∣=2

t2 ∫
1

0
(1 − s)−∫

B(0⃗n ,1)
∂αφ(x + sty)yα dy ds.
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From this, (2.6), and integration by parts, we deduce that, for any β ∈ (Z+)n ,m ∈ Z+,
t ∈ (0,∞), and x ∈ Rn ,

∣∂β(−∫
B(⋅,t)

1
t
∂
∂t

(
φ(y) − BC̃ tφ(y)

t2
) dy

− [−
C̃4

4(n + 2)(n + 4)
∆2φ(⋅)])(x)∣(1 + ∣x∣)m

≤
C̃4

4(n + 2)(n + 4)
∣∂β(∆2φ(⋅) − −∫

B(⋅,t)
∆2φ(y) dy)(x)∣(1 + ∣x∣)m

+ ∣∂β( ∑
∣α∣=5

C̃5 t
12

−∫
B(⋅,t)

∫

1

0
(1 + s)(1 − s)3−∫

B(0⃗n ,1)
∂αφ(y + C̃stz)zα dz ds dy)(x)∣

× (1 + ∣x∣)m

≲ ∑
∣α∣=2

t2 ∫
1

0
(1 − s)−∫

B(0⃗n ,1)
∣∂α+β(∆2φ)(x + sty)yα ∣ dy ds(1 + ∣x∣)m

+ t(1 + ∣x∣)m
∑
∣α∣=5

−∫
B(0⃗n ,1)

∫

1

0
(1 + s)(1 − s)3−∫

B(0⃗n ,1)

× ∣∂α+βφ(x + ty + C̃stz)zα ∣ dz ds dy

≲ t2(1 + t)m
∥φ∥4+∣β∣,m + t[ 1 + (1 + C̃)t]m

∥φ∥5+∣β∣,m ,

which converges to 0, as t → 0+. his ûnishes the proof of Lemma 2.1. ∎

Lemma 2.2 Let p ∈ (1,∞), 1/p + 1/p′ = 1 and f ∈ Lp(Rn).
(i) Let g ∈ Lp′(Rn). hen, for almost every t ∈ (0,∞), ⟨ ∂

∂t (Bt f ), g⟩ = ⟨ f , ∂
∂t (Bt g)⟩.

(ii) Let ϕ ∈ C∞c (Rn) be such that ∫Rn ϕ(x)dx = 1. hen, for almost every t ∈ (0,∞)

and x ∈ Rn ,

∂
∂t

(Bt f (x)) = lim
k→∞

∂
∂t

(Bt(ϕ2−k ∗ f )(x)) .

Proof By switching to polar coordinates, we know that, for any t ∈ (0,∞) and
x ∈ Rn ,

Bt f (x) =
1

∣B(x , t)∣ ∫B(0,t)
f (x + y) dy(2.7)

=
1

νn tn ∫
t

0
∫
Sn−1

f (x + ρθ)ρn−1 dθ dρ,

where νn denotes the volume of the unit ball and Sn−1 the unit sphere. For any x ∈ Rn

and ρ ∈ (0,∞), let F(x , ρ) ∶= ρn−1
∫Sn−1 f (x + ρθ) dθ. Now, we claim that, for almost

every t ∈ (0,∞) and any x ∈ Rn ,

∂
∂t ∫

t

0
∫
Sn−1

f (x + ρθ)ρn−1 dθ dρ = F(x , t).(2.8)
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Indeed, by the Hölder inequality, we obtain, for any t1, t2 ∈ (0,∞) with t1 < t2 and
x ∈ Rn ,

∫

t2

t1
∣F(x , ρ)∣ dρ ≤ ∫

{y∈Rn ∶t1≤∣y∣≤t2}
∣ f (x + y)∣ dy

≤ ∥ f ∥Lp(Rn)∣ {y ∈ Rn
∶ t1 ≤ ∣y∣ ≤ t2}∣

1/p′
<∞,

which implies that, for any x ∈ Rn , F(x , ⋅) ∈ L1
loc(0,∞) and (2.8) holds true. his

proves the above claim. From this claim and (2.7), we deduce that, for almost every
t ∈ (0,∞) and any x ∈ Rn ,

∂
∂t

(Bt f (x)) = −
n

νn tn+1 ∫B(0,t)
f (x + y) dy +

1
νn t ∫Sn−1

f (x + tθ) dθ .(2.9)

Repeating the above steps,we also obtain, for almost every t ∈ (0,∞) and any x ∈ Rn ,

∂
∂t

(Bt g(x)) = −
n

νn tn+1 ∫B(0,t)
g(x + y) dy +

1
νn t ∫Sn−1

g(x + tθ) dθ .

From this, (2.9), and Fubini’s theorem, it follows that, for almost every t ∈ (0,∞),

⟨
∂
∂t

(Bt f ), g⟩ = ∫
Rn

[−
n

νn tn+1 ∫B(x ,t)
f (y) dy +

1
νn t ∫Sn−1

f (x + tθ) dθ] g(x) dx

= −
n

νn tn+1 ∫Rn
f (y)∫

B(y ,t)
g(x) dx dy

+
1

νn t ∫Sn−1 ∫Rn
f (x + tθ)g(x) dx dθ

= ⟨ f ,
∂
∂t

(Bt g)⟩ .

his proves (i).
To show (ii), we ûrst observe that by (2.9), the Minkowski inequality, the Hölder

inequality, and Fubini’s theorem, for almost every t ∈ (0,∞),

∥
∂
∂t

(Bt f )∥
Lp(Rn)

≲ { ∫
Rn

[∫
B(0,t)

∣ f (x + y)∣ dy]
p
dx}

1/p

+ { ∫
Rn

[∫
Sn−1

∣ f (x + tθ)∣ dθ]
p
dx}

1/p

≲ [∫
Rn ∫B(0,t)

∣ f (x + y)∣p dy dx]
1/p

+ [∫
Rn ∫Sn−1

∣ f (x + tθ)∣p dθ dx]
1/p

≲ ∥ f ∥Lp(Rn) <∞.

hat is, ∂
∂t (Bt f ) ∈ Lp(Rn) for almost every t ∈ (0,∞). From this and the fact that

{ϕ2−k}k∈N is an approximation to the identity, it follows that, for almost every t ∈

(0,∞) and x ∈ Rn ,

lim
k→∞

ϕ2−k ∗ (
∂
∂t

(Bt f )) (x) =
∂
∂t

(Bt f (x)) .
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Combining this, (2.9), and Fubini’s theorem, we know that, for almost every t ∈

(0,∞) and x ∈ Rn ,

∂
∂t

(Bt f (x))

= lim
k→∞
∫
Rn

ϕ2−k(x − y)
∂
∂t

(Bt f (y)) dy

= lim
k→∞
∫
Rn

ϕ2−k(x − y) [−
n

νn tn+1 ∫B(0,t)
f (y + z) dz +

1
νn t ∫Sn−1

f (y + tθ) dθ] dy

= lim
k→∞

[−
n

νn tn+1 ∫B(0,t)
ϕ2−k ∗ f (x + z) dz +

1
νn t ∫Sn−1

ϕ2−k ∗ f (x + tθ) dθ] .

From this and (2.9) with f replaced by ϕ2−k ∗ f , we deduce that, for almost every
t ∈ (0,∞) and x ∈ Rn ,

∂
∂t

(Bt f (x)) = lim
k→∞

∂
∂t

(Bt(ϕ2−k ∗ f )(x)) .

his ûnishes the proof of Lemma 2.2. ∎

Now we are ready to proveheorem 1.1.

Proof of Theorem 1.1 We ûrst show (i)⇒ (ii). Let f ∈W4,p(Rn) and

g1 ∶=
−1

4(n + 2)(n + 4)
∆2 f .

For any φ ∈ S(Rn), from Lemmas 2.1 and 2.2, it follows that there exists a set
E ⊂ (0,∞) ofmeasure zero such that

lim
t∈(0,∞)∖E , t→0+

⟨
1
t
∂
∂t

(
f − Bt f

t2
) , φ⟩ = lim

t→0+
⟨ f ,

1
t
∂
∂t

(
φ − Btφ

t2
)⟩

= ⟨ f ,
−1

4(n + 2)(n + 4)
∆2φ⟩ = ⟨g1 , φ⟩.

his proves (ii).
We now show (ii)⇒ (iii). Assume that (ii) is satisûed. By Lemmas 2.1 and 2.2,we

know that there exists a set E ⊂ (0,∞) ofmeasure zero such that, for any φ ∈ S(Rn),

⟨∆2 f , φ⟩ = ⟨ f , ∆2φ⟩ = lim
t→0+

⟨ f ,−
1

4(n + 2)(n + 4)t
∂
∂t

(
φ − Btφ

t2
)⟩

= lim
t∈(0,∞)∖E , t→0+

⟨−
1

4(n + 2)(n + 4)t
∂
∂t

(
f − Bt f

t2
) , φ⟩ .

Combining this and (ii),we conclude that∆2 f = − 1
4(n+2)(n+4) g1 ∈ Lp(Rn) inS′(Rn).

Since f ∈ Lp(Rn), it follows that f ∈W4,p(Rn).
We now claim that, for any f ∈ C∞(Rn) ∩W4,p(Rn), x ∈ Rn , and t ∈ (0,∞),

∣
1
t
∂
∂t

(
f (x) − Bt f (x)

t2
)∣ ≤

5
72

M
⎛

⎝
∑
∣α∣=4

∣∂α f ∣
⎞

⎠
(x),(2.10)
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whereM denotes theHardy–Littlewoodmaximal function as in (1.5). Indeed, by the
Taylor expansion of f of order 4 and integration by parts,we obtain, for any t ∈ (0,∞)

and x ∈ Rn ,

∣
∂
∂t

(
f (x) − Bt f (x)

t2
)∣

=

RRRRRRRRRRRR

∂
∂t

⎛

⎝
∑
∣α∣=4

t2

3! ∫
1

0
(1 − s)3−∫

B(0⃗n ,1)
∂α f (x + sty)yα dy ds

⎞

⎠

RRRRRRRRRRRR

=

RRRRRRRRRRRR

∑
∣α∣=4

t
6 ∫

1

0
(1 + s)(1 − s)2−∫

B(0⃗n ,1)
∂α f (x + sty)yα dy ds

RRRRRRRRRRRR

≤
t
6 ∫

1

0
(1 + s)(1 − s)2−∫

B(x ,st)

⎡
⎢
⎢
⎢
⎢
⎣

∑
∣α∣=4

∣∂α f (y)∣
⎤
⎥
⎥
⎥
⎥
⎦

dy ds ≤
5t
72

M
⎛

⎝
∑
∣α∣=4

∣∂α f ∣
⎞

⎠
(x),

which proves (2.10).
For more general f ∈ W4,p(Rn), we argue by an approximation method. To this

end, let ϕ ∈ C∞c (Rn) be such that ∫Rn ϕ(x)dx = 1. hen ϕ2−k ∗ f ∈ C∞(Rn) ∩

W4,p(Rn) for any k ∈ N. Since {ϕ2−k}k∈N is an approximation to the identity, it then
follows that, for almost every x ∈ Rn , limk→∞(ϕ2−k ∗ f )(x) = f (x). By Lemma 2.2
and (2.10), we know that, for almost every t ∈ (0,∞) and x ∈ Rn ,

∣
1
t
∂
∂t

(
f (x) − Bt f (x)

t2
)∣

= lim
k→∞

∣
1
t
∂
∂t

(
(ϕ2−k ∗ f )(x) − Bt(ϕ2−k ∗ f )(x)

t2
)∣

≤
5
72

M
⎛

⎝
∑
∣α∣=4

sup
k∈N

∣ϕ2−k ∗ ∂α f ∣
⎞

⎠
(x) ≤

5
72

M
⎛

⎝
∑
∣α∣=4

M( ∣∂α f ∣)
⎞

⎠
(x),

whereM denotes theHardy–Littlewoodmaximal function as in (1.5). Now, letting

g2 ∶=
5
72

M
⎛

⎝
∑
∣α∣=4

M( ∣∂α f ∣)
⎞

⎠
,

we then deduce from the boundedness ofM on Lp(Rn), with p ∈ (1,∞), that

∥g2∥Lp(Rn) ≲ ∑
∣α∣=4

∥∂α f ∥Lp(Rn) ≲ ∥ f ∥W4,p(Rn) ,

which proves (iii).
he proof of (iii)⇒ (iv) is trivial.
Observe that (v) follows directly from (iv) with C3 ∶= C1 and g4 ∶= Mg3 , where

M denotes theHardy–Littlewoodmaximal function as in (1.5).
We now show (v)⇒ (i). To show (i), for any f ∈ Lp(Rn), t ∈ (0,∞) and x ∈ Rn ,

let

G(x , t) ∶= −∫
B(x ,t)

1
t
∂
∂t

(
f (y) − BC3 t f (y)

t2
) dy.
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hen, by (1.2), we know that there exists a set E ⊂ (0,∞) ofmeasure zero such that

sup
t∈(0,∞)∖E

∥G(⋅, t)∥ Lp(Rn)
≤ ∥g4∥Lp(Rn) <∞.

From this and the Banach-Alaoglu theorem (see [17, p. 70,heorem 3.17]), it follows
that there exist a sequence {t j}∞j=1 of positive integers converging to zero and a func-
tion h ∈ Lp(Rn) such that ∥h∥Lp(Rn) ≤ ∥g4∥Lp(Rn) and, for any φ ∈ S(Rn),

lim
j→∞

⟨G(⋅, t j), φ⟩ = ⟨h, φ⟩.(2.11)

On anotherhand, for any φ ∈ S(Rn), by Fubini’s theorem,we know that, for almost
every t ∈ (0,∞),

⟨G(⋅, t), φ⟩ =
1
t ∫Rn

φ(x)−∫
B(0⃗n ,t)

∂
∂t

(
f (x + y) − BC3 t f (x + y)

t2
) dy dx

=
1
t
−∫
B(0⃗n ,t)

∫
Rn

∂
∂t

(
f (x + y) − BC3 t f (x + y)

t2
)φ(x) dx dy

= ⟨ f , −∫
B(⋅,t)

1
t
∂
∂t

(
φ(y) − BC3 tφ(y)

t2
) dy⟩ .

Combining this, Lemma 2.1 and (2.11), we conclude that

⟨h, φ⟩ = ⟨ f , −
C4

3

4(n + 2)(n + 4)
∆2φ⟩ = ⟨−

C4
3

4(n + 2)(n + 4)
∆2 f , φ⟩ .

his implies that ∆2 f = − 4(n+2)(n+4)
C4
3

h ∈ Lp(Rn) and hence f ∈W4,p(Rn).
Finally, we deduce from above proof that all the functions {g i}

4
i=1 can be chosen

so that, for any i ∈ {1, 2, 3, 4}, ∥g i∥Lp(Rn) ∼ ∥∆2 f ∥Lp(Rn) with the positive equivalence
constants independent of f . his ûnishes the proof ofheorem 1.1. ∎

Remark 2.3 By the proof of (v) ⇒ (i) of heorem 1.1, we ûnd that the fact that
(1.2) holding true for almost every t in a small right neighborhood of zero is enough
to guarantee that heorem 1.1(i) holds true. hus, for any K ∈ (0,∞], if we replace
t ∈ (0,∞) by t ∈ (0,K) in (iii), (iv), and (v) of heorem 1.1, these conclusions still
hold true.

Remark 2.4 Observe that in the proof of (ii) ⇒ (iii) of heorem 1.1, we actually
ûrst prove (ii)⇒ (i). hus, the equivalence between (i) and (ii) of heorem 1.1 can
be proved independently of the proofs of (iii), (iv) and (v) of heorem 1.1. More-
over, it is easy to show that this equivalence is also true if we replace the underlying
Euclidean space Rn by an open set Ω of Rn , because in (ii) we are only concerned
with the limiting behavior when t → 0+ and B(x , t) ⊂ Ω if x ∈ Ω and t ∈ (0,∞) is
small enough. It is still unclear whether or not heorem 1.1(i) is equivalent, respec-
tively, to (iii), (iv), or (v) of heorem 1.1 when the underlying space is an open set
of Rn ; the main diõculty is that the present proofs for other equivalences strongly
depend on the symmetry of the balls,which is not available for any ball of any open
set of Rn .
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We also obtain the following corollary; its proof is similar to that of heorem 1.1,
the details being omitted.

Corollary 2.5 For any t ∈ (0,∞), f ∈ L1
loc(R

n) and x ∈ Rn , let H f (x , t) ∶= 1
t

∂
∂t

(
f (x)−B t f (x)

t2 ). Let p ∈ (1,∞). hen the following statements aremutually equivalent:
(i) f ∈W4,p(Rn).
(ii) f ∈ Lp(Rn) and there exist a set E ⊂ (0,∞) of measure 0 and g ∈ Lp(Rn) such

that
lim inf

t∈(0,∞)∖E , t→0+
H f (⋅, t) = g in S′(Rn

);

(iii) f ∈ Lp(Rn) and there exist g ∈ Lp(Rn) and a sequence {tk}k∈N of positive num-
bers such that limk→∞ tk = 0 and

lim
k→∞

H f (⋅, tk) = g in S′(Rn
);

(iv) f ∈ Lp(Rn) and there exists a set E ⊂ (0,∞) ofmeasure 0 such that

sup
t∈(0,∞)∖E

∥H f (⋅, t)∥ Lp(Rn)
=∶ C4 <∞.

In (ii) and (iii), the function g can be chosen such that ∥g∥Lp(Rn) is equivalent to
∥∆2 f ∥Lp(Rn), with the positive equivalence constants independent of f . his also holds
true for C4 in (iv).

Proof of Corollary 1.2 If f ∈ W4,p(Rn), then, by heorem 1.1(ii), we know that
there exists a function g ∈ Lp(Rn) such that ∥g∥Lp(Rn) ≲ ∥∆2 f ∥Lp(Rn) and, for almost
every t ∈ (0,∞) and x ∈ Rn ,

∣
∂
∂t

(
f (x) − Bt f (x)

t2
)∣ ≤ tg(x).

From this, it follows that, for almost every x ∈ Rn ,

f K ,∗c ,q (x) ≲ ess sup
t∈(0,K)

[−∫
B(x ,t)

∣g(y)∣q dy]
1
q

≲ [M( ∣g∣q)(x)]
1
q
,

whereM denotes theHardy–Littlewoodmaximal function as in (1.5). his, combined
with the boundedness of themaximal operatorM on Lp/q(Rn)with q ∈ [1, p), further
implies that

∥ f K ,∗c ,q ∥Lp(Rn) ≲ ∥[M(∣g∣q)]
1
q ∥

Lp(Rn)
∼ ∥M(∣g∣q)∥

1
q

Lp/q(Rn)
≲ ∥g∥Lp(Rn) ≲ ∥∆2 f ∥Lp(Rn) .

Conversely, suppose that f K ,∗c ,q ∈ Lp(Rn). hen, by the deûnition of f K ,∗c ,q and the
Hölder inequality, we conclude that, for almost every t ∈ (0,K) and x ∈ Rn ,

−∫
B(x ,t)

∂
∂t

(
f (y) − Bt f (y)

t2
) dy ≤ t f K ,∗c ,q (x).
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From this,heorem 1.1 and Remark 2.3, we deduce that f ∈W4,p(Rn) and

∥ f ∥W4,p(Rn) ≲ ∥ f K ,∗c ,q ∥Lp(Rn) <∞.

his ûnishes the proof of Corollary 1.2. ∎

3 Proofs of Theorems 1.3 and 1.4

In this section, we characterize the higher order Sobolev spaces W2ℓ+2,p(Rn), with
ℓ ∈ N and p ∈ (1,∞), by means of Bℓ ,t as in (1.3). To this end, we need the following
technical lemma, which is from [9, Lemma 2.1].

Lemma 3.1 For any ℓ ∈ N, t ∈ (0,∞), f ∈ S(Rn), and ξ ∈ Rn , it holds true that

(Bℓ ,t f )∧(ξ) = [ 1 − Aℓ(t∣ξ∣)] f̂ (ξ),

where

Aℓ(s) ∶= γn
4ℓ

(
2ℓ
ℓ )
∫

1

0
(1 − u2

)
n−1
2 (sin

us
2
)

2ℓ
du, ∀ s ∈ R,

with γn ∶= [∫
1
0 (1 − u2)

n−1
2 du]−1 and (

2ℓ
ℓ ) being the binomial coeõcients.

Now we are ready to proveheorem 1.3.

Proof of Theorem 1.3 Let φ ∈ S(Rn). From Lemma 3.1 and the fact that, for any
f ∈ S(Rn) and x ∈ Rn , f (x) = (2π)−n/2

∫Rn f̂ (ξ)e ix ξ dξ, we deduce that, for any
ℓ ∈ N, t ∈ (0,∞), and x ∈ Rn ,

φ(x) − Bℓ ,tφ(x) = (2π)−n/2
∫
Rn
Aℓ(t∣ξ∣)φ̂(ξ)e ix ξ dξ.

Combining thiswith the fact that, for any ℓ ∈N and ξ ∈Rn , [(−∆)ℓφ]∧(ξ)= ∣ξ∣2ℓ φ̂(ξ),
we obtain, for any ℓ ∈ N and x ∈ Rn ,

lim
t→0+

φ(x) − Bℓ ,tφ(x)
t2ℓ

(3.1)

= (2π)−n/2
∫
Rn

lim
t→0+

Aℓ(t∣ξ∣)
t2ℓ

φ̂(ξ)e ix ξ dξ

= γn
4ℓ

(
2ℓ
ℓ )
∫

1

0
(1 − u2

)
n−1
2 (

u
2
)

2ℓ
du(2π)−n/2

∫
Rn

φ̂(ξ)∣ξ∣2ℓe ix ξ dξ

= aℓ(−∆)ℓφ(x),

where aℓ is as in (1.4).
On another hand, via a straightforward calculation,we conclude that, for any ℓ ∈ N

and t ∈ (0,∞),

φ(x) − Bℓ ,tφ(x) =
(−1)ℓ

(
2ℓ
ℓ )

2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)B∣ℓ− j∣tφ(x), ∀x ∈ Rn ,(3.2)
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where B0φ(x) ∶= φ(x). Let Eℓ ∶= {α ∈ (Z+)n ∶ ∣α∣ = 2, 4, . . . , 2ℓ}. From the Taylor
expansion of φ, it follows that for any ℓ ∈ N, j ∈ {0, 1, . . . , 2ℓ}, t ∈ (0,∞), and x ∈ Rn ,

B∣ℓ− j∣tφ(x) = φ(x) + ∑
α∈Eℓ

(∣ℓ − j∣t)∣α∣
1
α!

∂αφ(x)−∫
B(0⃗n ,1)

yα dy

+ ∑
∣α∣=2ℓ+1

(∣ℓ − j∣t)2ℓ+1

(2ℓ)! ∫

1

0
(1 − s)2ℓ−∫

B(0⃗n ,1)
∂αφ(x + sty)yα dy ds,

which, together with (3.2) and the fact that∑2ℓ
j=0(−1)

j(
2ℓ
j ) = 0 further implies that

φ(x) − Bℓ ,tφ(x)(3.3)

=
(−1)ℓ

(
2ℓ
ℓ )

2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)[ ∑

α∈Eℓ

(∣ℓ − j∣t)∣α∣
1
α!

∂αφ(x)−∫
B(0⃗n ,1)

yα dy]

+
t2ℓ+1

(2ℓ)!
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+1

]

× ∫

1

0
(1 − s)2ℓ−∫

B(0⃗n ,1)
[ ∑
∣α∣=2ℓ+1

∂αφ(x + sty)yα] dy ds

=∶ I1(x , t) + I2(x , t).

Now we estimate I1. Via a straightforward calculation, we ûnd that, for any ℓ ∈ N,
t ∈ (0,∞), and x ∈ Rn ,

I1(x , t) =
(−1)ℓ

(
2ℓ
ℓ )
∑
α∈Eℓ

t∣α∣
∂αφ(x)
α!

−∫
B(0⃗n ,1)

yα dy[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣∣α∣](3.4)

=
(−1)ℓ

(
2ℓ
ℓ )

ℓ

∑
k=1

t2k[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2k][ ∑

∣α∣=2k

∂αφ(x)
α!

−∫
B(0⃗n ,1)

yα dy] .

Since φ ∈ S(Rn), it follows that, for any ℓ, m ∈ N, t ∈ (0,∞) and x ∈ Rn ,
∣I2(x , t)∣ ≲ t2ℓ+1∥φ∥2ℓ+1,m . By this, we further conclude that, for any ℓ ∈ N and
x ∈ Rn , limt→0+

I2(x ,t)
t2ℓ = 0. Combining this, (3.3) and (3.4), we know that, for any

ℓ ∈ N, φ ∈ S(Rn) and x ∈ Rn ,

lim
t→0+

φ(x) − Bℓ ,tφ(x)
t2ℓ

= lim
t→0+

(−1)ℓ

(
2ℓ
ℓ )

ℓ−1

∑
k=1

1
t2ℓ−2k [

2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2k][ ∑

∣α∣=2k

∂αφ(x)
α!

−∫
B(0⃗n ,1)

yα dy]

+
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ][ ∑

∣α∣=2ℓ

∂αφ(x)
α!

−∫
B(0⃗n ,1)

yα dy] ,

which, togetherwith (3.1) and the arbitrariness of φ ∈ S(Rn), further implies that, for
any ℓ ∈ N, k ∈ {1, . . . , ℓ − 1}, φ ∈ S(Rn) and x ∈ Rn ,∑2ℓ

j=0(−1)
j(

2ℓ
j )∣ℓ − j∣2k = 0 and
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aℓ(−∆)ℓφ(x) =
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ][ ∑

∣α∣=2ℓ

∂αφ(x)
α!

−∫
B(0⃗n ,1)

yα dy] ,

where aℓ is as in (1.4). his ûnishes the proof ofheorem 1.3. ∎

he crucial tools used to establish the characterizations of higher order Sobolev
spaces is the following lemma.

Lemma 3.2 Let ℓ ∈ N, φ ∈ S(Rn), x ∈ Rn and C̃ be a given positive constant. hen

(3.5) lim
t→0+

1
t
∂
∂t

(
φ − Bℓ ,tφ

t2ℓ
)

= 2
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+2

]
aℓ+1

bℓ+1
(−∆)ℓ+1φ in S(Rn

)

and

(3.6) lim
t→0+

−∫
B(⋅,t)

1
t
∂
∂t

(
φ(y) − Bℓ ,C̃ tφ(y)

t2ℓ
) dy

= 2C̃2ℓ+2 (−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+2

]
aℓ+1

bℓ+1
(−∆)ℓ+1φ in S(Rn

),

where (2ℓ
j ) for any j ∈ {0, . . . , 2ℓ} denotes the binomial coeõcients and aℓ+1 and bℓ+1

are as in (1.4) with ℓ replaced by ℓ + 1.

Proof For any ℓ ∈ N, t ∈ (0,∞) and x ∈ Rn , by (3.2) and the Taylor expansion of φ,
we obtain

φ(x) − Bℓ ,tφ(x) =
(−1)ℓ

(
2ℓ
ℓ )

2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)[ ∑

α∈Eℓ+1

(∣ℓ − j∣t)∣α∣
1
α!

∂αφ(x)−∫
B(0⃗n ,1)

yα dy]

+
t2ℓ+3

(2ℓ + 2)!
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+3

]

× ∫

1

0
(1 − s)2ℓ+2−∫

B(0⃗n ,1)
[ ∑
∣α∣=2ℓ+3

∂αφ(x + sty)yα]dy ds.

From this andheorem 1.3, it follows that, for any ℓ ∈ N, t ∈ (0,∞), and x ∈ Rn ,

φ(x) − Bℓ ,tφ(x)

= aℓ(−∆)ℓφ(x)t2ℓ +
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+2

]
aℓ+1

bℓ+1
(−∆)ℓ+1φ(x)t2ℓ+2

+
t2ℓ+3

(2ℓ + 2)!
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+3

]

× ∫

1

0
(1 − s)2ℓ+2−∫

B(0⃗n ,1)
[ ∑
∣α∣=2ℓ+3

∂αφ(x + sty)yα]dy ds,
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where aℓ , aℓ+1, and bℓ+1 are as in (1.4). Combining this and integration by parts, we
conclude that, for any ℓ ∈ N, t ∈ (0,∞) and x ∈ Rn ,

1
t
∂
∂t

(
φ(x) − Bℓ ,tφ(x)

t2ℓ
)

= 2
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+2

]
aℓ+1

bℓ+1
(−∆)ℓ+1φ(x)

+
2t

(2ℓ + 2)!
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+3

]

× ∫

1

0
(1 + ℓs)(1 − s)2ℓ+1−∫

B(0⃗n ,1)
[ ∑
∣α∣=2ℓ+3

∂αφ(x + sty)yα]dy ds.

Similarly to the proof of Lemma 2.1, we conclude that (3.5) and (3.6) hold true. his
ûnishes the proof of Lemma 3.2. ∎

Proof of Theorem 1.4 With Lemma 2.1 replaced by Lemma 3.2, similarly to the
proof ofheorem 1.1, we can show heorem 1.4, the details being omitted. ∎

From the proofs of heorems 1.1 and 1.4, we deduce that (3.5) and (3.6) in
Lemma 3.2 are the key tools used to establish the characterizations of Sobolev spaces
W2ℓ+2,p(Rn) with ℓ ∈ N and p ∈ (1,∞). We can gain some inspiration from this. Let
ℓ ∈ N and φ ∈ S(Rn). From heorem 1.3 and Lemma 3.2, we deduce that, for any
k ∈ {0, 1, . . . , 2ℓ} and x ∈ Rn ,

lim
t→0+

1
t
∂2ℓ+1−k

∂t2ℓ+1−k (
φ − Bℓ ,tφ

tk
)

= (2ℓ + 2 − k)!
(−1)ℓ

(
2ℓ
ℓ )

[
2ℓ

∑
j=0

(−1) j
(
2ℓ
j
)∣ℓ − j∣2ℓ+2

]
aℓ+1

bℓ+1
(−∆)ℓ+1φ

in S(Rn) as well as an analogue of (3.6). hus, similarly to the proofs ofheorems 1.1
and 1.4, we can characterize the higher order Sobolev spaces W2ℓ+2,p(Rn) by means
of 1

t
∂2ℓ+1−k

∂t2ℓ+1−k (
f−Bℓ ,t f

tk ) as follows, the details being omitted.

heorem 3.3 Let p ∈ (1,∞), ℓ ∈ N and k ∈ {0, 1, . . . , 2ℓ}. hen the conclusions of
heorem 1.1 remain true when W4,p(Rn) and ∂

∂t (
f−B t f

t2 ) therein are replaced, respec-
tively, by W2ℓ+2,p(Rn) and ∂2ℓ+1−k

∂t2ℓ+1−k (
f−Bℓ ,t f

tk ).
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