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A Cohomological Property of m-invariant
Elements

M. Filali and M. Sangani Monfared

Abstract. Let A be a Banach algebra and let 7: A — Z(H) be a continuous representation of
A on a separable Hilbert space H with dim H = m. Let 7;; be the coordinate functions of 7 with
respect to an orthonormal basis and suppose that foreach 1 < j < m, Cj = > ||mjjllax < oo
and sup ; Cj < oo. Under these conditions, we call an element P € 1°°(m, A**) left w-invariant if

a-® ='m(a)® foralla € A. In this paper we prove a link between the existence of left 7-invariant
elements and the vanishing of certain Hochschild cohomology groups of A. Our results extend an
earlier result by Lau on F-algebras and recent results of Kaniuth, Lau, Pym, and and the second author
in the special case where 7: A — Cis a non-zero character on A.

1 Introduction

Let A be a Banach algebra and let A** be its double dual Banach algebra equipped
with the left Arens product O (c¢f. Arens [1] or Dales [3]). For continuous finite-
dimensional representations m: A — M,(C), the (left) m-invariant elements of
I°°(n, A**) were recently studied by the authors in connection with the characteri-
zation of finite-dimensional left ideals in the dual of left introverted subspaces of A*
(Filali-Monfared [5]). In this paper we extend the concept of 7-invariance to con-
tinuous representations on Hilbert spaces, and we prove an interesting link between
the existence of 7-invariant elements and the vanishing of certain Hochschild coho-
mology groups of A. In our proofs we use a modified version of a technique first
employed by Lau in his study of F-algebras [7]. We remark that our results generalize
an earlier result by Lau on F-algebras [7, Theorem 4.1] and recent results of Kaniuth—
Lau—Pym [6, Theorem 1.1], and of the second author [9, Theorem 2.3], which were
obtained for the special case where 7: A — Cis a non-zero character on A.

Throughout this paper, we assume that A is a Banach algebra and H is a separable
Hilbert space and dim H = m (1 < m < N;). We shall assume that H is equipped
with an orthonormal basis (e;)1<i<m, and, unless otherwise stated, .2’(H), the space
of all continuous linear operators on H, is equipped with its weak operator topology
(here and elsewhere in the paper, if m = ¥y, then in an equality suchas 1 < i <m,
we shall always assume thati < m). If 7: A — Z(H) is a continuous representation,
for each 1 < 7, j < m, we define the coordinate function 7;; € A* by 7;;(a) =
(m(a)ejlei), (a € A). We denote the canonical extension of 7 to A** by 7, so that 7 is
a w*-continuous representation of A** on H and for every ® € A*™, (7(®)e;jle;) =
(®,mj) (¢f. Filali-Monfared [5]). The projection map on the (i, j)-th coordinate is
defined byprij: ZL(H) — C, T+ (Tejle;).
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We recall that if E is a Banach left [right] A-module, then its dual space E* is a
Banach right [left] A-module in a canonical way:

(Aa,x) = (N a-x), [(a-A,x} = (A,x-a)] (ae A, x € EJ\ €EY).

In particular, it follows that both A* and A** have canonical Banach A-bimodule
structures induced from the multiplication of A.

2 m-invariance and Derivations
We use the following lemma repeatedly in the rest of this paper.

Lemma 2.1 Ifm: A — Z(H) is a continuous representation, then forall 1 <i,j <
m, and all a € A, we have

m m
(2.1) a-mj= W—mej(a% i a= W-Zﬂ'ik(ﬂ)ﬂ'kp
k=1 k=1

where w-Y . means the convergence is in the weak topology o (A*, A**).

Proof Let ® € A**, then

(@,a-7j) = (D a,m;;) = (F(® - aejle;) = (F(P)m(a)ej|e;)
= (%(@)(Z(w(a)e,-lq)@) Iei)
k=1
=" (m(@ejler) (F(@)exle;)
k=1

= mi(@)(®, my).

k=1
The second statement is proved similarly. ]

For our purpose of introducing well-defined Banach A-module operations using
a continuous representation 7: A — Z(H), we need to assume the following finite-
ness conditions on 7:

m

(2.2) Ci=>_lmijl

i=1

A <00, C= sup C; < 0.
1<j<m

Of course continuous finite-dimensional representations automatically satisfy the
conditions in (2.2). However, one can easily find examples of infinite-dimensional
representations satisfying these conditions. For example, if (7,)5°, is a sequence
of finite-dimensional representations of A such that for some M, N > 0 we have
||7|] < M and dim(m,) < N for all n, then the direct sum representation @3‘;1 Ty
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satisfies the conditions in (2.2) (with C < MN). If 7 satisfies the conditions in (2.2)
and if E is an arbitrary Banach right A-module, then we can turn the Banach space
I'(m, E) into a Banach A-bimodule with the following operations in which a € A and

x € I'(m, E):

23)  (@-D3) = (r@x) () = > mj(a)x(j) (1<i<m),
j=1

(2.4) x-a)i)=x@{)-a (1<i<m).

It follows from (2.2) that the module operations in (2.3) and (2.4) are well defined on
[*(m, E) and the convergence in (2.3) is absolute convergence. The space I'(m, E)* =
[°°(m, E*) inherits the dual Banach A-bimodule structure given by

25 (a-p)i) =a-20) (1<i<m,

26) @ a)i) = ("m@P) () =Y mi@p()) (1<i<m,

j=1

where @ € [°°(m, E¥), ‘m(a) is the transpose of the infinite matrix 7(a) = (;;(a)),
and the convergence in (2.6) is absolute convergence.

Definition 2.2 Let A be a Banach algebra and 7: A — £ (H) be a continuous
representation satisfying the conditions in (2.2). Suppose that A* is equipped with its
natural Banach right A-module action so that I°°(m, A**) is a Banach left A-module
with the canonical operation (a - ®)(i) = a - ®(i) (1 < i < m). We call an element
@ € I°°(m, A*) left m-invariant if for every a € A, we have a - ® = m(a)®, or
equivalently,

m

(a-®)(i) =Y mi(a)®(k) (1<i<m),

k=1

where the series is absolutely convergent. A right 7-invariant element can be defined
analogously (see the discussion prior to Theorem 2.10).

Definition 2.3 Letm: A — Z(H) be a continuous representation of A on a sepa-
rable Hilbert space H. Then 7 is said to satisfy the strong Hahn—Banach separation
property on the column 1 < j < m, if there exists € = €(j) > 0 such that for every
1 <i <m,d(m;j,E;j) > ¢ where

Eij = EH ) H{ﬂ'kj: k # l} C A*
and d(;;, E;;) is the distance between 7;; and the subspace E;;. The strong Hahn—
Banach separation property on the rows of 7 is defined similarly.

Lemma 2.4 Letw: A — Z(H) be a continuous, topologically irreducible representa-
tion.
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(i) Foreach1 <i<m,theset {m;;:1 < j < m}islinearly independent in A*.
(i) Foreach1 < j < m, theset {m;;: 1 <i < m} islinearly independent in A*.

Proof (i) Suppose that Z’;:l ajmix;, = 0, where aj € Cand 1 < k; < m, for
j=1,...,n Letx € H be defined by x = E;’Zl ajey;. Then for every a € A,

n

(7r(a)x|ei) = Zaj(ﬁ(a)ekj|e,-) = Zajﬂ',-kj(a) =0.
=1

j=1

It follows that x is not a cyclic vector for 7, and hence irreducibility of 7 implies that
x = 0. Therefore a; = - - - = «,, = 0, which is what we needed to show.

(ii) Suppose that Z?:l aim; = 0, where o € Cand 1 < ki < m, fori =
1,...,n Letx € H be defined by x = >/ &e,. Then for every a € A,

n

(W(a)ej\x) = Zai(ﬂ(a)eﬂek,) = Zaiﬂ'k‘,j(a) =0.
i=1

i=1

Since 7 is irreducible, {w(a)ej: a € A} is dense in H, and hence x = 0. Therefore
@ = -+ =, = 0, proving that {m;;: 1 < i < m} is linearly independent in A*.
| ]

The following is an immediate corollary of the above lemma. We recall that by a
result of Johnson, algebraically irreducible representations are automatically contin-
uous (¢f. Bonsall-Duncan [2, Theorem I11.25.7]).

Corollary 2.5 All finite-dimensional irreducible representations of a Banach algebra
satisfy the strong Hahn—Banach separation property on each of its columns and rows.

The following theorem is the main result of this paper.

Theorem 2.6 Let A be a Banach algebra and let m: A — £ (H) be a continuous
representation such that m satisfies the conditions in (2.2) as well as the strong Hahn—
Banach separation property on the column j, for some 1 < j < m. Suppose that
for every Banach right A-module E for which I'(m, E) is equipped with the bimodule
structure defined in (2.3)—(2.4), all continuous derivations d: A — I'(m, E)* are inner.
In that case, there exists a left m-invariant element 6]' € 1°°(m, A**) such that

(@), mj) = 6 (1 <i,k<m).

Proof Let us define

F=Tn"{m;:1<i<m}=Tn"

{71'1']'2 1<i< m} C A",

The equality of the two closures in the weak and norm topologies of A* follows
from the Mazur’s theorem (¢f. Dunford—Schwartz [4, Theorem V.3.13]). We as-
sume that A* has its natural Banach right A-module structure, and we turn I' (imn, A*)
and its dual [°°(m, A**) into Banach A-bimodules with the operations defined in
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(2.3)—(2.4) and (2.5)—(2.6), respectively. It follows from (2.1) that F is a Banach right
A-submodule of A*. If we let E = A*/F be the quotient Banach right A-module,
then the space I'(m, E) = I!(m, A*) /I'(m, F) inherits Banach A-bimodule operations
from I'(m, A*), and hence I' (m, E) and [' (m, E)* = I°°(m, E*) can also be equipped
with the Banach bimodule multiplications defined in (2.3)—(2.4) and (2.5)—(2.6), re-
spectively.

By our assumption, 7 satisfies the strong Hahn—Banach separation property on
the column j, and hence by the Hahn—Banach theorem, for each 1 < i < m, we can
choose ¥;; € A** such that

(2.7) (Wij,mej) = 0is |55 = dlmij, Eij) ™' < 1/e(j),
where E; = Iin' {my;: k # i} C A*. Let U; € I°°(m, A**) be defined by (i) =

U;;, 1 < i < m. We now show that the image of the inner derivation

b5 A— 1M A"™), arma-V;-V;-a=a -¥;—"'n(a)V;,
1

is a subset of I'(m, E)* = I'(m, F)° (the polar of I'(m, F) in [°°(m, A**)). Let X €
I'(m, F) be such that foreach 1 <[ < m,

D =" aum; (i € C),
i€F

where F) is a finite subset of N. Such elements are norm dense in ['(m, F), therefore
it suffices to show that for each a € A, (5@ (a) annihilates such an element. For each

a€ Aand 1 << m,using (2.1), we have:

(2.8) XD -a= Z Qimij - a = Z Oéil<W‘ Z 7Tik(‘1)7rkj>
k=1

i€F i€F;

=w- (Z ozumk(a)> Tkj-

k=1 “i€F
From the identities
M) =A(D)-a and (a-N)() = Zﬂ-lj(a)x(j);
=1
we find that
(05 (@), X) = (a-T; = T;-a,A) = (T;,X-a) — (Tj,a-X)

= (%), XD -a) — Z<%(i>, Zmz(a>A<Z>>.
=1 =1

i=1
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Using (2.8), we have

m m m m

(03, (@), A) = Z<@j(l)7w-2(zaimk(ﬂ)> 7Tkj> = 0> @) Wi(), AD)
=1 k=1 i€F i=1 =1
= Z Z Zailﬂik(ﬁlxﬁj(l)ﬂrkO - Z ZZ opmi(@){ W (i), mi; ) -
=1 k=1 ich i=1 I=1 keF,

Finally, by (2.7), we find that

m m

(0 (@, %) =D > aumala) = > > aum(a) = 0.

I=1 i€k i€F I=1

Thus 5@]@1) € I'(m,F)° = I}(m,E)* for all a € A. Therefore by assumption, the

. .. . . .
continuous derivation (5@], : A — I'(m, E)* must be inner; that is, there exists ¥ j €
I'(m, E)* such that 5@], = dg/ (in the special case that F = A*, we have I'(m, F)° =

I'(m,E)* = {0} and @J/ = 0). Thus, for every a € A, we have 5@(11) = 6y (a),
which is equivalent to ' !

a- (- T) ="na)(T; - T¥) (acA).
If we define 6]- = @j — @;, then for every a € A, we have
a- 6]' = t’]T(tl)@j and <6j(i),7rkj> = <@j(i),7rkj> = 51'](7

completing the proof of the theorem. ]

We can prove the following partial converse to Theorem 2.6.

Theorem 2.7 Let A be a Banach algebra and let m: A — Z(H) be a continuous
representation satisfying the conditions in (2.2). Suppose that for each 1 < j < m,
there exists a left m-invariant element ®; € I°°(m, A**) such that

(1) supj|@jHoo<oo;
(i) (®j(0), mj) = G (1 <ik<m).

If E is a Banach right A-module and I'(m, E) is equipped with the Banach A-bimodule
structure defined in (2.3)—(2.4), then every continuous derivation

d=(d;)i<icm: A — I'(m,E)*
is inner, provided that
(2.9) a7 (®(i)) = d7*(®;(1) (1 <4,j<m),

where d;*: A" — E™* is the double adjoint of d;.
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Proof Let us define F € [°°(m, E*) by
F(j) = d;*(@;(j)|p €E* (1< j<m).

We claim that d = 6_z. To show this, leta € A and x € I'(m, E), then

(2.10) (6s(a),x) =(a-F—F-a,x) = (F,x-a— w(a)x)

m

= (A @i, ®0) - a) = 3o (A @uli), Y m@)x() )
i=1 j=1

i=1

m m m

—Z (Di(i), d; (®() - a)) — D> > mijla){di(@i(i)), %)) -
i=1 j=1
However,
(2.11) di(x-a)=df(x)-a— Y (di(a),x)mj;, (a€A, x€E).
j=1

In fact, for all b € A, we can write:

(d (x-a),b) = <x, pr;(a- d(b))> = <x, pr;(d(ab) — tﬂ(b)d(a))>

= (x.di(ab)) — (x S, (@)
j=1

= (&) -a,b) ~ (3 {dj(a),x) 7, b)
j=1

= <d?(x) ra— (dja),x)mj;, b>’
j=1

which proves (2.11). Now, if in (2.10), we substitute the value of d; (x(i) - a) from
(2.11), and subsequently use condition (ii) in our theorem, we obtain

m m m

(2.12) (Fp(a). %) = D (Bi(i). d/=(0) -a) =Y D (dj(a), (D)) (Bi), mji)
i=1 =l j=1
—ZZW,](0)<CI?*(61(1))7E(])>
i=1 j=1

= (pri(a- @), d; (x(i)) — (d(a),x)
i=1

=N mila)(dr (@), %(j).-

i=1 j=1
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Since by the definition of left 7-invariance we have a- ®; = ‘7 (a)®;, we can also write

(2.13) > (pri(a- @), di (%(i)) = Z<Zm(a)@(j),d?(f(i>>>
i=1 =1 j=1
= Z Zﬂji(a)<df*(6i(j)),f(i)>
i=1 j=1
=D " mia){(d (@), %)) -

j=1 i=1
Therefore, using (2.13), we may rewrite (2.12) as

m m

(2.14)  (Fp(a),®) =Y > mij(@)(d;*(®;(i), %(j)) — (d(a), %)

j=1 i=1

— Z Zm]-(a)<di**($i(i))3(]')>-

i=1 j=1

By (2.9), the first and the third terms in the right-hand side of (2.14) cancel each
other, and thus we obtain

(0p(a),X) = —(d(a),X) ~ (a€A x€l'(ME)),
which implies that d = §_g, completing the proof of the theorem. ]

Remark 2.8 We have been unable to remove condition (2.9) in the above theo-
rem. Of course, this condition holds automatically when n = 1 and 7 is a non-zero
character on A, but in general it seems to impose a strong restriction on d. It would
be interesting to know whether (2.9) can be removed or substituted by a weaker as-
sumption.

Remark 2.9 As was kindly pointed out to us by the referee, it would be interest-
ing to study the relation of right m-invariant elements of I°°(n, A**) and fixed point
properties similar to those in Lau and Zhang [8].

In the following, we shall formulate Theorems 2.6 and 2.7 for right 7-invariant
elements of [°°(m, A**). The proofs that are similar to those given above are omit-
ted. We remark that using the same methods given in Filali-Monfared [5], right
m-invariant elements of [°°(n, A**) can be used to characterize finite-dimensional
right ideals in A** equipped with the right Arens product ¢. More generally, if X is a
faithful, right introverted subspace of A* for which X* is equipped with the induced
right Arens product <, then [5, Lemma 2.2] remains true without any change, and
the analogues of [5, Lemma 2.4, Theorems 2.7 and 2.8] can be readily formulated
and proved for right 7-invariants and finite-dimensional right ideals in X*.
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Let A be a Banach algebra and let 7: A — £ (H) be a continuous representation
satisfying the conditions

m

(2.15) C,’ :ZHTF,']‘

j=1

ax <00, C= sup C; <oo.
1<i<m

If E is an arbitrary Banach left A-module, then we can turn I!(m, E) into a Banach
A-bimodule with the following operations:

216) (a-®)() =a-x(i), & a)i)=("m(@)%) ()= m@k),

k=1

where 1 < i < m. The dual space I°°(m, E*) = ['(m, E)* inherits the canonical
Banach A-bimodule structure, given by:

(@-@)) = (m@P)i) = Y_ ml@)p(k), (@-a)i) =2()-a,
k=1

foreveryl <i <m.

Suppose that 7 satisfies the conditions in (2.15) and that A* is equipped with its
natural Banach left A-module action so that [°°(m, A**) is a Banach right A-module
with the canonical action (® - a)(i) = ®(G) - a (1 < i < m). We call an element
@ € [°°(m, A**) right 7-invariant if for every a € A, we have ® - a = 7(a)®.
Theorem 2.10 Let A be a Banach algebra and let m: A — £ (H) be a continuous
representation such that 7 satisfies the conditions in (2.15) and the strong Hahn—Banach
separation property on the row i, for some 1 < i < m. Suppose that for every Banach
left A-module E for which I'(m, E) is equipped with the bimodule structure defined in
(2.16), all continuous derivations d: A — 1'(m, E)* are inner. In that case, there exists
a right m-invariant element ®; € [°°(m, A**) such that

(@;(j), ) = 0 (1 < jok<m).

Theorem 2.11 Let A be a Banach algebra and let m: A — £ (H) be a continuous
representation satisfying the conditions in (2.15). Suppose that for each 1 < i < m,
there exists a right w-invariant element ®; € 1°°(m, A**) such that

(i) sup; [®illoc < o00;
(i) (@i(j),mi) =0 (1< j,k<m).
If E is a Banach left A-module and I'(m, E) is equipped with the Banach A-bimodule

structure defined in (2.16), then every continuous derivation d = (dj)1<i<m: A —
IN(m, E)* is inner, provided that

de* (Bii) = d* (Bj(0) (1 <iyj<m),
where d;*: A** — E*** is the double adjoint of d;.
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