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The aspect ratio effect on side and basal melting in fresh water is systematically
investigated across a range of Rayleigh numbers and ambient temperatures using direct
numerical simulations. The side mean melt rate follows a Ra1/4 γ −3/8 scaling relation
in the side-melting dominant regime, where Ra is the Rayleigh number, and γ is the
width-to-height aspect ratio of the ice block. In the basal-melting dominant regime, the
basal mean melt rate follows a Ra1/4γ 3/8 scaling relation at low Rayleigh numbers,
but transitions to a Ra1/3γ 1/2 scaling relation at higher Rayleigh numbers. This scaling
transition is attributed to the formation of a bottom cavity resulting from flow separation at
high Rayleigh numbers. The overall mean melt rate exhibits a non-monotonic dependence
on the aspect ratio, driven by the competition between side and basal melting. The
proposed theoretical model successfully captures the observed non-monotonic behaviour,
and accurately predicts the overall mean melt rate over the considered range of Rayleigh
numbers and ambient temperatures, especially in the side- and basal-melting dominant
regimes. More specifically, the side, basal and overall mean melt rates follow a linear St
scaling relation for ambient temperatures Tw � 15 ◦C, with St being the Stefan number
(the ratio between sensible heat and latent heat), but deviations from this scaling relation
and a non-monotonic dependence on the ambient temperature are observed at lower
ambient temperatures, which can be attributed to the density anomaly effect.
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1. Introduction
The melting process is of critical importance in various geophysical and industrial fields,
including the melting of icebergs and ice shelves (Huppert & Turner 1978; Epstein &
Cheung 1983; Dutrieux et al. 2014; Ristroph 2018), the food industry (Rahman 2020)
and the melting of phase-change materials (Dhaidan & Khodadadi 2015). Given the
rapid depletion of the Earth’s ice reserves (Chen et al. 2006; Sutherland et al. 2019),
understanding the melting behaviour of ice is increasingly crucial in our warming climate.
The accelerated loss of icebergs and sea ice floes significantly impacts climate and
environmental changes, such as the reduction of the Atlantic meridional overturning
circulation (Srokosz et al. 2012), the reduction of sea ice cover and thus a loss of albedo
(Pistone et al. 2014; Jenkins & Dai 2021), and the enhanced drawdown and sequestration of
CO2 (Smith et al. 2013; Duprat et al. 2016). Consequently, it is essential to improve current
climate models to more accurately predict observed changes in ice cover. Enhancing our
understanding of ice sheet–ocean interactions on a fundamental level is imperative, as the
physical processes governing these interactions remain inadequately understood (Truffer
& Motyka 2016; Malyarenko et al. 2020; Cenedese & Straneo 2023; Du et al. 2024).

The coupling between fluid motions and the evolution of solid boundaries driven by
the melting process results in a moving free-boundary problem, i.e. the Stefan problem
(Rubinstein 1971). This problem is highly complex since the evolution of the surface forms
part of the solution to be determined. During melting, the solid–liquid interface continually
recedes due to the heat flux across it, and the meltwater released by the phase change
process subsequently alters the temperature field in the surrounding fluid. Temperature
changes lead to density variations that drive buoyancy-driven convective flows. While
buoyancy-driven convective flows with fixed boundaries are well studied (Bejan 1993;
Kadanoff 2001; Ahlers et al. 2009; Lohse & Xia 2010; Schlichting & Gersten 2017; Lohse
& Shishkina 2023, 2024), the underlying mechanisms governing the interplay between
morphology evolution driven by melting, and the dynamics of buoyancy-driven convective
flow remain to be developed and explored.

Many previous experimental and numerical studies have investigated the interaction
between ice melting and ambient flow at laboratory scales, including dispersed ice melting
in flows (Vanier & Tien 1970; Hao & Tao 2002; Hester et al. 2021; Weady et al. 2022; Yang
et al. 2024b), the influence of convective flows (Davis et al. 1984; Dietsche & Müller 1985;
Favier et al. 2019; Wang et al. 2021a,b; Yang et al. 2023), the impact of shear (Couston
et al. 2021; Hester et al. 2021), and the effect of rotation (Ravichandran & Wettlaufer 2021;
Toppaladoddi 2021; Ravichandran et al. 2022). Additionally, the melting process in water
is notably complex due to the unique effect of temperature on the density of liquid water,
which reaches a maximum at approximately 4 ◦C. This density anomaly leads to distinct
regimes of ice morphology and melting rates under varying ambient water temperatures
(Wang et al. 2021a; Weady et al. 2022).

Despite extensive investigations into the fundamental mechanisms of the melting
process (Dhaidan & Khodadadi 2015; Malyarenko et al. 2020; Cenedese & Straneo 2023;
Du et al. 2024), the effect of geometry on the melt rate has received comparatively less
attention. Icebergs and ice floes exhibit significant variations in shape and size, with
horizontal extents ranging from several metres to several hundred kilometres (Budd et al.
1980; Silva et al. 2006; Andres et al. 2015; Rackow et al. 2017). A limited number
of experiments and simulations have shown that the overall melt rate depends on the
aspect ratio (Hester et al. 2021; Yang et al. 2024a,b). Hester et al. (2021) conducted a
comprehensive set of laboratory experiments and numerical simulations to examine the
relationship between melt rate and iceberg size and shape under three distinct ambient
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velocities. The depth of the ice block was fixed, and its length was varied to explore how
the aspect ratio influences the melt rate. They revealed that the geometry significantly
affects iceberg melt rates. In their study, the volume of the ice block is altered as the
aspect ratio changes. This raises another fundamental question: for the ice blocks with
fixed volume, how do the melt rates depend on the aspect ratio? It is essential to maintain a
constant initial volume (or area) for the investigation of shape effects. If the initial volumes
(or areas) were to vary, then the melt time required to reach a given fraction of the initial
volume (or area), as well as the corresponding mean melt rate, would depend on both
the initial volume (or area) and the aspect ratio. This interdependence would obscure the
isolated influence of aspect ratio on the melting dynamics. To address this, Yang et al.
(2024b) investigated the influence of the initial aspect ratio on the melting dynamics of an
elliptical ice block immersed in a uniform external flow. They found that the shape of the
ice block strongly affects the melt rate, and the aspect ratio corresponding to the slowest
melt rate varies with the strength of the external flow. Furthermore, Yang et al. (2024a)
studied the effect of the initial aspect ratio on the melting dynamics of an elliptical shape
of ice immersed in quiescent fresh water, where natural convection driven by thermal
buoyancy governs the flow. They observed a non-monotonic relationship between the melt
rate and the initial aspect ratio, with circular shapes not exhibiting the slowest melt rate
in quiescent fresh water. They also proposed a theoretical model to predict the mean melt
rate. However, their model differs from the results of direct numerical simulations and fails
to capture the non-monotonic dependence of the melt rate on the initial aspect ratio. This
highlights the need for an improved theoretical model capable of accurately predicting the
non-monotonic relationship between the initial aspect ratio and melt rate. Moreover, the
neglect of the aspect ratio effect in current climate models emphasises the necessity of
including this factor to more accurately predict iceberg melt rates.

For rectangular ice blocks with a fixed volume (or area), an increase in the initial aspect
ratio reduces the surface area of the side walls while increasing the surface area of the basal
walls. As a result, the side melt rate is expected to decrease, whereas the basal melt rate
should increase with increasing initial aspect ratio. Thus the non-monotonic dependence of
the overall melt rate on the initial aspect ratio can be attributed to the competition between
side and basal melting. To quantify this non-monotonic behaviour, it is logical to first
investigate the theoretical scaling relations for the side and basal melt rates as a function
of the initial aspect ratio separately. These scaling relations can subsequently be integrated
to develop a theoretical model for predicting the overall melt rate. Such an approach is
extendable to geophysical icebergs. If the scaling relations for the side and basal melt rates
of geophysical icebergs can be determined or extrapolated, then it becomes possible to
estimate their overall melt rate through these scaling relations.

In this study, we numerically and theoretically investigate the influence of the initial
aspect ratio on both side and basal melting of a rectangular ice block with fixed volume
(or area) in quiescent fresh water through direct numerical simulations. We propose
theoretical scaling relations to characterise the effect of the initial aspect ratio on the side
and basal melt rates. Additionally, we introduce a comprehensive theoretical model that
correlates the overall melt rate with the initial aspect ratio, derived from the individual
scaling relations for side and basal melt rates. Our numerical results demonstrate that
the proposed theoretical scaling relations and model can accurately predict the effect of
the initial aspect ratio on the side, basal and overall melt rates across varying Rayleigh
numbers and ambient temperatures.

The paper is organised as follows. In § 2, we detail the governing equations, control
parameters and numerical methods employed in the simulations. Section 3 presents the
effect of aspect ratio on side, basal and overall melt rates across varying Rayleigh numbers
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with a constant ambient temperature. In § 4, we examine the impact of aspect ratio on side,
basal and overall melt rates for different ambient temperatures, while maintaining a fixed
Rayleigh number. Finally, we provide conclusions and an outlook in § 5.

2. Numerical method and set-up
In the present study, we rely on the phase field method (Hester et al. 2020) to simulate
the melting process of a solid in fresh water. This method has been validated extensively
and employed in numerous previous investigations (Favier et al. 2019; Couston et al. 2021;
Hester et al. 2021; Liu et al. 2021; Yang et al. 2023, 2024a,b). The phase field variable φ

is integrated in both time and space, transitioning smoothly from value 1 in the solid phase
to 0 in the liquid phase, with the interface defined at φ = 1/2. The governing equations,
under the incompressibility condition ∇ · u = 0, are

∂u
∂t

+ u · ∇u = −∇ p

ρ0
+ ν ∇2u − gρ′

ρ0
ey − φu

η
, (2.1)

∂T

∂t
+ u · ∇T = κ ∇2T + L

cp

∂φ

∂t
, (2.2)

∂φ

∂t
= C ∇2φ − C

ε2 φ (1 − φ)
(

1 − 2φ + ε

Γ
(T − Tm)

)
. (2.3)

Here, u denotes the velocity field, ρ′ = ρ − ρ0 is the fluctuating density from a reference
value ρ0, p is the kinematic pressure, T is the temperature, Tm = 0 ◦C is the equilibrium
melting temperature, ν is the kinematic viscosity, g represents gravitational acceleration
in the vertical direction ey , κ is the thermal diffusivity, L is the latent heat, and cp is the
specific heat capacity. The density anomaly of water near 4 ◦C is incorporated using the
relation

ρ = ρ0
(
1 − β |T − Tmax |q

)
, (2.4)

where β = 9.3 × 10−6 (K)−q is the generalised thermal expansion coefficient, with the
exponent q = 1.895 and Tmax = 4 ◦C (Gebhart & Mollendorf 1977; Wang et al. 2021a;
Yang et al. 2024a).

The phase field model employed in this study follows the formulation of Hester et al.
(2020) and properly reflects the Gibbs–Thomson effect (Hester et al. 2020). The symbols
ε, η, C and Γ are the parameters of the phase field model, which can be explained as
follows. The parameter ε measures the diffuse interface thickness and is set equal to the
grid spacing following the convergence tests in Favier et al. (2019). The limit ε → 0 leads
to the exact Stefan boundary condition for temperature at the liquid–solid interface:

Lun = cpκ

(
∂T (s)

∂n
− ∂T (l)

∂n

)
, (2.5)

where un is the normal velocity of the interface between the solid and liquid phases, n
represents the normal direction of the interface, and the superscripts (s) and (l) denote
the solid and liquid phases, respectively. The penalty parameter η is used to decay the
velocity to zero in the solid phase, and is set to equal the time step (Hester et al. 2020).
Additionally, a direct forcing method is employed to set the velocity to zero for φ > 0.9
to prevent spurious motions in the solid phase (Howland 2022). The diffusivity C is
defined as C = 6Γ κ/(5εL), where Γ is the surface energy coefficient related to the Gibbs–
Thomson effect (Hester et al. 2020; Howland 2022). In this study, we set C = 1.2κ and
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Water

Aspect ratio
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Box size

Ice

γ = W/H
D= WH

√
L = 10D
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W

Figure 1. (a) The schematic of the simulation set-up. (b) Illustration depicting the procedure for calculating the
side and basal mean melt rates. The red dashed rectangle represents the initial shape of the ice block. The black
dash-dotted contour indicates the ice shape at the point when Vm = 80 % of the initial area (volume) of the ice
block has melted in 2-D (3-D) simulations. The blue solid rectangle represents the corresponding equivalent
ice rectangle.

εΔ/Γ = 10, where Δ is the initial temperature difference between the ambient water and
the ice. Further details and validations of the phase field method can be found in Hester
et al. (2020) and Howland (2022).

In the simulations, an ice block with an initial cross-sectional area A0 = W H is placed
at the centre of a square box, as depicted in figure 1(a), where W and H represent the
initial width and height of the ice block, respectively. The box size L is set to L = 10D,
where D = √

W H is the effective length of the ice block. As confirmed in Appendix A,
the computational domain employed in this study is sufficiently large to ensure that the
influence of the side walls on the results is negligible.

Simulations are performed using the second-order staggered finite difference code
AFiD, which has been validated extensively and used to study a wide range of convection
problems (Verzicco & Orlandi 1996; Ostilla-Mónico et al. 2015; van der Poel et al. 2015),
including phase change problems (Liu et al. 2021; Yang et al. 2023, 2024a,b). The system
is governed by four dimensionless control parameters, namely the Rayleigh number Ra,
the Prandtl number Pr , the Stefan number St , and the aspect ratio of the initial ice
shape γ :

Ra = gβΔq D3

νκ
, Pr = ν

κ
, St = cpΔ

L , γ = W

H
. (2.6)

Here, Δ = Tw − Ti is the initial temperature difference between the ambient water and
the ice, where Tw is the initial temperature of the ambient water and Ti = 0 ◦C is
the temperature of the ice. Both two-dimensional (2-D) and three-dimensional (3-D)
simulations are performed to examine the effect of aspect ratio on the side, basal and
overall melting. In the 3-D simulations, the depth of the ice block is set equal to L . All
boundaries of the square box are adiabatic, with no-slip conditions for the velocity fields.

Since the initial cross-sectional area of the rectangular ice block remains fixed when
varying its aspect ratio, the effective length D serves as a representative measure of the
initial cross-sectional area, while the aspect ratio γ characterises the shape of the ice block.
These two governing parameters provide a more suitable description of the system than
using the height H and width W , as in the present study, H and W cannot be varied
independently; rather, they are intrinsically linked. Specifically, their values are determined
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by the effective length of the ice block D (i.e. the Rayleigh number Ra) and the aspect
ratio γ via the relations H = D/

√
γ and W = D

√
γ .

Due to the extensive parameter space, some control parameters are fixed to ensure
the feasibility of this study. The Prandtl number is fixed at Pr = 7. In § 3, the initial
temperature of the surrounding water is fixed at Tw = 20 ◦C, resulting in a Stefan number
St = 0.25. The simulations explore a range 1.82 × 104 � Ra � 7.49 × 107, corresponding
to the effective ice dimension 5 � D � 80 mm. However, in § 4, also the impact of the
initial temperature of the surrounding water on the melt rates is investigated at a fixed
Rayleigh number Ra = 1.46 × 105. The simulations cover a parameter range 4 ◦C � Tw �
20 ◦C, corresponding approximately to the Stefan number 0.05 � St � 0.25. Additionally,
the simulations encompass a range 0.2 � γ � 5.0 to investigate the aspect ratio effect on
the side, basal and overall melt rates.

Given the highly demanding resolution required to resolve the thin ice–water interface
in the phase field, the multiple-resolution strategy (Ostilla-Mónico et al. 2015) is applied
for the phase field. For 2-D simulations, an N × N uniform mesh is used for the velocity
and temperature fields, and a 3N × 3N refined uniform mesh is applied for the phase field,
where N increases from 320 to 5120 as the Rayleigh number increases from 1.82 × 104 to
7.49 × 107. Grid convergence tests for the 2-D simulations are presented in Appendix A.
Due to the high computational cost of the 3-D simulations, only five 3-D cases were
performed, namely at Ra = 1.82 × 104 with γ = 0.2, 0.6, 1, 3, 5, in order to confirm
that the qualitative behaviour observed in the 2-D simulations is consistent with that
of the 3-D simulations. An N × N × N uniform mesh is employed for the velocity and
temperature fields, and a 3N × 3N × 3N refined uniform mesh is applied for the phase
field in the 3-D simulations, where N = 320.

3. Effect of Rayleigh number for fixed ambient temperature Tw = 20 ◦C
In this section, the ambient temperature is held constant at Tw = 20 ◦C, leading to a Stefan
number St = 0.25. The Rayleigh number is varied to investigate its influence on the melt
rates. We first propose scaling relations for the side and basal mean melt rates, then
construct a theoretical model to estimate the overall mean melt rate.

3.1. Scaling relations of the side and basal mean melt rates
An illustration of the procedure for calculating the side and basal mean melt rates is shown
in figure 1(b). The steps to calculate the side and basal mean melt rates can be listed as
follows. The black dash-dotted contour shown in figure 1(b) indicates the ice shape at the
point when Vm = 80 % of the initial area (volume) of the ice block has melted in 2-D (3-D)
simulations. Along this ice contour, the side and basal melt points are defined based on the
local slope of the contour points. If the local slope k of a point satisfies −1 � k � 1, then
this point is classified as a basal melt point; otherwise, it is considered as a side melt point.
The mean locations of the side and basal melt points are then calculated, and an equivalent
rectangle of the ice is formed, represented by the blue solid rectangle in figure 1(b), with
width w and height h. Finally, the normalised side melt rate f̃s and the normalised basal
melt rate f̃b can be defined as

f̃s = W − w

W t̃m
, f̃b = H − h

Ht̃m
. (3.1)

Here, t̃m = tm/td , where tm denotes the time required to melt Vm = 80 % of the initial area
(volume) in 2-D (3-D) simulations, and td = D2/κ is the thermal diffusion time scale.
Additionally, the normalised overall mean melt rate f̃ is defined by f̃ = 1/̃tm = td/tm .
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Ra = 1.82 × 104

Ra = 9.36 × 106

Ra = 1.46 × 105

Ra = 7.49 × 107

Ra = 1.17 × 106

∼ f b
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0 1.0 2.01.5 3.0 4.0 5.0

γ

∼fb
∼fs

Figure 2. The normalised side mean melt rate f̃s and the normalised basal mean melt rate f̃b as a function
of the aspect ratio γ for different Rayleigh numbers. The symbols connected by solid lines represent the
normalised side mean melt rate f̃s , and the symbols connected by dashed lines indicate the normalised basal
mean melt rate f̃b.

It is important to note that different values of the final melt fraction Vm were also tested
for calculating the side mean melt rate f̃s , the basal mean melt rate f̃b, and the overall
mean melt rate f̃ . While varying the final melt fraction Vm changes the absolute values of
f̃s , f̃b and f̃ , the overall trend and scaling relations remain consistent, particularly within
the range 60 % � Vm � 80 %. The temporal evolutions of the side and basal melt rates
f̃s(t) and f̃b(t) are investigated in Appendix B. It is observed that both f̃s(t) and f̃b(t)
remain nearly constant over time, particularly when 60 % � Vm � 80 %, indicating that the
choice of the final melt fraction Vm within this range does not affect the qualitative results
of this study.

The normalised side mean melt rate f̃s and the normalised basal mean melt rate f̃b as
a function of the aspect ratio γ for different Rayleigh numbers are presented in figure 2.
The symbols connected by solid lines (for better readability) denote f̃s , while the symbols
connected by dashed lines represent f̃b. As the aspect ratio γ increases, the side mean
melt rate f̃s decreases, whereas the basal mean melt rate f̃b increases. At γ ≈ 1.5, f̃s and
f̃b converge to similar values. For γ � 1, f̃s exceeds f̃b, indicating a regime where side
melting is dominant. Conversely, for γ � 2, f̃b surpasses f̃s , suggesting a transition to a
regime where basal melting becomes dominant.

The normalised side mean melt rate f̃s as function of Ra in the side-melting dominant
regime (γ � 1) is shown in figure 3(a). It is observed that the side mean melt rate f̃s
increases with the Rayleigh number. To quantitatively estimate f̃s , we consider the thermal
Stefan boundary condition (2.5). According to this boundary condition, the dimensionless
instantaneous melt velocity ũn is related to the dimensionless instantaneous heat flux Nu
and the Stefan number St :

ũn = un

U0
= − 1

U0

κC p

L
∂T

∂n
= Nu St

D

d(t)
, (3.2)

where U0 = D/td represents the thermal diffusion velocity scale, d(t) = √
A(t) is

the effective ice length at time t , A(t) is the area of the ice at time t , and
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1
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Ra
107 108

1.0
0.8

0.6

0.4

0.2

γ = 0.2
γ = 0.4

γ = 0.8
γ = 1.0

γ = 0.6

(c)

 ∼ f sR
a−

1
/4

0.5

0.4

0.3

0.2

0.1
0.1 0.5 1.0 5.03.0

γ

γ−3/8

Ra = 1.82 × 104

Ra = 1.46 × 105

Ra = 1.17 × 106

Ra = 9.36 × 106

Ra = 7.49 × 107

Figure 3. (a) The normalised side mean melt rate f̃s as function of Ra in the side-melting dominant regime
(γ � 1). (b) The compensated normalised side mean melt rate f̃s Ra−1/4 as function of Ra in the side-melting
dominant regime (γ � 1). (c) The compensated normalised side mean melt rate f̃s Ra−1/4 as function of γ for
different Rayleigh numbers. The yellow region indicates the side-melting dominant regime (γ � 1).

Nu = −(∂T/∂n)/(Δ/d(t)) denotes the Nusselt number. Given that the side mean melt
rate f̃s is equal to the time and space average of ũn along the side surface of the ice, it
follows that f̃s must be proportional to the time and space average of the dimensionless
heat flux Nus along the side surface, and also proportional to the Stefan number St . In
the melting process, the descent of cold meltwater due to thermal buoyancy generates a
laminar boundary layer along the side surface of the ice block. Accordingly, Nus can be
estimated by the Nus ∝ Ra1/4

H scaling relation for a laminar boundary layer (Bejan 1993;
Grossmann & Lohse 2000, 2001; Holman 2010), where RaH = Ra(H/D)3 is the Rayleigh
number defined by the cross-sectional height H of the ice, and H = D/

√
γ . Therefore, the

normalised side mean melt rate f̃s should follow the scaling relation

f̃s ∝ Ra1/4γ −3/8. (3.3)

This scaling relation is fully consistent with the numerical results: in figure 3(b), the
compensated normalised side mean melt rate f̃s Ra−1/4 remains nearly constant across
different Rayleigh numbers, confirming the f̃s ∝ Ra1/4 scaling relation in the side-
melting dominant regime (γ � 1). Furthermore, figure 3(c) shows that the compensated
normalised side mean melt rate f̃s Ra−1/4 nearly collapses for different Rayleigh numbers
in the side-melting dominant regime (γ � 1), and it also follows the γ −3/8 scaling relation
when γ � 1.

The normalised basal mean melt rate f̃b as function of Ra in the basal-melting dominant
regime (γ � 2) is shown in figure 4(a). The normalised basal mean melt rate f̃b also
increases as the Rayleigh number increases. Since the basal mean melt rate f̃b is equal
to the time average of ũn along the basal surface of the ice, according to (3.2), f̃b should
be proportional to the time and space average of the dimensionless heat flux Nub along the
basal surface, and also proportional to the Stefan number St . For low Rayleigh numbers
(Ra � 106), a laminar boundary layer forms around the basal surface of the ice block, with
the mean heat flux along the basal surface following the Nub ∝ Ra1/4

W scaling relation for
a laminar boundary layer (Bejan 1993; Grossmann & Lohse 2000, 2001; Holman 2010),
where RaW = Ra(W/D)3 is the Rayleigh number defined by the cross-sectional width W
of the ice, and W = D

√
γ . Consequently, the normalised basal mean melt rate f̃b should

follow the scaling relation
f̃b ∝ Ra1/4γ 3/8. (3.4)

This scaling relation is consistent with the numerical results. In figure 4(b), the
compensated normalised basal mean melt rate f̃b Ra−1/4 is almost constant for Ra � 106,
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Figure 4. (a) The normalised basal mean melt rate f̃b as a function of Ra in the basal-melting dominant
regime (γ � 2). (b) The compensated normalised basal mean melt rate f̃b Ra−1/4 as a function of Ra in the
basal-melting dominant regime (γ � 2). (c) The compensated normalised basal mean melt rate f̃b Ra−1/4 as
a function of γ for different Rayleigh numbers. The blue region indicates the basal-melting dominant regime
(γ � 2).

particularly for γ � 3 where the basal melt rate significantly exceeds the side melt rate.
This confirms that the basal mean melt rate f̃b follows an f̃b ∝ Ra1/4 scaling relation in
the basal-melting dominant regime (γ � 2) at low Rayleigh numbers. Moreover, figure 4(c)
indicates that the compensated normalised basal mean melt rate f̃b Ra−1/4 adheres to the
γ 3/8 scaling relation in the basal-melting dominant regime (γ � 2) when Ra � 106.

For sufficiently high Rayleigh numbers (Ra > 106), figure 4(b) reveals a transition
in the scaling relation of the normalised basal mean melt rate f̃b: the scaling relation
shifts from Ra1/4 to Ra1/3 when Ra > 106. This transition indicates that while the
boundary layer remains laminar, the bulk flow around the base of the ice block undergoes
a transition from laminar to turbulent, with the mean heat flux along the basal surface
following the Nub ∝ Ra1/3

W scaling relation characteristic of the turbulent bulk flow with
a laminar boundary layer (Bejan 1993; Grossmann & Lohse 2000, 2001; Holman 2010).
Accordingly, the scaling relation of the normalised basal mean melt rate f̃b adjusts to

f̃b ∝ Ra1/3γ 1/2. (3.5)

This scaling relation is consistent with the numerical results shown in figure 4(c), where
f̃b adheres to the γ 1/2 scaling relation in the basal-melting dominant regime (γ � 2) when
Ra > 106.

The observed scaling transition is due primarily to the formation of a cavity at
the bottom of the ice block, as illustrated in figure 5(a–c). Figure 5(a–c) display the
instantaneous temperature field for the ice block with various γ values. The formation
of the bottom cavity is attributed to the flow separation. At sufficiently high Rayleigh
numbers, the descending meltwater along the side surface of the ice block detaches
before reaching the base, leading to the development of convection rolls in the bottom
region. These convection rolls enhance local mixing, thereby increasing the local heat flux
and melt rate, and ultimately contributing to the cavity formation. While the boundary
layer along the basal surface remains laminar, the bulk flow in the bottom region
transitions to turbulence due to the cavity formation. This triggers the scaling transition
of the normalised basal mean melt rate f̃b to Ra1/3. Additionally, the dimensionless
instantaneous heat flux Nu around the ice surface for the ice block with γ = 1.0 is smaller
compared to values for the ice blocks with γ = 0.2 and γ = 5.0, implying that the ice block
with γ = 1.0 undergoes a slower melt rate compared to the ice blocks with γ = 0.2 and
γ = 5.0.
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Figure 5. (a–c) The instantaneous temperature field at time t/tm = 0.7 for the ice block with (a) γ = 0.2, (b)
γ = 1.0 and (c) γ = 5.0 at Ra = 7.49 × 107. The dimensionless instantaneous heat fluxes Nu around the ice
surface are 3.47, 2.22 and 3.22 in (a), (b) and (c), respectively. (d) The Ra–γ phase diagram of cavity formation.
Black disks and red squares indicate the absence and presence of cavity formation, respectively. The yellow
region represents the side-melting dominant regime, and the blue region denotes the basal-melting dominant
regime.

Figure 5(d) shows the Ra–γ phase diagram for cavity formation, showing that the
bottom cavity forms at either high γ values or high Ra values. At Ra = 9.36 × 106, the
cavity appears only when γ � 1; however, as the Rayleigh number increases to 7.49 × 107,
the cavity forms for all γ values. The regime transition associated with cavity formation is
fully consistent with the corresponding scaling transition in the basal mean melt rate f̃b.
In the basal-melting dominant regime (γ � 2), the cavity forms when Ra � 9.36 × 106,
leading to the scaling transition of f̃b to Ra1/3, as shown in figure 4(b). The intensified
local melt rate within the cavity significantly enhances the basal mean melt rate f̃b,
leading to the scaling transition. Due to the observation that the cavity is more readily
formed at higher values of γ , it can be inferred that the critical Rayleigh number for the
scaling transition of f̃b from Ra1/4 γ 3/8 to Ra1/3 γ 1/2 is smaller for larger γ . To accurately
determine the critical Rayleigh number, more data with different Rayleigh numbers and
initial aspect ratios are required, which is beyond the scope of the present study.

3.2. Estimation of the overall mean melt rate
Figure 6 presents the compensated normalised overall mean melt rate f̃ Ra−1/4 as function
of γ for various Rayleigh numbers. Five 3-D simulations were also performed. It is found
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0.6

0.4

0.3
0.1 0.5 1.0 3.0 5.0

 ∼ fR
a−

1
/4

γ

Ra = 1.82 × 104

Ra = 1.46 × 105

Ra = 1.17 × 106

Ra = 9.36 × 106

Ra = 7.49 × 107

Ra = 1.82 × 104 (3-D)

Equation (3.14)

Equation (3.12)

Figure 6. The compensated normalised overall mean melt rate f̃ Ra−1/4 as a function of γ for different
Rayleigh numbers. The symbols represent the compensated normalised overall mean melt rates f̃ Ra−1/4.
Two green dashed lines represent the theoretical predictions from (3.12) for the overall mean melt rates
f̃ Ra−1/4 at Ra = 1.46 × 105 and 1.17 × 106, respectively. Similarly, two grey dashed lines denote the
theoretical predictions from (3.14) for the overall mean melt rates f̃ Ra−1/4 at Ra = 9.36 × 106 and 7.49 × 107,
respectively.

that the overall mean melt rates f̃ in 3-D simulations are nearly identical to those in
corresponding 2-D simulations, demonstrating qualitative consistency between 2-D and
3-D results. Due to the more comprehensive data available in 2-D simulations compared
to 3-D simulations, however, our analysis focuses primarily on the 2-D simulations.

As the overall mean melt rate f̃ depends on both Ra and γ , the compensated normalised
overall mean melt rate f̃ Ra−1/4 is used to make the curves for different Ra comparable.
The results show that f̃ Ra−1/4 collapses at γ � 0.6, especially for Ra � 1.46 × 105. This
phenomenon can be attributed to the dominance of side melting when γ � 0.6, where
the side mean melt rate f̃s significantly exceeds the basal mean melt rate f̃b (figure 2).
As figure 3(b) illustrates, the side mean melt rate f̃s adheres to the Ra1/4 scaling relation
in the side-melting dominant regime, leading to the Ra1/4 scaling relation for the overall
mean melt rate f̃ at γ � 0.6.

The overall mean melt rate exhibits a non-monotonic dependence on the aspect ratio γ :
the overall mean melt rate f̃ initially decreases and then increases with increasing γ . This
non-monotonic behaviour results from the competition between side and basal melting.
For γ � 1, side melting is dominant, and f̃s decreases as γ increases (figure 2), leading to
a decrease of the overall mean melt rate f̃ with increasing γ . Conversely, for γ � 2, basal
melting dominates, and f̃b increases as γ increases (figure 2), resulting in an increase of
the overall mean melt rate f̃ with increasing γ .

The minimum overall mean melt rate occurs at aspect ratio γmin ≈ 2 when Ra � 1.17 ×
106. The value of γmin deviates from γ = 1, the configuration where the square-shaped
ice block has the smallest perimeter. This reflects that the influence of thermal convection
plays a more dominant role in determining the minimum overall melt rate compared to
the geometric effect of surface area alone. However, as Ra further increases beyond Ra �
9.36 × 106, γmin begins to decrease. This decrease of γmin is due mainly to the scaling
transition of the basal mean melt rate f̃b. For Ra � 9.36 × 106, the Ra scaling relation of
f̃b transitions from Ra1/4 to Ra1/3 (figure 4b), and similarly, the γ scaling relation of f̃b
shifts from γ 3/8 to γ 1/2 (figure 4c) due to cavity formation. Consequently, the intensity of
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the basal mean melt rate f̃b is significantly enhanced at higher Rayleigh numbers, causing
γmin to decrease at sufficiently high Rayleigh numbers.

Our observations reveal that the aspect ratio γ of the initial ice shape significantly
affects the overall mean melt rate, with the ratio of the maximum to the minimum overall
mean melt rates at the same Rayleigh number reaching up to 1.7. However, this aspect
ratio effect has often been neglected in previous models for estimating the melt rates of
icebergs (Weeks & Campbell 1973; Martin & Adcroft 2010), potentially compromising
their accuracy. Therefore, it is crucial to incorporate the aspect ratio effect into models for
estimating iceberg melt rates to enhance their accuracy.

Based on the previous scaling relations for the side mean melt rate f̃b (3.3) and the
basal mean melt rate f̃s in (3.4) or (3.5), the theoretical model for the overall mean melt
rate f̃ can be proposed as follows. As depicted in figure 1(b), the area of the equivalent
ice rectangle, represented by the blue solid rectangle with width w and height h, is
approximately 1 − Vm of the initial area of the ice block shown by the red dashed rectangle,
which gives

hw = (1 − Vm) H W, (3.6)

where Vm = 80 % in this study. Through some rewriting (3.6) becomes

Vm − W − w

W
− H − h

H
+ (W − w) (H − h)

W H
= 0. (3.7)

Upon dividing both sides of (3.7) by t̃ 2
m , the following equation is obtained:

Vm

t̃ 2
m

− W − w

W t̃ 2
m

− H − h

Ht̃ 2
m

+ (W − w) (H − h)

W Ht̃ 2
m

= 0. (3.8)

By substituting the definitions of the side mean melt rate f̃s and the basal mean melt rate
f̃b from (3.1), as well as the overall mean melt rate f̃ = 1/̃tm , into (3.8), we obtain

Vm f̃ 2 − (
f̃s + f̃b

)
f̃ + f̃s f̃b = 0. (3.9)

Therefore, the overall mean melt rate f̃ can be expressed as

f̃ = 1
2Vm

[(
f̃s + f̃b

) +
√(

f̃s + f̃b
)2 − 4Vm f̃s f̃b

]
. (3.10)

For low Rayleigh numbers (Ra � 106), the side and basal mean melt rates f̃s and f̃b can
be estimated using the scaling relations given by (3.3) and (3.4), respectively:

f̃s = asγ
−3/8, f̃b = ab1γ

3/8, (3.11)

where as and ab1 are the coefficients of the scaling relations for the side and basal mean
melt rates, respectively. By substituting (3.11) into (3.10), we obtain

f̃ ∝
(
γ −3/8 + a1γ

3/8
)

+
√(

γ −3/8 + a1γ 3/8
)2 − 4Vma1, (3.12)

where a1 = ab1/as is the ratio of the coefficients of the scaling relations for the side and
basal mean melt rates, which can be determined by fitting.

For sufficiently high Rayleigh numbers (Ra > 106), the side and basal mean melt rates
f̃s and f̃b are estimated by the scaling relations in (3.3) and (3.5), respectively:

f̃s = asγ
−3/8, f̃b = ab2γ

1/2, (3.13)
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where as and ab2 are the coefficients of the scaling relations for the side and basal mean
melt rates, respectively. By substituting (3.13) into (3.10), we get

f̃ ∝
(
γ −3/8 + a2γ

1/2
)

+
√(

γ −3/8 + a2γ 1/2
)2 − 4Vma2γ 1/8, (3.14)

where a2 = ab2/as is the ratio of the coefficients of the scaling relations for the side and
basal mean melt rates, which can be obtained by fitting from the data.

In order to derive the theoretical model for the overall mean melt rate f̃ in (3.12)
and (3.14), an assumption should be made that the scaling relations for f̃s and f̃b in
(3.11) and (3.13) hold for all values of γ . However, this assumption does not apply
universally. The scaling relation of f̃s is valid only in the side-melting dominant regime,
as shown in figure 3(c), while the scaling relation of f̃b is accurate only in the basal-
melting dominant regime, as depicted in figure 4(c). Therefore, we can infer that the
invalidity of the assumption has a small impact on the theoretical model in the side- and
basal-melting dominant regimes because the basal mean melt rate f̃b is small in the side-
melting dominant regime, and the side mean melt rate f̃s is small in the basal-melting
dominant regime (figure 2). However, the proposed theoretical model obviously fails in
the intermediate region where both side and basal mean melt rates significantly contribute
to the overall mean melt rate.

Figure 6 illustrates the behaviour of the proposed theoretical model for the overall
mean melt rate f̃ in (3.12) and (3.14). Two green dashed lines represent the theoretical
predictions from (3.12) for the overall mean melt rates f̃ Ra−1/4 at Ra = 1.46 × 105 and
1.17 × 106, respectively. Similarly, two grey dashed lines denote the theoretical predictions
from (3.14) for the overall mean melt rates f̃ Ra−1/4 at Ra = 9.36 × 106 and 7.49 × 107,
respectively. The theoretical model successfully captures the non-monotonic behaviour
of f̃ as a function of γ , and accurately estimates f̃ in the regimes where side melting
(γ � 0.8) and basal melting (γ � 3) are dominant. However, the model is less accurate in
the intermediate region where both side and basal melting have significant contributions
to the overall mean melt rate f̃ . It is noted that the overall mean melt rate f̃ is expressed as
a function of the initial aspect ratio γ in the proposed theoretical model ((3.12) and (3.14)).
However, as demonstrated in Appendix B, the instantaneous equivalent aspect ratio γ (t) is
changing over time and deviates from its initial value. This discrepancy introduces further
inaccuracies in the proposed theoretical model. To enhance the predictive accuracy of the
model, future improvements should incorporate the temporal variation of the instantaneous
equivalent aspect ratio γ (t).

4. Effect of ambient temperature for fixed Rayleigh number Ra = 1.46 × 105

In the preceding section, we systematically examined the influence of aspect ratio on the
side, basal and overall melting with the ambient temperature maintained at Tw = 20 ◦C.
However, the density of water exhibits a non-monotonic dependence on temperature, as
described by (2.4). This density anomaly of water near 4 ◦C can give rise to distinct
flow regimes and morphological evolutions for varying ambient temperatures (Wang et al.
2021a,b; Weady et al. 2022). Consequently, in this section, we investigate the impact of
the ambient temperature while keeping the Rayleigh number fixed at Ra = 1.46 × 105.

The normalised side mean melt rate f̃s and the normalised basal mean melt rate f̃b as a
function of the aspect ratio γ for different ambient temperatures are presented in figure 7.
The symbols connected by solid lines represent the normalised side mean melt rate f̃s , and
the symbols connected by dashed lines indicate the normalised basal mean melt rate f̃b.
As the aspect ratio γ increases, the side mean melt rate f̃s decreases, while the basal mean
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Figure 7. The normalised side mean melt rate f̃s and the normalised basal mean melt rate f̃b as a function
of the aspect ratio γ for different ambient temperatures. The symbols connected by solid lines represent the
normalised side mean melt rate f̃s , and the symbols connected by dashed lines indicate the normalised basal
mean melt rate f̃b.
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Figure 8. (a) The normalised side mean melt rate f̃s as a function of the Stefan number St and the ambient
temperature Tw in the side-melting dominant regime (γ � 1). (b) The normalised basal mean melt rate f̃b as
a function of the Stefan number St and the ambient temperature Tw in the basal-melting dominant regime
(γ � 2).

melt rate f̃b increases. Notably, f̃s and f̃b attain similar values at γ ≈ 1.5. For γ � 1, f̃s is
larger than f̃b, indicating a side-melting dominant regime. However, for γ � 2, f̃b is larger
than f̃s , suggesting a basal-melting dominant regime. These observations are consistent
with those for various Rayleigh numbers depicted in figure 2.

The normalised side mean melt rate f̃s and the normalised basal mean melt rate f̃b as a
function of the Stefan number St and the ambient temperature Tw are shown in figure 8.
When the ambient temperature is Tw � 15 ◦C, f̃s and f̃b follow the St scaling relation as
indicated by (3.2). However, as the ambient temperature Tw decreases, the influence of
the density anomaly intensifies, causing f̃s and f̃b to deviate from the St scaling relation.
Notably, for Tw � 8 ◦C, f̃s and f̃b exhibit a non-monotonic dependence on the ambient
temperature Tw: as the ambient temperature Tw decreases, f̃s and f̃b initially decrease,

1010 A40-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.302


Journal of Fluid Mechanics

(a) Tw = 4◦C Tw = 5◦C Tw = 10◦C(b) (c)

0 0.2 0.4 0.6 0.8 1.0
∼T 

2 mm 2 mm 2 mm

Figure 9. The instantaneous temperature field at time t/tm = 0.1 for the ice block with aspect ratio γ = 1.0 for
ambient temperature (a) Tw = 4 ◦C, (b) Tw = 5 ◦C and (c) Tw = 10 ◦C at Ra = 1.46 × 105. Here, T̃ = T/Tw .
The dimensionless instantaneous heat fluxes Nu around the ice surface are 0.84, 0.63 and 0.84 in (a), (b) and
(c), respectively.

reaching minimum values at Tw ≈ 5.5 ◦C, and then slightly increase to larger values at
Tw ≈ 4 ◦C.

The non-monotonic behaviours of f̃s and f̃b arise from the density anomaly effect,
which results in distinct flow structures at different ambient temperatures. Figure 9
shows the instantaneous temperature field for the ice block with aspect ratio γ = 1.0 for
three different ambient temperatures at Ra = 1.46 × 105. At low ambient temperatures
(figure 9a), the meltwater ascends due to its density at 0 ◦C being lower than that of the
surrounding water. Conversely, at high ambient temperatures (figure 9c), the meltwater
descends as its density exceeds that of the surrounding water. At intermediate ambient
temperatures (figure 9b), a bi-directional flow pattern emerges: the meltwater initially
moves upwards; as it mixes with and is warmed by the surrounding water, its density
increases and becomes larger than that of the surrounding water, causing it to move
downwards. This bi-directional flow pattern envelops the ice block, inhibiting the ambient
warm water from directly contacting the ice, which results in a reduced dimensionless
instantaneous heat flux Nu around the ice surface, and consequently slows down the
melt rate. A similar bi-directional flow pattern was observed during the melting of an
ice cylinder in 5.6 ◦C fresh water (Weady et al. 2022) and the melting of an ellipsoid in
5.25 ◦C fresh water (Yang et al. 2024a).

The normalised side mean melt rate f̃s and the normalised basal mean melt rate f̃b as
a function of the aspect ratio γ for different ambient temperatures Tw are illustrated in
figure 10. It is observed that for various ambient temperatures, the side mean melt rate
f̃s adheres to the γ −3/8 scaling relation in the side-melting dominant regime (γ � 1),
consistent with the scaling relation in (3.3). Similarly, the basal mean melt rate f̃b follows
the γ 3/8 scaling relation in the basal-melting dominant regime (γ � 2), which is consistent
with the scaling relation in (3.4).

The compensated normalised overall mean melt rate f̃ /St as function of γ for different
ambient temperatures is shown in figure 11. The compensated normalised overall mean
melt rate f̃ /St at Tw = 20 ◦C almost collapses with that at Tw = 15 ◦C, indicating that
f̃ follows the St scaling relation at Tw � 15 ◦C. However, as the ambient temperature
Tw decreases, the density anomaly effect becomes stronger, and f̃ no longer adheres to
the St scaling relation. Moreover, the overall mean melt rate f̃ exhibits a non-monotonic
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Figure 10. (a) The normalised side mean melt rate f̃s as a function of the aspect ratio γ for different ambient
temperatures Tw . (b) The normalised basal mean melt rate f̃b as a function of the aspect ratio γ for different
ambient temperatures Tw .
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Figure 11. The compensated normalised overall mean melt rate f̃ /St as a function of γ for different ambient
temperatures. The symbols represent the compensated normalised overall mean melt rates f̃ /St , while six
green dashed lines represent the theoretical predictions from (3.12) for the overall mean melt rates f̃ /St at
Tw = 4.5 ◦C, 5 ◦C, 6 ◦C, 8 ◦C, 10 ◦C and 15 ◦C, respectively.

dependence on the ambient temperature Tw: as the ambient temperature Tw decreases, the
overall mean melt rate f̃ initially decreases and then increases. These results are consistent
with the behaviours of f̃s and f̃b for different ambient temperatures.

Furthermore, the normalised overall mean melt rate f̃ for different ambient
temperatures also exhibits a non-monotonic dependence on γ : as γ increases, f̃
initially decreases and then increases. This non-monotonic behaviour is attributed to the
competition between side and basal melting, similar to the observations for the overall
mean melt rate f̃ for different Rayleigh numbers (figure 6). It is observed that the
minimum overall mean melt rate occurs at aspect ratio γmin ≈ 2 for both high ambient
temperatures (Tw > 6 ◦C) and low ambient temperatures (Tw < 5 ◦C), corresponding
to regimes of downward and upward flow, respectively. However, for intermediate
temperatures (5 ◦C � Tw � 6 ◦C), γmin decreases to approximately 1.5. This phenomenon
can be explained as follows. For intermediate temperatures, a bi-directional flow pattern
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emerges, characterised by both upward and downward flows. This bi-directional flow
surrounds the ice block, insulating it from direct contact with the ambient warm water.
Consequently, convection around the ice block weakens, and the influence of the perimeter
length of the ice block becomes more significant. Therefore, for intermediate temperatures,
γmin shifts towards a value near γ = 1, where the perimeter of the square-shaped ice block
is minimal.

The behaviours predicted by the theoretical model in (3.12) are also illustrated in
figure 11. Six green dashed lines represent the theoretical predictions from (3.12) for
the overall mean melt rates f̃ /St at Tw = 4.5 ◦C, 5 ◦C, 6 ◦C, 8 ◦C, 10 ◦C and 15 ◦C,
respectively. The theoretical model in (3.12) captures the non-monotonic behaviour of
f̃ as function of γ , and accurately estimates the mean melt rate f̃ across various
ambient temperatures, particularly in the side-melting dominant regime (γ � 1) and the
basal-melting dominant regime (γ � 2). This demonstrates that the theoretical model in
(3.12) is also applicable for estimating the overall mean melt rate for different ambient
temperatures.

It is noted that the influence of ambient temperature is examined only at relatively
low Rayleigh numbers. This restriction arises because at low ambient temperatures,
the melt rates are significantly slower, often several times lower than those observed
at ambient temperature 20 ◦C. Additionally, the time step required for simulating low-
temperature cases is much smaller than that for 20 ◦C, resulting in a substantially higher
computational cost, particularly at high Rayleigh numbers. As a result, the effect of
ambient temperature at higher Rayleigh numbers is not considered in the present study
and is left for future investigation. Nevertheless, it can be anticipated that cavity formation
persists at sufficiently high Rayleigh numbers, although the critical Rayleigh number for
cavity formation at low ambient temperatures is expected to differ from that at 20 ◦C.
Furthermore, when the ambient temperature is very low (below 5 ◦C), the density anomaly
of water induces upward motion of the meltwater, leading to the cavity formation at the
top surface of the ice block.

5. Conclusions and outlook
In this study, we have investigated the effect of the aspect ratio of an ice block with fixed
volume (or area) on the side, basal and overall mean melt rates across a range of Rayleigh
numbers and ambient temperatures through direct numerical simulations. Theoretical
scaling relations and a model are proposed to estimate the side, basal and overall mean
melt rates. They can describe the simulation results over the considered range of Rayleigh
numbers and ambient temperatures.

The aspect ratio of the ice block has a significant effect on the relative contributions
of side and basal melting. Specifically, the side mean melt rate f̃s is larger than the basal
mean melt rate f̃b for aspect ratio γ � 1, while f̃b exceeds f̃s for γ � 2.

The influence of the Rayleigh number is first investigated for fixed ambient temperature
Tw = 20 ◦C. The side mean melt rate f̃s is found to follow a Ra1/4γ −3/8 scaling relation in
the side-melting dominant regime (γ � 1) across different Rayleigh numbers. In contrast,
the basal mean melt rate f̃b exhibits a more complex behaviour: in the basal-melting
dominant regime (γ � 2), f̃b adheres to a Ra1/4γ 3/8 scaling relation at low Rayleigh
numbers (Ra � 106), but transitions to a Ra1/3γ 1/2 scaling relation at high Rayleigh
numbers (Ra > 106). This scaling transition is attributed to the formation of a bottom
cavity caused by flow separation at high Rayleigh numbers, which enhances local mixing
and subsequently increases the local melt rate. Furthermore, the overall mean melt rate
f̃ displays a non-monotonic dependence on the aspect ratio γ , initially decreasing and
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then increasing as γ increases. This non-monotonic behaviour arises from the competition
between side and basal melting. Based on the scaling relations for the side and basal mean
melt rates, a theoretical model is proposed to also estimate the overall mean melt rate f̃ .
The proposed theoretical model successfully captures the non-monotonic behaviour of f̃ ,
and also provides accurate predictions of f̃ , especially in the regimes dominated by side
melting (γ � 0.8) and basal melting (γ � 3).

Furthermore, the effect of ambient temperature is examined for fixed Rayleigh number
Ra = 1.46 × 105. The side, basal and overall mean melt rates follow the St scaling relation
for the ambient temperature Tw � 15 ◦C. However, as the ambient temperature decreases
further, the side, basal and overall mean melt rates deviate from the St scaling relation
and exhibit a non-monotonic dependence on the ambient temperature, which is attributed
to the density anomaly effect. Additionally, the proposed theoretical scaling relations and
model are found to accurately predict the side, basal and overall mean melt rates for the
analysed different ambient temperatures.

In summary, our findings provide insight into the role of the aspect ratio on side and
basal melting of ice in freshwater. The proposed theoretical scaling relations and model
may offer improved predictions of melt rates for ice blocks or icebergs with varying aspect
ratios, and serve as a useful framework for refining large-scale geophysical models. It
is, however, important to note that the Rayleigh number range considered in this study
is considerably lower than that observed at geophysical scales. The applicability of the
proposed scaling relations for the side and basal melt rates to geophysical scales remains
to be verified. Nonetheless, the methodology for estimating the overall melt rate based on
the side and basal melt rates can be extended to geophysical icebergs. In future studies, it
would be worthwhile to further explore additional factors such as the influence of salinity,
mean shear from the ambient flow, and spatial variations in the temperature along the ice
surface.

Movies depicting the instantaneous fields corresponding to the cases presented in
figures 5 and 9 are provided in the supplementary material. The solver is available at
https://github.com/chowland/AFiD-MuRPhFi. Mean statistics for the cases in the present
study are available at https://doi.org/10.5281/zenodo.14589263.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.302.
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Appendix A. The influence of the computational domain size and the grid
convergence test of the simulations
The influence of the computational domain size is analysed for the 2-D case with
Ra = 1.82 × 104, γ = 1.0 and St = 0.25, as shown in figure 12(a). The normalised overall
mean melt rate f̃ exhibits convergence as the ratio L/D of the box size L to the effective
length D of the ice block increases, which indicates that the impact of the side walls on
f̃ becomes negligible when L/D � 8. Based on this observation, the domain size is
selected as L/D = 10 for the present study.

Grid convergence tests were conducted for multiple cases to ensure convergent
results. For brevity, we present only the grid-independence test for the 2-D case with
Ra = 1.82 × 104, γ = 1.0 and St = 0.25 in figure 12(b–d). The results exhibit convergence
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Figure 12. (a) The normalised overall mean melt rate f̃ as a function of the ratio L/D of the box size L to
the effective length D of the ice block for the 2-D case with Ra = 1.82 × 104, γ = 1.0 and St = 0.25. The
domain size is chosen as L/D = 10, as indicated by the black circle. (b) The normalised area of ice A(t)/A0
as a function of time t/td for the 2-D case with Ra = 1.82 × 104, γ = 1.0 and St = 0.25. Here, A0 is the initial
area of the ice block. (c) The normalised overall mean melt rate f̃ as a function of the grid resolution N for
the velocity and temperature fields. Convergence is observed with increasing N , and the resolution N = 320
was selected, as denoted by the black circle. (d) The relative error Er = |tm − tm0 |/tm0 as a function of the grid
spacing x , where tm0 is the melt time tm for the highest resolution. The selected grid resolution is highlighted
by the black circle.

with increasing grid resolution. Consequently, we selected N = 320 as the grid resolution
for our simulations, as indicated by the black circle in figure 12(c).

Appendix B. The temporal evolutions of the equivalent aspect ratio and the side and
basal melt rates
The temporal evolutions of the equivalent aspect ratio γ (t) as well as the side and basal
melt rates f̃s(t) and f̃b(t) for various initial aspect ratios γ at Ra = 1.17 × 106 are
presented in figure 13. Additionally, figure 14 illustrates the evolutions of the normalised
instantaneous side and basal melt rates, f̃s(t)/γ −3/8 and f̃b(t)/γ 3/8, as functions of the
normalised instantaneous equivalent aspect ratio γ (t)/γ at the same Rayleigh number.
Similar trends are observed for cases with different Rayleigh numbers and ambient
temperatures, and are omitted here for brevity.
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Figure 13. (a) The temporal evolution of the instantaneous equivalent aspect ratio γ (t) for various initial
aspect ratios γ at Ra = 1.17 × 106, where γ (t) = w(t)/h(t). (b) The temporal evolution of the instantaneous
side melt rate f̃s(t) for various initial aspect ratios γ � 1 at Ra = 1.17 × 106. (c) The temporal evolution of
the instantaneous basal melt rate f̃b(t) for various initial aspect ratios γ � 1 at Ra = 1.17 × 106. Here, tm
denotes the time required to melt Vm = 80 % of the initial area in 2-D simulations, and t/tm = 1.0 represents
the time at which 80 % of the initial area has melted. Furthermore, the black filled circle, red square and blue
star correspond to the times required to melt 50 %, 60 % and 70 % of the initial area, respectively, as shown in
(b) and (c).
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Figure 14. (a) The temporal evolution of the normalised instantaneous side melt rate f̃s(t)/γ −3/8 for various
initial aspect ratios γ � 1 as a function of the normalised instantaneous equivalent aspect ratio γ (t)/γ at
Ra = 1.17 × 106. (b) The temporal evolution of the normalised instantaneous basal melt rate f̃b(t)/γ 3/8 for
various initial aspect ratios γ � 2 as a function of the normalised instantaneous equivalent aspect ratio γ (t)/γ
at Ra = 1.17 × 106. In both plots, the vertical dashed lines indicate the values of γ (t)/γ at the melt time tm .

As shown in figure 13(a), the equivalent aspect ratio γ (t) is changing over time, with
a gradual decrease for initial aspect ratio γ � 1, and a gradual increase for γ � 2. This
phenomenon can be attributed to the relative magnitudes of the side and basal mean
melt rates. For the cases with initial aspect ratio γ � 1, figure 2 demonstrates that the
side mean melt rate f̃s exceeds the basal mean melt rate f̃b, leading to a progressive
reduction in γ (t) as the ice melts. Furthermore, figure 14(a) indicates that the range of
the normalised instantaneous equivalent aspect ratio γ (t)/γ increases as the initial aspect
ratio γ decreases. This can be explained by the trend observed in figure 2, where the
difference between f̃s and f̃b becomes more pronounced as γ decreases.

Conversely, for cases with γ � 2, figure 2 reveals that the basal mean melt rate f̃b is
larger than the side mean melt rate f̃s , resulting in a gradual increase in γ (t). Moreover,
figure 14(b) shows that the range of γ (t)/γ increases as γ increases, which can be

1010 A40-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

30
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.302


Journal of Fluid Mechanics

attributed to the increasing disparity between f̃b and f̃s as γ increases, as depicted in
figure 2.

The temporal evolutions of the side and basal melt rates f̃s(t) and f̃b(t) exhibit similar
trends. Initially, both melt rates are relatively large due to the higher temperature gradients
near the ice surface. Then the side and basal melt rates f̃s(t) and f̃b(t) gradually decrease,
reaching nearly constant values as the ice continues to melt. Both f̃s(t) and f̃b(t) are
almost constant over time, particularly within the range 60 % � Vm � 80 %. It is noted that
the influence of the initial condition becomes less significant as the final melt fraction Vm
increases. Consequently, a larger value of Vm is preferable to effectively mitigate the effect
of the initial condition. However, the final melt fraction Vm cannot be excessively large,
as the ice block may fracture into two pieces when Vm ≈ 90 %, particularly under high
Rayleigh number and large aspect ratio conditions. Thus a final melt fraction Vm = 80 %
is chosen in the present study to significantly reduce the impact of the initial condition.

Figure 14 demonstrates that the normalised instantaneous side melt rate f̃s(t)/γ −3/8 for
initial aspect ratios γ � 1 and the normalised instantaneous basal melt rate f̃b(t)/γ 3/8 for
initial aspect ratios γ � 2 nearly collapse respectively, particularly within the range 60 % �
Vm � 80 %. This suggests that despite the temporal evolution of the equivalent aspect ratio
γ (t) deviating from its initial value γ , the proposed scaling relations in the present study
remain valid for the instantaneous side melt rate f̃s(t) in the side-melting dominant regime
(γ � 1), and for the instantaneous basal melt rate f̃b(t) in the basal-melting dominant
regime (γ � 2).

However, it is important to note that the variation in the instantaneous equivalent aspect
ratio γ (t) is relatively large, particularly for cases with small or large initial aspect ratios.
The substantial departure of γ (t) from its initial value γ results in the breakdown of
the proposed scaling relations for predicting the side melt rate f̃s in the basal-melting
dominant regime (γ � 2), and the basal melt rate f̃b in the side-melting dominant regime
(γ � 1), as illustrated in figures 3(c) and 4(c). Consequently, these discrepancies also
impact the accuracy of estimating the overall mean melt rate f̃ using the proposed scaling
relations for f̃s and f̃b.

To improve the predictive capability of the scaling relations for f̃s in the basal-melting
dominant regime, f̃b in the side-melting dominant regime, and the overall mean melt rate
f̃ , future studies should account for the temporal evolution of the equivalent aspect ratio.
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