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0. Introduction

Let % be a category with finite products and a final object and let X be any
group object in ¥. The set of ¥-morphisms, Morg (X, X) is, in a natural way,
a near-ring which we call the endomorphism near-ring of X in €. Such near-
rings have previously been studied in the case where ¥ is the category of pointed
sets and mappings, (6). Generally speaking, if I' is an additive group and §
is a semigroup of endomorphisms of T" then a near-ring can be generated naturally
by taking all zero preserving mappings of I' into itself which commute with S
(see 1). This type of near-ring is again an endomorphism near-ring, only the
category € is the category of S-acts and S-morphisms (see (4) for definition
of S-act, etc.).

The question answered in this paper is the following. Under what con-
ditions do endomorphism near-rings of this type have near-rings of quotients
which are 2-primitive with d.c.c. on right ideals and an identity? The conditions
obtained are described in terms of conditions on the semigroup .S and the group
I', and are formalised by introducing the concept of a 2-system. 2-primitive
near-rings with d.c.c. on right ideals and an identity have been classified in
terms of endomorphism near-rings by Wielandt (6) (see also Ramakotaiah (5)
and Holcombe (3)).

1. Terminology

A near-ring is a set N with two binary operations, addition (+) and multi-
plication (.), such that

(i) N is a group with respect to addition.

(if) N is a semigroup with respect to multiplication.

(iii) For any n, ny, n, e N, n.(n;+n,) = n.n;+n.n,.

(iv) If 0 is the additive identity of N, then 0.n = n.0 = O for all ne N.

A subnear-ring S of a near-ring N is a subset S of N, which is a near-ring
under the induced binary operations.

A mapping f: N—- N, of two near-rings N, N, is a near-ring homomorphism
if (n+n")f = nf+n'’f; (n.0")f = (nf).(n’f) for any n, n’ € N.
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If N is a near-ring, then an additive group M is an N-module, if there exists
a mapping (m, n)»m.n of M x N into M, such that

(i) m.(n+n,) =m.n+m.n, forallme M; n,n, eN.
@ii) m.(n.n,) = (m.n).n, forallme M; n,n, e N.

A mapping Y: M—>M, (where M and M, are N-modules) is called an
N-homomorphism if

m+mW =mpy+m'y foranym, m' eM
(mn)r = (my)n foranyme M; ne N.

An N-submodule M’ of an N-module M is the kernel of an N-homomorphism
from M, so that M'<aM and (m+m’).n—m.ne M'forallme M,m e M',ne N.

An N-subgroup M" of an N-module M is an additive subgroup M” of M
such that m".ne M" forall m"e M", ne N.

A near-ring N is clearly an N-module.

A right ideal of N is an N-submodule of the N-module N.

A right N-subgroup of N is an N-subgroup of the N-module N.

An N-module M is of type 2 if M possesses no proper, non-trivial N-sub-
groups and MN = {mn|me M; ne N} # {0}.

Let S be a subset of an N-module M, we define

(S),={neN|sn=0 forall seS}

and call this the right annihilator of S (in N). Clearly this is a right ideal of N.

A near-ring N is 2-primitive if there exists an N-module M of type 2 such
that (M), = (0).

For any near-ring N, define J,(N) to be the intersection of the right annihi-
lators of all N-modules of type 2, with the convention that J,(N) = N if N
possesses no N-modules of type 2.

A near-ring N is 2-prime if aNb = 0)=>a=0o0rb =0 (a, be N).

A near-ring satisfies the descending chain condition (d.c.c.) on right ideals
if, given a chain of right ideals in the near-ring,

Ri2R,2...2R,2...
then there exists an integer ¢ with R, = R, = ...

A near-ring satisfies the ascending chain condition (a.c.c.) on right annihi-
lators if given a chain of right ideals of the near-ring, which are right annihilators,

(Zl)r%(ZZ)rE o :CE(Zp)rg see

then there exists an integer g with (Z)), = (Z,,,), ....
An element n of a near-ring N is a regular element if

nn=nn=>n,=n, (n, n,eN)
and

nny=nn,=>n;=n, (n;, ngeN).
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A near-ring N has a near-ring of right quotients Q if
(i) N can be embedded (as a near-ring) in @, and Q has an identity;

(ii) x i1s a regular element of N then Jye Q such that x.y = y.x =1,
(we write y = x~1);

(iii) ¢ € Q then ¢ = nx~! where n e N and x is a regular element of N.

Let I" be an additive group and S a semigroup of endomorphisms of T
We define Mapg (I') to be the set of mappings {n|n: I'-I; (0p).n = O;
ysn = yns,Vy eI, Vse S}. Then Mapg (') is a near-ring (with a multiplicative
identity), called the endomorphism near-ring of U in the category of S-acts and
S-maps.

2, 2-Systems

Theorem 2.1. Suppose that I is an additive group, and S is a multiplicative
semigroup of endomorphisms of (I, +), which includes the identity endomorphism,
but not the zero endomorphism. Suppose that S is left and right cancellative,
left and right reversible and for all s€ S, ys =0=>7 =0, (yeI). Then S has
a group G of left quotients, and G acts as a group of automorphisms on an additive
group A.

Proof. The existence of G is a standard result (2).

Consider I'x S. Let (7, 5), (71, 5;)e'x S, define the relation ~ by
(y, )~ (74, $1) <> 3a, b, € S such that sb = s,a and yb = y,a.

It is a fairly mechanical procedure to verify that ~ is well defined and an
equivalence relation (see (6)). Partitioning I x .S into equivalence classes we
write y/s to represent the equivalence class containing (7, s). Let

A=1{y/s|yeT,seS}
We show that A is an additive group and G is a group of automorphisms of A.

Let y/s, ¥'/s" € A and define y/s+y'/s’ = (ya+7y'b)/m where a, be S, such
that s’b = sa = m. This operation is well defined. For suppose (y,, s{)~(y, 5)
and (yy, s1)~(y', s'); we show that y,/s,+7i/si =7y/s+7'/s’. Let o, BeS
such that sa = 5,8 and ya = y,8. Also let 4, ue S such that s'A = s{u and
y'A=9iu. Then vy, /s, +7yi/s1 = (y1x+7y1y)/s,x, where x, ye S such that
six = siy. Choose e, fe S with s;xf = sae. Then sae = s'be, s,xf = s} yf.
Therefore s'be = syyf. Now there exist k, he S such that aek = ah. Then
saek = sah = s,fh = s,xfk; thus Bh = xfk. vyaek = yah = y,xfk. Then
(yae~y,x)k = 0= yae = y,xf. Also y'bel = y'Am’, where ], m’ € S such that
bel = Am'. Now s'bel = sael = s yfl = s'Am’. Then sy yfl = sium’ = yfl = ym’
and y'bel = y'Am’ = yijum’ = yyfl=1v'be = y}yf. Since e and f are endomor-
phisms of ', (ya +7'b)e = yae+y'be = y,xf+y1yf = (1 x +71y) f: but sae = s, xf;
hence (ya+y'b, sa)~(y;x+71y, s;x). Thus addition is well defined, and the
group axioms are satisfied. If y/scA and ge G, with g =r/s; (r, 5, € 5)
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define (y/s).g = yu,/(s,b,), where g = r/s, and u, b, € S such that su, = rb,.
It may be checked that this is a well-defined operation and g is an automorphism
of (A, +), and G acts faithfully on A. For example, let y/s, y'/s’,€ A and
g =r/s;e€G. Then (y/s+7y'/s')r/s)) = ((ya+y'b)/sa)(r/s,), where sa = s'b so
(v/s+7'[sYrlsy) = (va+y'b)(us/(s1b1)) = (vau, +y'buy)/(s,by),
where sau, = rb;. Now (y/s)(r/s)) = (yu,)/(s,b,), where su, = rb,, and
(v'/s")(r/sy) = (y'u3)/(sibs), where s'u; = rb;. Then
/s)(r/s )+ (' [s'Wrls1) = (yuzc+y'usd)/(s1b10),

where s,b,¢ = 5,b3d, i.e. byc = byd. Choose x, y € S such that s,b,cx = 5,b,y.
Then b,cx = by = bydx and su,ex = rbyex = rbydx = rb,y = sau,y; hence
UyCX = Qu,y = Yucx = yau,y. Also s'usdx = rbidx = s'bu,y; sousdx = bu,y
and y'uydx = y'bu,y. Then (yau,+7y'buy)y = yau,y+y'bu,y = (yuyc+ y'usd)x,
ie. (yau,+y'buy, s.b))~(yuyc+y'usd, s,b,c). In this way we see that G is a
group of endomorphisms of A, and is in fact easily seen to be a group of auto-
morphisms of A.

Lemma 2.2. In the terminology of 2.1, G is a group of regular automorphisms
of A, if and only if, for every 0 # y€eT, ys, = ys, =5, = 85, (51, 5, € S).

Proof. (i) Suppose that G is a group of regular automorphisms. Let
yel'; 5, €8,s5, € Swith ps; = ysyand s, # s,. Then (y/1)(s,/s,) = (v.0)/(s,0),
where 1.a = s,b. Hence (y/1)(s,/53) = (y5,0)/(s2b) = (ys,b)/(s,0) = y. Since
g = 5;/s, € G, we have found an element yeI" and g € G such that yg = y.
But g is regular; so y = 0.

(it) Suppose that y/se€ A, rfs, € G and y # 0, and (y/s)(r/s,) = y/s. Then
v/s = yu,/(s1b,), where rb; = su,. There exist u,, b, € S such that yu, = yu,b,
and su, = s,b;6,. Now y # 0=u, = u,b, and thus

Slblbz = Suz = Su1b2=slbl = Sul = rb1=s1 =7r.
Thus r/s, is the identity automorphism of A, and G is a group of regular auto-
morphisms of A.

p
Lemma 2.3. In the terminology of Theorem 2.1 if T' = {0}u { U y,.S} for
i=1

suitable vy, 2, ..., v, € T, such that y,Sn\y;S = & for i # j, then A /_msp orbits
under the action of G.

Proof. LetdeA,0#0. Thend = y/sforsome yeT,se S, and y = y,s;
14
for some s5; € S, and some i €{1,2,..., p}. Thend = (y;5,)/s = y(s;/s)e | 7.G.
i=1

P
Thus A= 4 ) in} v{0}. Now suppose that ¢’ # 0 and &' € y,Gny;G for
i=1

i#j. Let & = y(rfs) = y(y/z), where r, s, y, ze S. There exist a, feS§
such that sx =zf =m (say); so we have & = (y,r)/s = (y,»)/z and

https://doi.org/10.1017/50013091500010440 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500010440

QUOTIENTS OF ENDOMORPHISM NEAR-RINGS 349

&'m = (y;rfsfmfl) = y,ru,/b,, where u,, b, € S and mb; = su, i.e. sab, = su,,
ie. ab, = u,. Thus &’'m = (y;rab)/b; = y;ra. Also 6'm = y;yu,/b,, where
uy, b€ S and mb, = zu,, ie. b, = u,. Thus &'m = y;yf = y;ra; which
implies that y;Sny;S # ¢, a contradiction.

Definition. A system (I', S) satisfying the hypothesis of Theorem 2.1 will be
called a 2-system, if and only if for every 0 # ye T, ys, = ys,, (51, 5 € S).

Theorem 2.4. If (T, S) and (', S,) are 2-systems, then T ®T,, SxS,)isa
2-system.

Proof. Sx .S, is a semigroup of monomorphisms of I'@I", in the natural
way. Clearly Sx S, is left and right cancellative, left and right reversible.

Let (7, }’1) € r®r1 with (Y, Y1) # (Oa 01) and (')7, ')’1)(5, sl) = (Y9 71)(8'9 s’l) fOI'
s, s'€S; sy, s1€S;. Thenys = ys' =5 =s"and y,s, = y,5] =5, = s7. Finally,
if T = y1Suy2Su...uy,,Su{0} and Ty = y,,5,07125V...0P,S;U{0,} then

Irer, = U 3/S x S,)U{(0, 0,)}, where m = pg+p+q and the J, are elements
of the form (‘}’i, 0,), 0, y4;), (vi» v1)- Let
(1, ¥) € Ay 21 )(S x SNy, A1)(S % Sy)

for some A;, 4,€{0, vy, y2, ..., ¥} and 4, A,,,€{04, 11, V125 -+» Y1q}- SuUppose
(1, ) = (A4S, Ayj5y) = (448", A1sy) then A;s = Ays” and A5, = 4,,s7. Clearly
A; = Ayand Ay; = A;,,. This proves the result.

Examples. Let I' be the additive group of integers and S the semigroup of
positive integers under multiplication. Then (T, S) is a 2-system if we define
(y)s = ysforall yeT, se S. Also let I' be any finite group and S = {identity
automorphism} then (T, S) is a 2-system.

3. The near-rings associated with 2-systems

To each 2-system (I, S), we have associated an additive group A and a
group G of regular automorphisms of A admitting only finitely many orbits
on A. We now define two near-rings in a natural way. Let N = Mapg (D)
and Q = Map; (A). We can imbed N in Q in a natural way. Let ne N;
define 7i: A=A by 0.7 = 0 and [y,(r/s)]7 = (y;n)(r/s), where p(r/s) is a typical

non-zero element of A, and A = {0}u ( U y,G). It is not difficult to see that

fie Q. Define a map &: N-Q by né =7, YneN. Let n, nyeN; then
(n+n,)¢ = n+n,. ForanydeA, s +#0,

8(n+ny) = y((a/b)(n+ny) =y(n+n,).(a/b) = (yin+yn) .(a/b)
=9y{n.a/b+n,.a/b) = dn+dn,.
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Also &(n.n;) = (y{a/b))(nn,) = (yinn,).(a/b). Let ynn, = y;ry, for some
je{l, ..., p} and ry € S, so that é(nn,) = y;r,(a/b). Now
o(f.ny) = yn.(afb)i, = yro(a/b)ny,
where y;n = y,r, forsome ke{l, ..., p} and r, € S. Then
é(n.ny) = y,.ny(r,.a/b).
Let y,n, = y,r; for some /e {1, ..., p} and r; € S, then
Yy = Yy = (Wrdng = Yrsrs.

Hence 6(n.7,) = y;rsry.(afb) = y;ry.(a/b) = 6(an,). Thus & is a near-ring
homomorphism. If neker £ then 1 = 0,and An = 0. ThusifQ # de€ A, and
& = y,(a/b), then [y(a/b)}n = yn(a/b) = 0. In particular, y;n = 0 and this is
clearly true for i = 1, ..., p. Hence n is the zero mapping and ¢ is bijective.
We have

Theorem 3.1. If (I, S) is a 2-system, and A and G the groups constructed
by Theorem 2.1, then Mapg (I') may be imbedded in Mapg (A).

Remark. The near-ring Q = Mapg (A) is a 2-primitive near-ring with
identity and descending chain condition on right ideals (see (3)). The remainder
of this section will show that Q is a near-ring of right quotients of N.

Let = {1, 2, ..., p}. Suppose ne N and for any k € I define

Lin) = {ieI|yneysS}
It is clear that I,(n) may be empty and that if /e I with k # /, then
Lmnl(n) = &.
Lemma 3.2, If n is a regular element of N, then each I(n) contains one

element for any k € I.

Proof. If I,(n) = ¢ for some k € I, define n, so that

y;sny = ¥;s for all iel with i # k and any seS;

yisn, =0 for all se S and On, = 0.
Then n eN, yn.l=ymn; (#k) and yn.1 = y;5 = ysng = ynny,
where yn = y;s for some jeI\{k} and s S. Thusn.l = n.n; =n, = 1 which
contradicts y,n, = 0. Thus f,(n) # & forany kel

Theorem 3.3. If n is a regular element of N, then there exists q € Q such
that n.q = q.7 = 1,.

Proof. Let yn = y;.s, where j,el; s;€S; i=1,..,p.

The integers jy, ..., j, are a permutation of 1, ..., p by Lemma 3.2; let
this permutation be denoted by 7. Thus j; = n(i), ie I. Let s;! be the inverse
of s, in G (iel). Define g: A=A by Og =0 and (y,»9)9 = 757 'g; for
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iel, g;geG. Let deA, geG and suppose that & = y,4.g, for some
lel g, €G. Then

(39)4 = (an- 919)9 = vi57 1(91-9) = (57 9109 = (ha91)99 = 849.
Hence g € Q.
Now let 6’ € A with 6’ # 0, and 6’ = y,9; = y(r/t;), where ie I, r,, t;€ S.
Then §'fig = (yi(ri/t)iq = (yin)(rift)q = Qaysd)riltdd = visi *si(rift) = &',
Hence g = 1,. Also &'gh = (y(ri/t))ah = yn4(ri/t:)qh, where n(k) = i. Then

8'qn =y {(rif )i = ynsg (rift).

Now 1 = P8, and so é’qn = 6. Thus g = gt = 1,. Therefore we can
invert the imbedded regular elements of N in Q.

Theorem 3.4. If x is an arbitrary non-zero element of Q, then there exist
0, n, € N, with 0 regular in N such that x = 71,0, where 0~ is the inverse in
Q of the element 0.

We first need the following lemma, which is proved by a standard induction
argument.

Lemma 3.5. Let ry, ..., ry, ty, ..., t,€S, then there exist me S and
hy, ..., hye S such that mr; = hit, fori =1, ..., 6.

Proof of Theorem 3.4. Let xe Q, with x # 0. Put X = {ae 7| y,x = 0}.
Suppose that x: y;—y;49;, iel\X, j;el, g,€ G. We have that x: y,»0 for
a’e X. For any k e I, put I}(x) = {iel | y;xeyG}.

Some of these If(x) may be empty. If vel{(x) for some keI then
VX = Vidro 52, (Gio € G) and so y,x = yur,/t,) for suitable ry, #,€S.
From Lemma 3.5, there exist m,eS and hgeS, (velf(x)) such that
mgr, = hty, for all ve I¥(x), and each ke .

Now we define a mapping n,: I'-I" by putting

(y,.5)ny = p(hy,)s  for all ve I¥(x), kel,

0.7, =0, (y5)n; =0 foraeX.
Clearly n; € N.

Let I' = {jeI| y;x€y;G for some ieI}. (Thus I’ is the set of indices
whose associated orbits appear in the image of x in A.)
Define 0: T-T by

7,58 = y,m,s for all tel’,
s =ys  forallie\l',
0.0=0.
Then 6 is a regular element of N and the element §~': A—A is given by
9. g-ym; 'g forall tel’,
Y909 for all ie \I' .
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Puty = n,071, then forieIf(x), y;,y = 7m0~ = )9~ " = yumy *hy as kel’.
Now mry; = hyty; and so in G, rit™! = mg 'hy,. Thus yy =yt = 7:x.
If je X, then y;y = y;n,0™' = 0 as y;n, = 0. Hence y = x = n,6~'. Thus
Q is a near-ring of right quotients of N.

Theorem 3.6. If (I, S) is a 2-system, then N = Mapg (') is a 2-prime
near-ring.

Proof. Assume that n, n' € N with nNn’ = 0 but n # 0 and n’ # 0. Let
I'={1,2,..,p}. Sincen # 0, then y;n = y;s for some i, je I and s€ S; also
y,n' = y,5 for some t, reIand s’ € S. Define n;: T-T by

y;siny =7, foranys €S,
7siny =0 ~ foranys,eSandlel,l#j.

Then n; € Nand ypmnyn’ = yisnin’ = y,sn’ = y,8's # 0. Butann’ e nNn' = 0;
thus we have a contradiction.

The theorems of this section show that if (T, S) is a 2-system then the near-
ring Mapg (I') will have a near-ring of right quotients which is in fact 2-primitive
and artinian and is of the form Mapg; (A) for suitable groups A, G. Notice
that the near-ring of quotients, although an endomorphism near-ring is
associated with the category of G-acts and G-morphisms rather than with the
related category of S-acts and S-morphisms.

Some of the theorems of ring theory which describe the connection between
a ring and its ring of right quotients (if it has one) can be generalised easily to
the near-ring case. Using results of Betsch (1) concerning near-rings with d.c.c.
on right ideals which have a zero J,-radical, it is possible to prove that
N = Mapg (T') has a.c.c. on right annihilators and possesses no infinite direct
sums of right ideals (see (3)).
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