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.e perturbation electron density and stopping power caused by the movement of charged particles above two-dimensional
quantum electron gases (2DQEG) have been studied in numerous works using the quantum hydrodynamic (QHD) theory. In this
paper, the QHD is modified by introducing the two-dimensional electron exchange-correlation potential at high density Vxc2DH
and the pump wave modulations. Based on the modified QHD, the perturbation electron density and stopping power are
calculated for pump waves with various parameters. .e results show that the stopping power values are more accurate after
considering Vxc2DH. Under the modulation of pump waves with the wavelength from 0.1nm to 0.1cm, the perturbation electron
density of 2DQEG and the stopping power of charged particles show periodic changes. Under the modulation of pumpwaves with
λ � 1.76 × 10− 4 cm and Φ0 � 2 × 1010e/λf, the average stopping power with respect to the time phase θ becomes negative, which
means that the charged particles will gain energy and can be accelerated..is is a new phenomenon in the fields of 2DQEG and of
great significance in surface physics and surface modification in nanoelectronic devices with beam matter interactions.

1. Introduction

Accompanied by the two-dimensional quantum electron
gases (2DQEG) is confirmed to exist on the surface of the
metals and semiconductor heterostructures. .e interaction
between charged particles and plasma targets has attracted a
lot of attention in surface physics [1–6]. .e incident par-
ticles can also be used as probes to detect the properties of
2DQEG, or as a powerful tool of surface character
modification.

In the study of the interaction between charged particles
and plasma targets, people are particularly interested in the
analytical calculation of energy loss [7] and the density
distribution of the plasma targets [8]. Stopping power is used
to describe the energy loss per unit length [6, 9–15]. As an
important physical quantity to study the interaction between
charged particles and the plasma targets, a lot of experiments
and theoretical studies have been done in the past decade
[16–28]. .e stopping power of charged particles can be
modulated by the incident velocity of charged particles [5],

the amount of charge of charged particles, the density of
plasma targets [5], varying altitude parameter between
charged particles and 2DQEG [4, 5, 29], the external
magnetic field [30, 31], the spin effects [32], and so on.

In order to understand the interaction between charged
particles and plasma targets in the presence of a laser field, a
lot of theoretical studies have been carried out [33–39].
Within the dielectric formalism, Arist et al. [33] studied the
influence of a strong laser field on the stopping power for
charged particles in low-density nondegenerate plasmas, and
the expression of stopping power is given when a laser field
exists. .e results show that the laser field reduces the
stopping power of plasma and makes it anisotropic through
the polarization of the electric field wave. Within the
random-phase approximation theory, Nersisyan [34] also
investigated the stopping and acceleration effect of protons
in a plasma in the presence of an intense radiation field and
calculated the stopping power of charged particles in the
high-frequency limit. With two-dimensional electrostatic
particle-in-cell (2DPIC) simulation, Hu [35] studied energy
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loss of ion beam when plasma irradiated by a strong laser
pulse and the dynamic polarization of plasma. Pertaining
results make it clear that stopping power gets strongly
modulated by the laser field.

However, these research methods are no longer appli-
cable when studying the stopping power modulation by
pump waves of charged particles moving above the 2DQEG.
In the study of Nersisyan et al., when considering the in-
teraction between laser and three-dimensional plasma, the
expression of the vector potential A of electromagnetic
waves was used [34]. However, the vector potential ex-
pression of the electromagnetic wave A cannot be written for
the interaction of 2DQEG and laser. Another feasible
method to implement electromagnetic waves is to ignore the
effect of the magnetic field and write down the expression for
the electric field term of electromagnetic waves [40]. .e
2DPIC method cannot be used either to study the inter-
action between charged particles and 2DQEG. Because the
charged particles are above the 2DQEG, a three-dimensional
electrostatic particle-in-cell (3DPIC) method is required.
However, the 3DPIC method is currently difficult to im-
plement due to a large amount of calculation [35].

In this paper, a modified linear QHD is used to study the
modulation effect of pump waves on the perturbation
electron density and stopping power caused by the move-
ment of charged particles above the 2DQEG. .e outline of
this article is as follows. In Section 2, the modified QHD is
introduced to include the laser pump wave modulation and
the two-dimensional electron exchange-correlation poten-
tial of high-density Vxc2DH effects..e general expressions of
perturbation electron density of 2DQEG and stopping
power of incident charged particles are derived by the
modified QHD theory. In Section 3, the numerical results of
perturbation electron density of 2DQEG and stopping
power of incident charged particles modulated by pump
waves with various physical parameters (wavelength λ,
amplitude Φ0, and time phase θ) are given. Section 4 gives a
summary. Gauss system of units is adopted in this paper.

2. Quantum Hydrodynamic Model

2.1. Physic Model. .e schematic diagram is given in Fig-
ure 1. 2DQEG is an idealized model, which corresponds to
the electronic components on the surface or interface of
metal or semiconductor in a very thin layer (only a few layers
of atoms’ thickness). For the convenience of studying, it is
generally considered that the thickness of such two-
dimensional electron gas is taken negligible [41]. Consider
an infinite 2DQEG composed of free electrons and mo-
tionless ions located on the plane z � 0, and use a Cartesian
coordinate system to represent its position in the region
z> 0 and z< 0. n0 is the equilibrium density of electrons and
ions. At equilibrium, 2DQEG density satisfies the relation
ni � ne � n0 [32]. Considering that the quantum effect is
more significant in the high-density electron gas, we take the
equilibrium density of electrons and ions as
n0 � 5.69 × 1015cm−2, which is the density of aluminum
surface [5].

Charged particles move in the x direction parallel to the
2DQEG plane, with a velocity of v � 2vB and a height of
z0 � 9λf away from the 2DQEG. Here, vB � e2/Z is Bohr
velocity, λf � 1/

����
2πno

􏽰
� 5.29 × 10−9cm is Fermi wave-

length, and e is the elementary charge. .e density of
charged particles with charge Z1e can be expressed as
ρext � Z1eδ(r − vt)δ(z − z0), where r � r(x, y).

We assume that the pump waves are collimated,
monochromatic, continuous electromagnetic waves with
wavelength λ propagating in the +x direction. Along the +x

direction, the pump wave with the wavelength from 0.1nm
(c rays) to 0.1cm (microwave) irradiates the 2DQEG. .e
electric field component of the pump wave acts on the
2DQEG as an external high-frequency electric field in the
plane of x0y, and the reaction of the 2DQEG on the pump
wave is without the scope of our consideration [35, 42]. .e
electrons in the 2DQEG are affected by the pump wave
electric field, which changes the spatial distribution of
electrons in the 2DQEG. .en, the exciting electric field by
electrons in 2DQEG acts on the incident particle, which
affects the velocity of the incident particle, thus affecting the
stopping power of incident particles. In terms of electric
field, the pump waves can be expressed as
E � −ik0Φ0 exp[−i(ω0t − k0x)], where k0 is the wave vector
of pump waves [40]..e time variable of the pump wave is t.
.e wavelength of the pump wave is λ � 1/k0. ω0 is the
frequency of the pump wave, where ω0 � k0c, in which c �

2.998 × 1010 is the speed of light. .e intensity of the pump
wave can be calculated by Wp � c(k0Φ0)

2/8π [34], and the
maximum intensity of the pump wave is 1023Wcm− 2 in this
paper. When k0 is constant, the strength of the pump wave is
varying with the pump amplitude Φ0.

2.2. Mathematical Model. As a powerful research method,
QHD theory is widely used in plasma research [43–45]. Li
et al. [4, 5, 46] conducted a series of studies on the stopping
power of charged particles above the 2DQEG using line-
arized QHD theory, which is consistent with dielectric re-
sponse theory and experimental results. In our research, the
equilibrium electron density of 2DQEG will be disturbed by
pump waves and injecting charged particles, generating
charged fluid velocity field ue(r, t) and electron gas density
ne(r, t). According to the linearized QHD theory, the density
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Figure 1: .e schematic diagram of the interaction between pump
waves, charged particles, and 2DQEG.
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and velocity of electrons on the 2DQEG surface can be
described by the continuity equation

zne

zt
+ ∇‖ · neue( 􏼁 � 0, (1)

the momentum-balance equation

me

zue

zt
+ ue · ∇‖ue􏼠 􏼡 � e∇‖Φ|z�0 − ∇‖we

+
Z
2

2me

∇‖

1
��
ne

√ ∇2‖
��
ne

√
􏼠 􏼡 − cmeue

− eE − Vxc2DH
∇ne1

ne

,

(2)

and Poisson’s equation

∇2Φ � 4πe neδ(z) − n0δ(z) − Z1δ(r − vt)δ z − z0( 􏼁􏼂 􏼃.

(3)

Here, ∇‖ � z/zxex + z/zyey, whereas in equation (3), the
differentiation∇ � z/zxex + z/zyey + z/zzez is unrestricted.
Φ denotes total electrostatic potential built on wake potential
Φind caused by the collective excitation of electron gas and
the charged particle’s external potential. On the right-hand
side of equation (2), the first term is the force of electrons on
the 2DQEG surface due to the tangential electric field, and
the second term is the force caused by the quantum sta-
tistical effect. Here, we � πZ2ne/me refers to the quantum
statistical pressure term acting on electrons in 2DQEG, the
third term is the force due to the quantum diffraction effects,
the fourth term is the frictional force caused by the inter-
action between electrons and positive charge background
where c is the friction coefficient, the fifth term is the force
on electrons owing to the electric field of pump wave, and
the last term is the force on electrons due to electron ex-
change-correlation potential Vxc2DH. .e validity of QHD
equations (1) and (2) implies that the off-diagonal com-
ponents of the pressure tensor and viscosity remain
negligible.

2.3. Exchange-Correlation Potential. Exchange-correlation
potential is an important quantum effect term. Mir et al.
considered the exchange-correlation potential when
studying degenerate plasmas [40]. Haas derived a quantum
fluid equation containing exchange correlation, which is
described by an effective potential [47]. Pollack nd Perdew
have made an in-depth study on the exchange-correlation
potential of two-dimensional electron gas [48]. However,
the exchange-correlation potential is not considered in the
study of the interaction between incident particles and
2DQEG using the quantum hydrodynamic method so far.
.e three-dimensional electron exchange-correlation
potential is expressed as follows:

Vxc3D′ �
0.985
3

e
2

ε
n0( 􏼁

1/3
+
0.985 × 0.034

3aB

e
2

ε

·
18.37aB n0( 􏼁

1/3

1 + 18.37aB n0( 􏼁
1/3,

(4)

where aB � εZ2/mee
2 is effective Bohr atomic radius, in which

ε � 1 is the relative dielectric constant and me is the electron
mass [40]. We adapt the dimension of the three-dimensional
electron exchange-correlation potential to the dimension of the
two-dimensional electron exchange-correlation potential based
on [40].

Vxc3 D �
0.985
3

1
rs(2π)

1/2 +
0.985 × 0.034

3
18.37/rs(2π)

1/2

1 + 18.37/rs(2π)
1/2.

(5)

.e two-dimensional electron exchange-correlation
potential of low density is then expressed as follows [40]:

Vxc2DL � 0.5058
1.3311

r
2
s

����������
1 + 1.5026rs

􏽰
− 1( 􏼁 −

1
rs

􏼢 􏼣, (6)

and the two-dimensional electron exchange-correlation
potential of high density is expressed as follows [40]:

Vxc2DH �
−0.6002

rs

, (7)

where rs � (2πn0a
2
B)− 1/2 is the Wigner–Seitz radius asso-

ciated with the 2DQEG density [48].
.e Vxc3D (solid line), the Vxc2DL (dashed line), and the

Vxc2DH (dotted line) are shown in Figure 2. Here, the value of
Vxc3 D is positive, and the values of Vxc2DL and Vxc2DH are
negative. It is reasonable to assume that two-dimensional
electron exchange-correlation potential has completely
different properties from its three-dimensional electron
homologue. .e Wigner–Seitz radius of 2DQEG that we
are considering is rs � 1, the corresponding density is
n0 � 5.69 × 1015cm− 2, and the corresponding exchange-
correlation potentials are Vxc3 D � 0.1362, Vxc2DL �

−0.114, and Vxc2DH � −0.6002 (these are dimensionless
values). In previous studies of the interaction between
charged particles and 2DQEG, the exchange-correlation
potential was ignored due to its small value. Here, the
absolute value of Vxc2DH is the largest compared with
Vxc3 D and Vxc2DL and the absolute value of Vxc2DH is
almost six times as much as the absolute value of Vxc3D

and Vxc2DL. It is necessary to consider Vxc2DH in the re-
search of interaction between incident charged particles
and 2DQEG by using the QHD theory due to the high
density in the quantum electron gas. .is indicates that
increasing density could enhance the exchange-correlation
effect, as a function of the density. .e exchange-corre-
lation effect has been considered in quantum wells, GaAs/
GaAlAs heterostructures, and silicon inversion layers, with
the local density approximation method [49, 50].
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2.4. Linearized QHD Model. Let ne(r, t) � n0+ ne1(r, t),

ue(r, t) � ue1(r, t), andΦ(R, t) � Φ1(R, t), where ne1≪ n0.
ue1(r, t), ne1(r, t), and Φ1(R, t) are the first-order perturbed
quantities of velocity, density, and potential, respectively.
We linearize the above equation to obtain the perturbation
electron density ne1 and the induced potentialΦind [5]. Here
are the linearized continuity equation

zne1

zt
+ n0∇‖ · ue1 � 0, (8)

the momentum-balance equation

me

zue1

zt
� e∇‖Φ1|z�0

πZ
2

me

∇‖ne1 +
Z
2

4men0
∇‖ ∇

2
‖ne1􏼐 􏼑

− cmeue1 − eE − Vxc2DH
∇ne1

n0
,

(9)

and Poisson’s equation

∇2Φ1 � 4πe ne1δ(z) − z1δ(r − vt)δ z − z0( 􏼁􏼂 􏼃, (10)

where Φ1 � Φext +Φind. Φext is the external potential of the
incident particle. Φind is the induced potential by the per-
turbation electron density. Take the Fourier transform of the
above linearized equations in space-time, and obtain the
perturbation electron density ne1 and the induced potential
Φind:

ne1(r, t) � n0
z1e

2

2πme

􏽚
+∞

−∞
−

k
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e
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+ Im D0 k0,ω0( 􏼁( 􏼁sin k0x − ω0t( 􏼁􏼉,

(11)

Φind(R, t) � n0
z1e

3

me

􏽚
+∞

−∞

1
D(k,ω)

e
− kz0− kz

e
ik·(r− vt)dk

+
2πe

2
n0k0Φ0

me D0 k0,ω0( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2 Re D0 k0,ω0( 􏼁( 􏼁􏼈

· cos k0x − ω0t( 􏼁 + Im D0 k0,ω0( 􏼁( 􏼁

· sin k0x − ω0t( 􏼁􏼉,

(12)

where

D(k,ω) � ω􏽥ω − ω2
paBk −

Vxc2DH

me

k
2

− kvF( 􏼁
2 1 + k

2/ 2k
2
F􏼐 􏼑􏼐 􏼑

2
,

D0 k0,ω0( 􏼁 � ω0􏽥ω0 − ω2
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2
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2
,

(13)

with 􏽥ω � ω + ic. Bohr radius aB � Z2/mee
2, Fermi velocity

vF � ZkF/me, Fermi wave-number kF �
����
2πn0

􏽰
, and electron

plasma frequency ωp � (2πn0e
2/meaB)1/2. k � kx, ky􏽮 􏽯 is a

two-dimensional wave vector. Consider that ω � k · v and
the projectile velocity v and the x axis are going in the same
direction, hence ω � kxv.

For convenience, we introduce the dimensionless vari-
ables: ω/ωp⟶ ω, ω0/ωp⟶ ω0, ky/kF⟶ ky,
k/kF⟶ k, k0/kF⟶ k0, v/vB⟶ v, c/vB⟶ c,
(x − vt)/λf⟶ x, y/λf⟶ y, z/λf⟶ z, z0/λf⟶ z0,
c/ωp⟶ c, and Φ0/(e/λf)⟶Φ0. .us, equation (11) can
be reduced to

ne1(r, t)

n0
� An 􏽚

+∞

−∞
dky 􏽚

+∞

−∞
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(14)
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Figure 2: .e change of electron exchange-correlation potential
with Wigner–Seitz radius of 2DQEG.
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where An � (−Z1)/(2πrsv), Bn � (ke− kz0)/(| 􏽥D|2), Cn � (Φ0
k2
0)/(|􏽦D0|

2rs),

􏽥D � ω2
−

k

rs

−
k
2

2r
2
s􏼐 􏼑
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1 + k

2

2
􏼠 􏼡 − Vxc2DHk

2
,

􏽦D0 � ω2
0 −

k0

rs

− k
2
0/24r

2
s􏼐 􏼑

1 + k
2
0

2
􏼠 􏼡 − Vxc2DHk

2
0,

(15)

Here, t denotes time variable, ω0 is constant when the
wavelength λ is fixed, and θ � −ω0t is used to modulate the
phase, and it highlights the sine function factor oscillation of
pump waves. Note that the introduced Vxc2DH affects the
electron density distribution by modifying the value of 􏽥D,
determined through the Wigner–Seitz radius rs thus by the
equilibrium density n0. .e second term of the reduced
perturbation electron density is induced by the electric field
of the pump wave in equation (14). Because the pump wave
satisfies the relation k0 � 1/λ, the second term of the reduced
perturbation electron density is modulated by the wave-
length λ, the amplitude Φ0, and the time phase θ. Fur-
thermore, the stopping power S(v) determined by wake
force can be given by the value of the gradient of the induced
potential Φind [32]:

S(v) � eZ1
zΦind

zx

􏼌􏼌􏼌􏼌􏼌􏼌

r�vt

z�z0
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2
1e

4

me

􏽚
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ikx
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e
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+
2πz1e

3
n0k

2
0Φ0e

− k0z

me D0 k0,ω0( 􏼁
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Im D0 k0,ω0( 􏼁( 􏼁cos k0x − ω0t( 􏼁􏼈

− Re D0 k0,ω0( 􏼁( 􏼁sin k0x − ω0t( 􏼁􏼉.

(16)

In the calculation above, the residue theorem is used.
Using dimensionless variables, equation (16) can be reduced
to

S(v)
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(17)
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2πr
3
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2

􏼒 􏼓

.

(18)

.e stopping power is related to the velocity v of the
incident particle. When the velocity variable v is extracted
from the sine and cosine functions, the time variable t is also
exposed. Similarly, to study the influence of the time variable
t on the sine and cosine functions, we introduce the time
phase θ, which means that the time variable t is changing the
sine and cosine functions with −c0t in equation (16) while
the time phase θ is changing the sine and cosine functions
through θ in equation (17). Note that the second term of the
stopping power is induced by the excited electric field of the
pump wave in equation (16). .e pump wave satisfies the
relation ω0 � k0c and 3k0 � 1/λ, and hence, the second term
of the stopping power is modulated by the wavelength λ, the
amplitude Φ0, and the time phase θ.

In the next section, we will give the result of the effect of
Vxc2DH on the stopping power of the incident particle. To
investigate the effect of pump wave on the perturbation
electron density of 2DQEG and the stopping power of the
incident particle, we calculate the perturbation electron
density and the stopping power under different wavelength
λ, amplitude Φ0, and time phase θ. In what follows, we take
rs � 1, the collision frequency c � 0.02ωP, incident particle
as a proton Z1 � 1, and the distance between the incident
particle and 2DQEG z0 � 9λf, while the wavelength λ, the
amplitude Φ0, and the time phase θ of the pump wave are
varied.

3. Result and Discussion

3.1. Two-Dimensional Electron Exchange-Correlation Poten-
tial ofHighDensity. In the past, Li et al. and Zhang et al. have
done a lot of theoretical research studies on the stopping
power of incident particles in the study of the charged
particles moving above two-dimensional electron gases
[4, 5, 32, 38, 43]. On the basis of the work of Li et al. and
Zhang et al., we investigate the effect of exchange-correlation
potential on the stopping power of incident particles. In this
paper, the stopping power of incident particles calculated
without considering the exchange-correlation potential is
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consistent with the research results of Li et al. and Zhang
et al.

As it can be assumed, Vxc2DH modified the stopping
power of the incident particle because Vxc2DH has been
considered in the momentum-balance equation, thereby
changing the value of D and D0 in equation (16) and
modifying the stopping power of the incident particle. In
order to verify the necessity of introducing Vxc2DH to
modifying QHD, Figure 3 presents the stopping power of the
incident particle versus particle velocity under different
conditions.

Comparing the curve of stopping power without ex-
change-correlation potential (solid line), the curve of
stopping power with Vxc3D � 0.1362 (dashed line), the curve
of stopping power with Vxc2DL � −0.114 (dotted line), and
the curve of stopping power with Vxc2DH � −0.6002 (dash-
dotted line) are shown in Figure 3. Considering the peak of
the stopping power of the incident particle near V � 3.5VB

in Figure 3, the value of stopping power without exchange-
correlation potential exhibits an obvious difference with
respect to stopping power featured by Vxc3 D, Vxc2DL, and
Vxc2DH. .e value of stopping power without exchange-
correlation potential is 0.01517S0. .e values of stopping
power with Vxc3D, Vxc2DL, and Vxc2DH, respectively, are
0.01506S0, 0.01525S0, and 0.01559S0, which, respectively, are
changed by 0.725%, 0.527%, and 2.77% relative to stopping
power without Vxc (these are dimensionless values). .e
results show that the two-dimensional exchange-correlation
potential, especially Vxc2DH, influences the stopping power
of incident particles. Vxc2DH is adapted throughout the paper
within subsequent results.

3.2. Amplitude of Pump Wave. In order to study the mod-
ulation of pump wave amplitude Φ0 on the perturbation
electron density and the stopping power, Figures 4 and 5
show the spatial distribution of the perturbation electron
density as a function of x and the stopping power of the
incident particle versus particle velocity under three dif-
ferent intensity conditions of the pump wave, where the
wavelength is λ � 1.67 × 10− 8 cm. .e comparison of the
perturbation electron density without the pump wave and
with the pump wave forΦ0 � 1 × 102e/λf,Φ0 � 2 × 102e/λf,
and Φ0 � 3 × 102e/λf, respectively, shows that the oscilla-
tion amplitude of the perturbation electron density increases
when considering the pump wave in most cases and the
oscillation amplitude of the perturbation electron density
becomes larger as the amplitude of the pump wave increases
in Figure 4. .is is because the value of the second term in
equation (14) is proportional to the factor of Φ0. But the
oscillation amplitude of the perturbation electron density
displays specific features near x � −29λf. .is is due to the
value of the incident particle external potential and induced
potential by the perturbation electron density. .e com-
parison of the stopping power without the pump wave and
with the pump wave forΦ0 � 1 × 102e/λf,Φ0 � 2 × 102e/λf,
and Φ0 � 3 × 102e/λf, respectively, shows that the pump
wave yields obvious modulation effects on the stopping
power, and the intensity of this modulation is proportional

to the amplitude of the pump wave in Figure 5. .is is
because the value of the second term in equation (17) is
proportional to Φ0. In the low-velocity region (v< 8.3vB), the
stopping power that peaks at v � 3.5vB with the pumpwave for
Φ0 � 1 × 102e/λf, Φ0 � 2 × 102e/λf, and Φ0 � 3 × 102e/λf,

0 5 10 15 20
V/VB

V/VB

0

0.005

0.01

0.015

3.2 3.4 3.6 3.8 4

0.015

0.0152

0.0154

0.0156

S V
/S

0

S V
/S

0

Without Vxc
With Vxc3D

With Vxc2DL
With Vxc2DH

Figure 3: .e stopping power of incident particles, respectively,
with Vxc3D � 0.1362, Vxc2DH � −0.6002, and Vxc2DL � −0.114.
Here, Z1 � 1, rs � 1, c � 0.02, and Z0 � 9.

–100 –50 0 50

Without pump wave
With pump wave
Ф = 1 × 102 e/λf

With pump wave
Ф = 2 × 102 e/λf
With pump wave
Ф = 3 × 102 e/λf

x/λf

–0.1

0

0.1

0.2

n e
1/
n 0

Figure 4: 2DQEG perturbation electron density. Here, Z1 � 1, rs �

1, v � 2, c � 0.02, Z0 � 9, λ � 1.67 × 10− 8 cm, and θ � 0.

–0.005

0

0.005

0.01

0.015

0.02

S V
/S

0

0 5 10 15 20
V/VB

Without pump wave
With pump wave
Ф = 1 × 102 e/λf

With pump wave
Ф = 2 × 102 e/λf
With pump wave
Ф = 3 × 102 e/λf

Figure 5: Stopping power of the incident charged particle. Here,
Z1 � 1, rs � 1, c � 0.02, Z0 � 9, λ � 1.67 × 10− 8 cm, and θ � 0.

6 Laser and Particle Beams

https://doi.org/10.1155/2021/5580444 Published online by Cambridge University Press

https://doi.org/10.1155/2021/5580444


respectively, increases by 12.4%, 24.7%, and 37.1% relative to
the case without the pump wave. Moreover, in the high-ve-
locity region (v> 8.3vB), it is easy to see that the pump wave
dominates the stopping power as the particle velocity increases
compared to the stopping power quickly vanishing without the
pump wave. .e value of stopping power at v � 13.7vB with
pump wave for Φ0 � 3 × 102e/λf decreases to −0.003772S0. It
is surprising that a negative stopping power [34] is found due to
the existence of the pump wave, different from our observation
without the pump wave. .e appearance of negative stopping
power means that the particle drains energy from the 2DQEG.

Generally, when the pump wave does not exist, due to
the disturbance of the electron density in 2DQEG caused by
charged particles, negative charges will accumulate behind
the charged particles in 2DQEG to excite the wake field,
thereby reducing the speed of the charged particles. When
the pump wave exists, in addition to the density disturbance
of 2DQEG caused by charged particles, we also need to
consider the density disturbance caused by the electric field
component of the pump wave. Since the electric field of the
pump wave changes periodically with time, the density
disturbance caused by the electric field component of the
pump wave will also change periodically. .e deceleration
and acceleration effects of the electric field excited by the
perturbation density caused by the pump wave on the
charged particles will change periodically with time. When
the electric field excited by the perturbation density caused
by the pump wave in 2DQEG has a deceleration effect on the
charged particles, the stopping power of the charged par-
ticles will increase. When the electric field excited by the
perturbation density caused by the pump wave accelerates
the charged particles, the stopping power of the charged
particles will decrease. When the acceleration of the electric
field excited by the perturbation density caused by the pump
wave has a stronger effect on the charged particles than the
deceleration of wake field excited by the charged particles,
the velocity of the charged particles will increase and neg-
ative stopping power appears. In other words, the polarity of
wake field can be tuned in the presence of the pump wave,
yielding the negative stopping power.

In the case of λ � 1.56 × 10− 7 cm, the comparison of the
perturbation electron density and stopping power without the
pump wave and with the pump wave shows that the mod-
ulation effect on the oscillation amplitude of the perturbation
electron density and stopping power is proportional to the
amplitude of the pump wave in Figures 6 and 7. As the value
of the second term in equations (14) and (17) increases with
increase inΦ0, it is easy to see that the oscillation amplitude of
the perturbation electron density at x � −5λf with the pump
wave for Φ0 � 1 × 102e/λf, Φ0 � 2 × 102e/λf, and
Φ0 � 3 × 102e/λf, respectively, increases by 22.2%, 44.5%,
and 66.8% in Figure 6. At x> 10λf or x< − 46λf, the pump
wave with wavelength λ � 1.56 × 10− 7 cm dominates the
oscillation amplitude of the perturbation electron density
compared to the perturbation electron density quickly van-
ishing without the pump wave. .e stopping power at v �

3.5vB with the pump wave for Φ0 � 1 × 102e/λf,
Φ0 � 2 × 102e/λf, and Φ0 � 3 × 102e/λf, respectively, in-
creases to 0.03991S0, 0.06422S0, and 0.08854S0 in Figure 7.

In the case of λ � 1.76 × 10− 6 cm, the comparison of the
perturbation electron density and stopping power without
the pump wave and with the pump wave shows that the
pump wave has an obvious modulation effect on the os-
cillation amplitude of the perturbation electron density and
stopping power in Figures 8 and 9, and the modulation effect
of pump wave strengthens as the amplitude of pump wave
increases, which again arises from equations (14) and (17)
second term proportional toΦ0..emodulation effect of the
pump wave only changes the amplitude, not the shape of the
perturbation electron density and stopping power. It is easy
to see that the oscillation amplitude of the perturbation
electron density at x � −5λf with the pump wave for
Φ0 � 1 × 102e/λf, Φ0 � 2 × 102e/λf, and Φ0 � 3 × 102e/λf,
respectively, increases by 22.9%, 45.8%, and 68.7% in Fig-
ure 8. .e oscillation amplitude of the perturbation electron
density increases with the pump wave amplitude. .e am-
plitude of the stopping power at v � 3.5vB with pump wave
for Φ0 � 1 × 102e/λf, Φ0 � 2 × 102e/λf, and Φ0 � 3 × 102e
/λf, respectively, decreases to 0.004182S0, −0.0007226S0,
and −0.01862S0 in Figure 9. .e oscillation amplitude of the
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stopping power rises as the amplitude of the pump wave
increases. Interestingly, the negative stopping power is also
found in Figure 9.

Figures 10–15 show the perturbation electron density
and stopping power with the pump wave for λ � 1.76 × 10− 4

cm, λ � 1.76 × 10− 2 cm, and λ � 1.76 × 10− 1 cm. .e results
of Figures 12 and 14 are similar to that of Figure 10. And the
results of Figures 13 and 15 are similar to that of Figure 11
because the variations of the second term in equations (14)
and (17) remain small in the domain of −120λf < x> 80λf

and 0< v> 20vB. .e oscillation amplitude of the pertur-
bation electron density increases as the amplitude of pump
wave rises in Figures 10, 12, and 14. .e effect of the pump
wave on the stopping power strengthens as the amplitude of
pump wave increases in Figures 11, 13, and 15.

.erefore, the amplitude of the pump wave has a sig-
nificant effect on the oscillation amplitude of the pertur-
bation electron density and stopping power, while the
oscillation amplitude of the perturbation electron density
and stopping power rises with the pump wave amplitude.

.e amplitudes Φ0 ≤ 5 × 105e/λf are realistic values in
current experimental technologies and consistent with those
used in [51].

0

0.1

0.2

0.3

–100 –50 0 50

Without pump wave
With pump wave
Ф = 1 × 102 e/λf

With pump wave
Ф = 2 × 102 e/λf
With pump wave
Ф = 3 × 102 e/λf

x/λf

n e
1/

n 0

Figure 8: 2DQEG perturbation electron density. Here, Z1 � 1, rs �

1, v � 2, c � 0.02, Z0 � 9, λ � 1.76 × 10− 6 cm, and θ � 0.

–0.03

–0.02

–0.01

0

0.01

0.02

S V
/S

0

0 5 10 15
V/VB

Without pump wave
With pump wave
Ф = 1 × 102 e/λf

With pump wave
Ф = 2 × 102 e/λf
With pump wave
Ф = 3 × 102 e/λf

Figure 9: Stopping power of the incident charged particle. Here,
Z1 � 1, rs � 1, c � 0.02, Z0 � 9, λ � 1.76 × 10− 6 cm, and θ � 0.

n e
1/
n 0

–100 –50 0 50

Without pump wave
With pump wave
Ф = 2 × 103 e/λf

With pump wave
Ф = 4 × 103 e/λf
With pump wave
Ф = 5 × 103 e/λf

x/λf

–0.05

0

0.05

0.1

0.15

–10 –8 –6 –4 –2 0
0.135

0.14

0.145

0.15

n e
1/n

0

x/λf

Figure 10: 2DQEG perturbation electron density. Here,
Z1 � 1, rs � 1, v � 2, c � 0.02, Z0 � 9, λ � 1.76 × 10− 4 cm, and
θ � 0.

0

0.01

0.02

0.03

0.04

0.05

S V
/S

0

0 5 10 15 20
V/VB

Without pump wave
With pump wave
Ф = 2 × 103 e/λf

With pump wave
Ф = 4 × 103 e/λf
With pump wave
Ф = 5 × 103 e/λf

Figure 11: Stopping power of the incident charged particle. Here,
Z1 � 1, rs � 1, c � 0.02, Z0 � 9, λ � 1.76 × 10− 4 cm, and θ � 0.

n e
1/
n 0

–100 –50 0 50

Without pump wave
With pump wave
Ф = 2 × 104 e/λf

With pump wave
Ф = 4 × 104 e/λf
With pump wave
Ф = 5 × 104 e/λf

x/λf

–0.05

0

0.05

0.1

0.15

–10 –5 0

0.135

0.14

0.145

n e
1/n

0

x/λf

Figure 12: 2DQEG perturbation electron density. Here,
Z1 � 1, rs � 1, v � 2, c � 0.02, Z0 � 9, λ � 1.76 × 10− 2 cm, and
θ � 0.

8 Laser and Particle Beams

https://doi.org/10.1155/2021/5580444 Published online by Cambridge University Press

https://doi.org/10.1155/2021/5580444


3.3. Wavelength of the Pump Wave. .e wavelength of the
pump wave is an essential parameter for the modulation of
the pump wave on the perturbation electron density and the

stopping power. Comparing Figures 14 and 15, it is found
that the influence of wavelength of the pump wave on the
perturbation electron density and the stopping power is
mainly reflected in the modulation of the shape of the
perturbation electron density curve and the stopping power
curve.

Let us consider the perturbation electron density curve
and the stopping power curve for a short wavelength of the
pump wave of λ � 1.67 × 10− 8 cm. In the space range from
−120λf to 80λf, the perturbation electron density shows a
violent periodic oscillation, contrasted to the no pump wave
case, as shown in Figure 4..e stopping power also has been
modulated by the pump wave in the velocity range from 0vB

to 20vB in Figure 5. .e reason is that the second term
contains the factor k0 in equations (14) and (17), which is
inversely proportional to the wavelength λ. So the pertur-
bation electron density and the stopping power are strongly
modulated by the pump wave.

Observe the perturbation electron density curve and the
stopping power curve with a wavelength of λ � 1.56 × 10− 7

cm. .e number of oscillating periods of the perturbation
electron density decreases over a range of −120λf to 80λf in
Figure 6. .e oscillation period of the stopping power is
smaller than one period in the velocity range from 0vB to
20vB in Figure 7. .is is because the k0 value decreases in
equations (14) and (17) as the wavelength λ is increasing.
.erefore, the effect of the pump wave on the perturbation
electron density and stopping power modulation is reduced
compared to the wavelength λ � 1.67 × 10− 8 cm.

With the wavelength of the pump wave λ � 1.76 × 10− 6

cm, the perturbation electron density oscillates less than one
period in the space range of −120λf to 80λf in Figure 8. .e
stopping power oscillation period is also shorter than one
period in the velocity range from 0vB to 20vB in Figure 9. As
the wavelength λ becomes longer, the value of k0 becomes
smaller. .e pump wave modulation to perturbation elec-
tron density and stopping power is further reduced in the
region of −120λf <x< 80λf and 0< v< 20vB.

When the amplitude of the pump wave is
Φ0 � 3 × 102e/λf, the maximum value of perturbation
electron density curves with wavelength λ � 1.67 × 10− 8 cm,
λ � 1.56 × 10− 7 cm, and λ � 1.76 × 10− 6 cm, respectively, is
0.2082n0, 0.2469n0, and 0.2497n0 in Figures 4, 6, and 8.
.ose results show that the maximum value of the per-
turbation electron density increases in the region of
−120λf < x< 80λf with the wavelength which means that
the wavelength of the pump wave not only modifies the
shape of the curve but also the amplitude of the perturbation
electron density. Comparing the stopping power curves
when the amplitude of pump wave is Φ0 � 3 × 102e/λf in
Figures 5, 7, and 9, the maximum value of stopping power
with wavelength λ � 1.67 × 10− 8 cm, λ � 1.56 × 10− 7 cm,
and λ � 1.76 × 10− 6 cm, respectively, is 0.02137S0,
0.08854S0, and −0.01863S0. .e value of stopping power
dramatically changes because k0 varied when the wavelength
is increasing.

As the wavelength of the pumpwave increases, the pump
wave modulates the shape of the perturbation electron
density curve more and more weakly in the space range of
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−120λf to 80λf in Figures 10, 12, and 14. Similarly, as the
wavelength of the pump wave increases, the shape of the
stopping power curve is modulated more weakly by the
pump waves in the 0vB to 20vB speed range in Figures 11, 13,
and 15..e modulation of the wavelength of the pump wave
to the shape of the perturbation electron density curve and
the stopping power curve decreases as the wavelength in-
creases, arising from the tiny second term change in
equations (14) and (17).

3.4. Phase of Pump Wave. Finally, in order to study the
effect of time phase θ on the perturbation electron density
and stopping power, Figures 16–19 exhibit the perturbation
electron density and stopping power with wavelength λ �

1.67 × 10− 8 cm and λ � 1.76 × 10− 4 cm for θ � 0 (solid line),
θ � π/2 (dashed line), θ � π (dotted line), and θ � 3π/2
(dash-dotted line). Here, Φ0 � 1 × 102e/λf. It is easy to see
that the amplitude of perturbation electron density and
stopping power oscillates periodically with different time
phase θ in Figures 16–19. .is is because the second term
includes the parameter time phase θ in equations (14) and
(17). .erefore, the time phase θ obviously impacts the
perturbation electron density and stopping power.

It is worth pointing out that the negative stopping power
in Figures 5, 9, and 19 we found is instantaneous, which is
difficult to verify experimentally, and it is also difficult to
apply. So we consider averaging the stopping power with
respect to the time phase θ. After averaging the stopping
power with respect to the time phase θ from 0 to 2π, we
found that the pump wave with Φ0 � 1 × 102e/λf decreases
the value of stopping power in Figure 20. .is is because the
value of averaged second term is negative in equation (17)
with respect to the time phase θ. But amplitude reduction
shows up as a relatively small one in connection to the too
low pump wave intensity (Figure 20). .is is because the
intensity of pump wave is too low. Linearized QHD is valid
only for low intensity of pump wave. .e comparison of the
stopping power without the pump wave and the average
stopping power with pump wave for Φ0 � 2 × 1010e/λf and
λ � 1.76 × 10− 4 cm demonstrates that the average stopping
power decreases in the region of 0< v< 20VB in Figure 20.

It is an exciting result that the average stopping power of
the incident particles is negative in the region v< 2.3vB and
v> 5.8vB when λ � 1.76 × 10− 4 cm and Φ0 � 2 × 1010e/λf.
.e incident particles will gain energy and can be accelerated
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within the velocity range of v< 2.3vB and v> 5.8vB. Although
this result is not strictly obtained by using the linearized
QHD due to the amplitude of pump wave which is too large,
this could predict qualitatively that the time averaged
stopping power has indeed been affected by the pump waves.

In conclusion, the time phase of pump wave θ can adjust
the value of perturbation electron density effectively and
stopping power, and the averaging of the stopping power
with respect to the time phase θ also has been impacted.
.erefore, one can see that the perturbation electron density
and stopping power depend on λ, Φ0, and θ, indicating that
the pump wave using different parameters can modulate the
perturbation electron density and stopping power of
2DQEG.

4. Summary

In this paper, considering the electron exchange-correlation
potential Vxc2DH in QHD, we have calculated the pertur-
bation electron density and stopping power with the
modulation of pump wave for a charged particle with a
constant distance and speed moving above 2DQEG. In our
calculation, we compare the stopping power with and
without Vxc2DH and show that it is necessary to consider
Vxc2DH in 2DQEG. .en, we compare the perturbation
electron density and stopping power with different wave-
length λ, amplitude Φ0, and time phase θ of the pump wave
and show that it is meaningful to investigate the modulation
effect of the pump wave on the perturbation electron density
and the stopping power. .e wavelength λ, the amplitude
Φ0, and time phase θ of the pump wave can effectively
modulate the value of the perturbation electron density and
stopping power..e temporal averaged stopping power with
respect to the time phase θ also has been influenced by pump
waves.

.e possible experimental equipment to verify the
prediction includes three components: pump wave, charged
particle beam, and 2DQEG..e pump wave can be provided
by laser or microwave device, the plasma wake field [52] can
produce the charged particle beam, and 2DQEG has already
been observed in experiments [2, 3]. All of them can be

realized with present technology. At present, the intensity of
laser systems provided by the laboratory has arrived
1024 ∼ 1026Wcm− 2 [53]. .us, the parameter of the pump
wave considered here can be easily satisfied. We can verify
the negative stopping power by measuring the velocity of the
incident particle. For instance, charged particles move in the
x direction parallel to the 2DQEG plane, with a velocity of v

and a height of z0 away from the 2DQEG, and the pump
wave irradiates the 2DQEG along the +x direction. .e
wavelength of pump wave is λ � 1.76 × 10− 4 cm and
Φ0 � 2 × 1010e/λf. .e density of two-dimensional electron
gases is n0 � 5.69 × 1015cm− 2. .e velocity of incident
particles is v � 2vB (vB � 2.18 × 108 cm/s), and the distance
between incident particles and two-dimensional electron
gases is z0 � 9λf � 4.76 × 10− 8cm. .e measured particles
flying out the right side of the 2DQEG will gain energy from
the 2DQEG and get accelerated.

It is appropriate to investigate the stopping power
modulation by low-intensity pump waves of the charged
particle moving above two-dimensional electron gases using
the linearized QHD, but linearized QHD is not strictly
applicable to high-intensity pump waves. In future work, we
attempt to further study the effect of high-intensity pump
waves on the stopping power with nonlinear QHD.
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[8] Z. L. Mišković, W.-K. Liu, F. Goodman, and Y.-N. Wang,
“Spatial distribution of ion charges in fast, partially stripped
clusters traversing solid targets,” Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with
Materials and Atoms, vol. 193, p. 221, 2002.

[9] G. Maynard and C. Deutsch, “Energy loss and straggling of
ions with any velocity in dense plasmas at any temperature,”
Physical Review A, vol. 26, no. 1, p. 665, 1982.

[10] N. J. M. Horing, H. C. Tso, and G. Gumbs, “Fast-particle
energy loss in the vicinity of a two-dimensional plasma,”
Physical Review B, vol. 36, no. 3, p. 1588, 1987.

[11] A. Bret and C. Deutsch, “Dielectric response function and
stopping power of a two-dimensional electron gas,” Physical
Review E, vol. 48, no. 4, p. 2994, 1993.

[12] A. Bret and C. Deutsch, “Ion stopping in two-dimensional
electron layers,” Europhysics Letters (EPL), vol. 25, no. 4,
p. 291, 1994.

[13] J. Lindhard and A. H. Rensen, “Relativistic theory of stopping
for heavy ions,” Physical Review A, vol. 53, no. 4, p. 2443, 1996.

[14] G. Zwicknagel, C. Toepffer, and P.-G. Reinhard, “Stopping of
heavy ions in plasmas at strong coupling,” Physics Reports,
vol. 309, no. 3, p. 117, 1999.

[15] E. R. Custidiano and M. M. Jakas, “Classical-trajectory Monte
Carlo calculations of the electronic stopping cross section for
keV protons and antiprotons impinging on hydrogen atoms,”
Physical Review A, vol. 72, Article ID 022708, 2005.

[16] E. Zaremba, I. Nagy, and P. M. Echenique, “Nonlinear
screening and stopping power in two-dimensional electron
gases,” Physical Review B, vol. 71, Article ID 125323, 2005.

[17] P. K. Patel, A. J. Mackinnon, M. H. Key et al., “Sequence
dependent DNA-mediated conduction,” Physical Review
Letters, vol. 91, Article ID 125004, 2003.

[18] S. N. Chen, S. Atzeni, M. Gauthier et al., “Nuclear instruments
and methods in physics research section A: accelerators,
spectrometers, detectors and associated equipment,” Pro-
ceedings of the First European Advanced Accelerator Concepts
Workshop, vol. 740, p. 105, 2013.

[19] A. Zylstra, J. Frenje, P. Grabowski et al., “Non-equilibrium
thermodynamics of gravitational screens,” Physical Review
Letters, vol. 114, Article ID 215002, 2015.

[20] J. Frenje, P. Grabowski, C. Li et al., “Negative tension branes
as stable thin shell wormholes,” Physical Review Letters,
vol. 115, Article ID 205001, 2015.

[21] A. C. Hayes, G. Jungman, A. E. Schulz et al., “Reaction-in-
flight neutrons as a test of stopping power in degenerate
plasmas,” Physics of Plasmas, vol. 22, Article ID 082703, 2015.

[22] S. Y. Gus’kov, M. S. Solyanikova, and P. A. Korneev, “Specifics
of powerful shock initialization by energetic ion beam,”
Plasma Physics and Controlled Fusion, vol. 61, Article ID
045006, 2019.

[23] J. Jacoby, D. H. H. Hoffmann, W. Laux et al., “Stopping of
Heavy Ions in a Hydrogen Plasma,” Physical Review Letters,
vol. 74, no. 9, p. 1550, 1995.

[24] R. Cambridge, “LPB volume 36 issue 4 Cover and Front
matter,” Laser and Particle Beams, vol. 36, pp. 98–104, 2018.

[25] Z. D. Jieru Ren, “Pitfalls in identifying active catalyst species,”
Nature Communications, vol. 11, p. 5157, 2020.

[26] D. H. H. Hoffmann, N. A. Tahir, S. Udrea et al., “High energy
density physics with heavy ion beams and related interaction
phenomena,” Contributions to Plasma Physics, vol. 50, no. 1,
p. 7, 2010.

[27] D. H. H. Hoffmann, V. E. Fortov, M. Kuster et al., “High
energy density physics generated by intense heavy ion beams,”
Astrophysics and Space Science, vol. 322, no. 1–4, p. 167, 2009.
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