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Abstract

We study solutions of difference equations in the rings of sequences and, more generally, solutions
of equations with a monoid action in the ring of sequences indexed by the monoid. This framework
includes, for example, difference equations on grids (for example, standard difference schemes)
and difference equations in functions on words. On the universality side, we prove a version of
strong Nullstellensatz for such difference equations under the assumption that the cardinality of the
ground field is greater than the cardinality of the monoid and construct an example showing that
this assumption cannot be omitted. On the undecidability side, we show that the following problems
are undecidable:

• testing radical difference ideal membership or, equivalently, determining whether a given
difference polynomial vanishes on the solution set of a given system of difference polynomials;

• determining consistency of a system of difference equations in the ring of real-valued sequences;

• determining consistency of a system of equations with action of Z2, N2, or the free monoid with
two generators in the corresponding ring of sequences over any field of characteristic zero.

2010 Mathematics Subject Classification: 12H10 (primary); 39A10, 13P25, 14Q20, 68Q40, 03D35
(secondary)

1. Introduction

An ordinary difference ring (A, σ ) is a commutative ring A equipped with a
distinguished ring endomorphism σ : A → A. The most basic example of a
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difference ring is the ring CN of sequences of complex numbers with σ defined
by (ai)i∈N 7→ (ai+1)i∈N. More generally, if φ : X → X is any self-map on a
set X and A is the ring of complex-valued functions on X , then σ : A → A
defined by f 7→ f ◦ φ is a difference ring. The special case where X = R
is the real line and φ is given by φ(x) = x + 1 gives the operator defined by
f (t) 7→ f (t + 1) and explains the origin of the name ‘difference ring’ in that
the discrete difference operator ∆ defined by f (t) 7→ f (t + 1) − f (t) may be
expressed as ∆ = σ − id. Generalizing to allow for additional operators, we
might consider partial difference rings (A, σ1, . . . , σn) with several distinguished
ring endomorphisms σ j : A → A. Natural instances of such partial difference
rings with commuting operators include rings of sequences indexed by n-tuples
of natural numbers and the rings of n-variable functions. There are also natural
examples of such partial difference rings with noncommuting difference operators
coming from number theory, the theory of iterated function systems, and symbolic
dynamics.

We may think of a partial difference ring (A, σ1, . . . , σn) as the ring A given
together with an action by ring endomorphisms of Mn , the free monoid on n
generators. If we require that these operators commute, then this may be seen
as an action by Nn . Likewise, if we require that the operators are, in fact, ring
automorphisms, then it is an action by Fn , the free group on n-generators.

As with algebraic and differential equations, the most basic problems for
difference equations come down to solving these equations in some specified
difference ring. As a preliminary, difficult subproblem, one must determine
whether the equations under consideration admit any solutions at all. In the
optimal cases, solvability of a system of equations is equivalent to a suitable
Nullstellensatz in some associated ring of polynomials (respectively, differential
polynomials or difference polynomials). While in the case of polynomial
equations in finitely many variables, these problems admit well-known solutions,
for difference and differential equations and their relatives, there are subtle
distinctions between those problems that may be solved and those for which no
algorithm exists.

In many cases, the problems we are considering may be resolved by analyzing
the associated first-order theories. The prototypical decidability theorems for
equations are Tarski’s theorems on the decidability and completeness of the
theories of real closed fields and of algebraically closed fields of a fixed
characteristic [28]. This logical theorem is complemented algebraically by
Hilbert’s Nullstellensatz, which gives a precise sense in which implications for
systems of polynomial equations may be expressed in terms of ideal membership
problems.
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Theorems analogous to Tarski’s are known for difference and differential fields.
The theories of difference fields, of differential fields of characteristic zero,
and even of partial differential fields of characteristic zero and of difference–
differential fields of characteristic zero are known to have model companions
(see [3–5, 19]). Moreover, for each of these theories, quantifier simplification
theorems (and even full quantifier elimination theorems in the case of differential
fields) are known. From these results, one may deduce on general grounds the
existence of algorithms for determining the consistency of systems of difference
(respectively, differential or difference–differential) equations in such fields and
explicitly, if not always efficient, such algorithms may be extracted from the more
geometric presentations of the axioms. Better algorithms based on characteristic
set methods are known [8, 9, 17].

From the algebraic point of view, the consistency checking problem may be
expressed in terms of some form of a Nullstellensatz. For example, the weak form
of the classical Nullstellensatz of Hilbert says that if K is an algebraically closed
field and f1, . . . , f` ∈ K [x1, . . . , xn] is a sequence of polynomials in the finitely
many variables x1, . . . , xn , then the system of equations

f1(x) = · · · = f`(x) = 0 (1)

(where we have written x = (x1, . . . , xn)) has a solution in K if and only if 1 does
not belong to the ideal 〈 f1, . . . , f`〉 generated by f1, . . . , f`. The latter condition
can be verified by a linear algebra computation (see [14] and references therein).

Hilbert’s Nullstellensatz takes a stronger form in that one may reduce
implications between systems of equations to explicit computations in polynomial
rings. That is, given equations as above and g ∈ K [x] being any polynomial, then
g vanishes on every solution to Equation (1) if and only if g ∈

√
〈 f1, . . . , f`〉,

the radical of the ideal generated by f1, . . . , f`. Similar results are known
for equations in differential, difference, and difference–differential fields.
The situation is murkier if we consider partial difference equations, that is,
difference equations with respect to several distinguished ring endomorphisms.
It is noted in [12] that the theory of difference fields with respect to finitely
many distinguished endomorphisms has a model companion, and, in fact, a
simple variant of the method for determining the consistency of systems of
difference equations for ordinary difference equations extends to this case of
partial difference equations. However, if the distinguished endomorphisms are
required to commute, then no such model companion exists [15].

Rings of sequences are among the most natural places to look for solutions of
difference equations. In particular, algorithms for detecting the solvability of finite
systems of difference equations in sequence rings are available [24]. However, the
general problem of solving equations in sequences is much more complicated than
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the analogous problem for difference fields: whenever K is infinite, the first-order
theory of the sequence ring KN regarded in the language of difference rings is
undecidable [13, Proposition 3.5].

The staring point for us was a recent paper [24] that contains the following
results about solving difference equations in sequences:

• The weak Nullstellensatz [24, Theorem 7.1]: for any algebraically closed
difference field (K , σ ) and a finite set S of difference equations over K , there
is a solution in KN to the system S if and only if the difference ideal generated
by S is proper.

• An effective bound [24, Theorem 3.4] that yields an algorithm for deciding
whether a difference ideal given by its generators is proper and, consequently,
an algorithm for deciding consistency of a finite system of difference equations
in KN.

Remarkably, while the proof of the weak difference Nullstellensatz is rather
routine for K uncountable, the result holds for arbitrary K .

In this paper, we answer several natural questions aimed at extending the above
results about solving difference equations in sequences.

QUESTION 1 (weak Nullstellensatz→ strong Nullstellensatz). If f1, . . . , f`, and
g are difference polynomials over an algebraically closed difference field K and
g vanishes on every solution to the system of difference equations f1(x) = · · · =
f`(x) = 0 in KN, must g belong to the radical of the difference ideal generated by
f1, . . . , f`?

ANSWER. Depends on the cardinality of K (Theorems 3.1 and 3.2).

More precisely, we show that the answer is Yes if K is uncountable (Theorem 3.1)
and give an example that shows that the answer is No for K = Q̄ (Theorem 3.2).
It is interesting to compare this result with the weak Nullstellensatz [24,
Theorem 7.1] that holds for a ground field of any cardinality, but the proof
for the countable case is much harder than the proof for the uncountable case.

QUESTION 2 (testing consistency→ testing radical difference ideal membership).
Is there an algorithm that, given difference polynomials f1, . . . , f`, and g, decides
whether g belongs to the radical difference ideal generated by f1, . . . , f`?

ANSWER. No (Theorem 3.7).

This result contrasts not only with the existence of an algorithm for this problem
if g = 1 (see [24, Theorem 3.4]) but also with the decidability of the membership

https://doi.org/10.1017/fms.2020.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.14


Solving difference equations in sequences 5

problem for radical differential ideals [25, page 110]. Furthermore, we are aware
of only one prior undecidability result for the membership problem in the context
of differential/difference algebra [29], and this result holds if one considers not
necessarily radical ideals and at least two derivations.

QUESTION 3 (not necessarily algebraically closed K ). Is there an algorithm
that, given difference polynomials f1, . . . , f` over R, decides whether the system
f1 = · · · = f` = 0 has a solution in RN?

ANSWER. No (Theorem 3.6).

Moreover, Theorem 3.6 shows that the answer is No if we replace R with any
subfield of R (including Q). Again, the situation is different compared to the
differential case: The problem of deciding the existence of a real analytic solution
of a system of differential equations over Q is decidable [27, Section 4].

QUESTION 4 (index monoids other than N or Z). Is there an algorithm for
deciding consistency of systems of difference equations with respect to actions
of N2 or the free monoid with two generators when the solutions are sought in the
sequences indexed by the corresponding monoid?

ANSWER. No (Propositions 3.9 and 3.10).

Notably, the problem of the solvability of equations in the free monoid itself is
decidable [21].

One of the crucial technical ingredients (used to prove Theorems 3.2 and 3.7
and Proposition 3.10) is Lemma 4.6, which connects the membership problem for
a radical difference ideal to a problem of Skolem–Mahler–Lech [7, Section 2.3]
type for piecewise polynomial maps. For related undecidability results for
dynamical systems associated with other types of maps, see [2, 16, 23] and
references therein.

2. Preliminaries

Throughout the paper, N denotes the set of nonnegative integers.

2.1. Difference rings and equations. The main objects of the paper are
difference equations and their generalizations. A detailed introduction to
difference rings can be found in [6, 20].
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DEFINITION 2.1 (Difference rings). A difference ring is a pair (A, σ ), where A
is a commutative ring and σ : A → A is a ring endomorphism. We often abuse
notation saying that A is a difference ring when we mean the pair (A, σ ).

The following example of a difference ring will be central in this paper.

EXAMPLE 2.2 (Ring of sequences). If R is any commutative ring, then the
sequence rings RN and RZ (with componentwise addition and multiplication)
are difference rings with σ defined by σ((xi)i∈N) := (xi+1)i∈N (σ((xi)i∈Z) :=

(xi+1)i∈Z, respectively).

DEFINITION 2.3 (Difference polynomials). Let A be a difference ring.

• The free difference A-algebra in one generator X over A, also called the ring of
difference polynomials in X over A, may be realized as the ordinary polynomial
ring , A[σ j(X) | j ∈ N], in the indeterminates {σ j(X) | j ∈ N} with the action
σ(σ j(X)) := σ j+1(X).

• Similarly, for X = (X1, . . . , Xn), one obtains the difference polynomial ring
A[σ j(X) | j ∈ N] in n variables.

DEFINITION 2.4. If (A, σ ) is a difference ring and F ⊆ A[σ j(X) | j ∈ N], where
X = (X1, . . . , Xn) is a set of difference polynomials over A, (A, σ ) → (B, σ )
is a map of difference rings, and x = (x1, . . . , xn) ∈ Bn is an n-tuple from B,
then we say that x is a solution of the system F = 0 if, under the unique map
of difference rings A[σ j(X) | j ∈ N] → B given by extending the given map
A→ B and sending X i 7→ xi for 1 6 i 6 n, every element of F is sent to 0.

EXAMPLE 2.5 (Fibonacci numbers). Consider the Fibonacci sequence f :=
(1, 1, 2, 3, 5, . . .) ∈ CN. Then the fact that the sequence satisfies a recurrence
fn+2 = fn+1 + fn can be expressed by saying that f is a solution of a difference
equation σ 2(X)−σ(X)− X = 0, where σ 2(X)−σ(X)− X ∈ C[σ j(X) | j ∈ N].

2.2. Rings with a monoid action and equations. In this paper, we will
often be interested in rings of ‘sequences’ that would generalize Example 2.2 to
sequences indexed by Z2 (for example, difference schemes for partial differential
equations) or any other semigroup.

DEFINITION 2.6 (M-rings). Let M be a monoid. A pair (A, σ ) where A is a
commutative ring and σ is an action of M on A by endomorphisms is called
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an M-ring. For every a ∈ A and m ∈ M , we define the image of a under the
endomorphism corresponding to m by σm(a).

We note that every difference ring is an N-ring for the monoid (N,+). A
morphism of M-rings is a morphism of rings that commutes with the M-action.

EXAMPLE 2.7 (Rings of sequences indexed by N2 and Z2). If R is any
commutative ring, then the rings RN2 and RZ2 are N2-rings with σ defined
by

σ (1,0)
(
(xi, j)i, j∈N

)
:= (xi+1, j)i, j∈N and σ (0,1)

(
(xi, j)i, j∈N

)
:= (xi, j+1)i, j∈N.

The action on RZ2 is defined analogously.

EXAMPLE 2.8. In general, if R is a commutative ring and M a monoid, then the
ring RM of M-sequences is the commutative ring of all maps from M to R (with
componentwise addition and multiplication) and action given by

σm((x`)`∈M) = (x`m)`∈M

for m ∈ M .

The following example is a special case of Example 2.8.

EXAMPLE 2.9 (Functions on words). Let Σ be a finite alphabet. By (Σ∗, ·) we
denote the monoid of all words in Σ with the operation of concatenation. Let R
be a commutative ring. Consider the ring of functions RΣ∗ from Σ∗ to R that we
will identify with the ring of Σ∗-indexed sequences. Then RΣ∗ can be endowed
with a structure of Σ∗ ring as follows

σw
(
(xu)u∈Σ∗

)
:= (xuw)u∈Σ∗ for every w ∈ Σ∗.

DEFINITION 2.10 (M-polynomials). We fix a monoid M . Let A be an M-ring.

• The free M-algebra over A in one generator X over A, also called the ring of
M-polynomials in X over A, may be realized as the ordinary polynomial ring,
A[σm(X) | m ∈ M], in the indeterminates {σm(X) | m ∈ M} with the action
σm1(σm2(X)) := σm1m2(X) for every m1,m2 ∈ M .

• Similarly, for X = (X1, . . . , Xn), one obtains the ring of M-polynomials
A[σm(X) | m ∈ M] in n variables.
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DEFINITION 2.11. We fix a monoid M . If (A, σ ) is an M-ring and F ⊆
A[σm(X) | m ∈ M], where X = (X1, . . . , Xn) is a set of M-polynomials over
A, (A, σ )→ (B, σ ) is a map of M-rings, and x = (x1, . . . , xn) ∈ Bn is an n-tuple
from B, then we say that x is a solution of the system F = 0 if, under the unique
map of M-rings A[σm(X) | m ∈ M] → B given by extending the given map
A→ B and sending X i 7→ xi for 1 6 i 6 n, every element of F is sent to 0. For
f ∈ A[σm(X) | m ∈ M], we denote the image of f under the above map by f (x).

EXAMPLE 2.12 (Discrete harmonic functions). Consider a C-valued function
x = (xi, j)i, j∈Z2 on the integer lattice. It is called a discrete harmonic function [11]
if, for every i, j ∈ Z2, 4xi, j = xi+1, j + xi−1, j + xi, j+1 + xi, j−1. The fact that it is a
discrete harmonic function can be expressed by the fact that it is a solution of the
following Z2-polynomial

4X − σ (1,0)(X)− σ (−1,0)(X)− σ (0,1)(X)− σ (0,−1)(X) ∈ C[σm(X) | m ∈ Z2
].

EXAMPLE 2.13. Let M = {a, b}∗ be a monoid of binary words with respect
to concatenation. Then the fact that a function d : M → R is a martingale [26,
page 2] can be expressed by the fact that d is a solution of the following M-
polynomial

X − 1
2σ

a(X)− 1
2σ

b(X) ∈ C[σm(X) | n ∈ M].

3. Main results

3.1. Universality of sequence rings. Let M be a monoid, let k be a field, and
let X = (X1, . . . , Xn). For a subset F of k[σm(X) | m ∈ M], we let

V(F) = {x ∈ (kM)n | f (x) = 0 ∀ f ∈ F}

denote the set of solutions of F in kM and for a subset S of (kM)n , we let

I(S) = { f ∈ k[σm(X) | m ∈ M] | f (x) = 0 ∀ x ∈ S}

denote the set of all M-polynomials vanishing on S.

THEOREM 3.1 (Strong Nullstellensatz). Let M be a monoid, let k be an
algebraically closed field such that |k| > |M |, and let X = (X1, . . . , Xn).
Then, for every subset F of k[σm(X) | m ∈ M], we have

I(V(F)) =
√
〈σm(F) | m ∈ M〉.

The following theorem shows that the condition |k| > |M | in Theorem 3.1
cannot be omitted.
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THEOREM 3.2. There exists a finite set F of difference equations over Q such
that

I(V(F)) %
√
〈σ i(F) | i ∈ N〉.

REMARK 3.3 (Weak Nullstellensatz). Theorems 3.1 and 3.2 complement
the weak Nullstellensatz from [24] in a surprising way. Theorem 7.1 in [24]
established the weak Nullstellensatz for M = N, that is,

I(V(F)) = ∅ ⇐⇒ 1 ∈
√
〈σm(F) | m ∈ M〉

without any restrictions on the cardinality of k. However, the proof for the case of
uncountable k (see [24, Proposition 6.3]) was much simpler than the proof of the
general statement. Our results indicate that this difference between the countable
and uncountable cases is not an artifact of the proof in [24] but rather a conceptual
distinction.

COROLLARY 3.4 (Universality of the ring of sequences). Let M be a monoid, let
k be an algebraically closed field such that |k| > |M |, and let X = (X1, . . . , Xn).
Then, for every subset F of k[σm(X) | m ∈ M] and g ∈ k[σm(X) | m ∈ M], the
following are equivalent:

• g = 0 holds for every solution of F = 0 in any reduced M-ring containing k;

• g = 0 holds for every solution of F = 0 in kM .

Proof. If the latter point holds, then ge
∈ 〈σm(F) | m ∈ M〉 for some e > 1 by

Theorem 3.1. Thus for every solution x in some reduced M-ring containing k, we
have g(x)e = 0 and therefore g(x) = 0 as desired.

REMARK 3.5 (Nonconstant k). Moreover, we prove a more general theorem
(Theorem 4.1) than Theorem 3.1, where the field k is not necessarily constant. We
also establish an alternative formulation of the strong difference Nullstellensatz
that works without any assumptions on the base difference field k (Theorem 4.2).

3.2. Undecidability results.

THEOREM 3.6. For every field k such that k ⊆ R and every computable subfield
k0 ⊂ k, the following problem is undecidable: Given a finite system of difference
equations with coefficients in k0, determine whether it has a solution in kN

(respectively, kZ).

https://doi.org/10.1017/fms.2020.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.14


G. Pogudin, T. Scanlon and M. Wibmer 10

THEOREM 3.7. Let M be N or Z, let k be a field of characteristic zero, and let
k0 ⊂ k be a computable subfield. Then the following problem is undecidable:
Given a finite system of difference equations F = 0 and a difference equation
g = 0 with coefficients in k0, determine whether g = 0 holds for every solution
on F = 0 in kM .

COROLLARY 3.8. Let M be N or Z, let k be a field of characteristic zero, and let
k0 ⊂ k be a computable subfield. Then the following problems are undecidable:

(P1) Given f1, . . . , f`, g ∈ k0[σ
m(X) | m ∈ M], where X = (X1, . . . , Xn),

determine whether the system f1 = · · · = f` = 0, g 6= 0 has a solution in
kM .

(P2) Given f1, . . . , f`, g ∈ k0[σ
m(X) | m ∈ M], where X = (X1, . . . , Xn),

determine whether

g ∈
√
〈σm( f1), . . . , σm( f`) | m ∈ M〉.

PROPOSITION 3.9. Let k be a field of characteristic zero and k0 ⊂ k be a
computable subfield, and let the monoid M be either N2 or Z2. Then the following
problem is undecidable: Given a finite set F of M-polynomials over k0, decide
whether the system F = 0 has a solution in kM .

PROPOSITION 3.10. Let k be a field of characteristic zero and k0 ⊂ k be a
computable subfield, and let M2 be a free monoid with two generators. Then the
following problem is undecidable: Given a finite set F of M2-polynomials over k0,
decide whether F = 0 has a solution in kM2 .

4. Proofs

Throughout this section, we will use the following notation. For a tuple of
sequences ({x1,i}i∈M , . . . , {xn,i}i∈M), we will denote xi = (x1,i , . . . , xn,i) for every
i ∈ M , and the original tuple of sequences will be denoted by {xi}i∈M .

4.1. Proof of Theorem 3.1. In this section, we establish two closely related
versions of a strong difference Nullstellensatz (Theorems 4.1 and 4.2). Theorem
4.1 contains Theorem 3.1 as a special case.

We begin by introducing the notation necessary to state our general result. Let
M be a monoid and let k be an M-field. We note that for any field extension
K of k, the map k → K M , a 7→ (σm(a))m∈M is a morphism of M-rings. Let
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X = (X1, . . . , Xn). As in Section 3.1, for a subset F of k[σm(X) | m ∈ M], we
set

V(F) = {x ∈ (kM)n | f (x) = 0 ∀ f ∈ F},

and for a subset S of (kM)n , we set

I(S) = { f ∈ k[σm(X) | m ∈ M] | f (x) = 0 ∀x ∈ S}.

THEOREM 4.1 (Strong Nullstellensatz). Let k be an algebraically closed M-field
such that |k| > |M |. Then, for every subset F of k[σm(X) | m ∈ M], we have

I(V(F)) =
√
〈σm(F) | m ∈ M〉.

In Section 4.6, we present an example that shows that the assumption |k| >
|M | in Theorem 4.1 cannot be omitted. However, we also have an alternative
formulation of Theorem 4.1 that works without any assumptions on the base
difference field k. For a subset F of k[σm(X) | m ∈ M], we set

I(F) = { f ∈ k[σm(X) | m ∈ M] | for every field extension K/k,
f vanishes on all solutions of F in K M

}.

THEOREM 4.2. Let k be an M-field and F ⊆ k[σm(X) | m ∈ M]. Then

I(F) =
√
〈σm(F) | m ∈ M〉.

For the proofs of Theorems 4.1 and 4.2, we will need the following version of
the strong algebraic Nullstellensatz for polynomials in infinitely many variables.
Let k be a field and Y a (not necessarily finite) set of indeterminates over k. For
F ⊆ k[Y], we set

V(F) = {y ∈ kY
| f (y) = 0 ∀ f ∈ F},

and for S ⊆ kY, we set

I(S) = { f ∈ k[Y] | f (y) = 0 ∀y ∈ S}.

LEMMA 4.3. Let k be an algebraically closed field and F ⊆ k[Y]. If |k| > |Y|,
then I(V(F)) =

√
〈F〉.

Proof. This follows from the main theorem of [18].

Proof of Theorem 4.1. As I(S) is a radical M-invariant ideal, for any subset S of
kM , we have √

〈σm(F) | m ∈ M〉 ⊆ I(V(F)).

https://doi.org/10.1017/fms.2020.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.14


G. Pogudin, T. Scanlon and M. Wibmer 12

To establish the reverse inclusion, we set Y = {σm(X) | m ∈ M} so that (kM)n

can be identified with kY. The nature of the map k → kM , a 7→ (σm(a))m∈M is
such that for f ∈ k[σm(X) | m ∈ M] and x ∈ (kM)n , we have f (x) = 0 ∈ (kM)n

if and only if σm( f )(x) = 0 ∈ k for all m ∈ M . So, under the identification
(kM)n = kY , we have V(I ) = V(I ) for any M-invariant ideal I of

k[σm(X) | m ∈ M] = k[Y ].

Similarly, for any subset S of (kM)n = kY, we have

f ∈ I(S) ⊆ k[σm(X) | m ∈ M]

if and only if σm( f ) ∈ I(S) ⊆ k[Y] for all m ∈ M , in particular, I(S) ⊆ I(S).
Clearly V(F) = V(I ), where I = 〈σm(F) | m ∈ M〉, and so

I(V(F)) = I(V(I )) = I(V(I )) ⊆ I(V(I )) =
√

I .

In the case where M is infinite, the last equality here follows from Lemma 4.3
since |X | = n|M | = |M | < |k|. In the case where M is finite, the last equality
reduces to the usual algebraic strong Nullstellensatz.

Proof of Theorem 4.2. Again, the inclusion
√

I ⊆ I(F), where

I = 〈σm(F) | m ∈ M〉,

is clear. To establish the reverse inclusion, we let K denote an algebraically closed
field extension of k with |K | > |M | and we proceed similarly to the proof of
Theorem 4.1: For Y = {σm(X) | m ∈ M} we have, under the identification
(K M)n = K Y , that

{x ∈ (K M)n | f (x) = 0 ∀ f ∈ F}
= {x ∈ K Y

| σm( f )(x) = 0 ∀ f ∈ F, m ∈ M}.

Thus, if f ∈ I(F) ⊂ k[σm(X) | m ∈ M] = k[Y ], then f ∈ I(V(I )). Note that
here I ⊆ k[σm(X) | m ∈ M] ⊆ K [Y ], but I and V are applied with respect to K .
So it follows from Lemma 4.3 that f ∈

√
〈I 〉, where 〈I 〉 ⊆ K [X ]. But K [X ] =

k[X ]⊗k K and 〈I 〉 = I ⊗k K . Therefore, if e > 1 is such that f e
∈ 〈I 〉 = I ⊗k K ,

then f e
∈ (I ⊗k K ) ∩ k[X ] = I . Thus f ∈

√
I as desired.

4.2. Proof of Theorem 3.6. Let M be N or Z. For every polynomial equation
P(t1, . . . , tn) = 0 with coefficients in Z, we will construct a system of difference
equations FP = 0 over Q such that P = 0 has a solution in Zn if and only if
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FP = 0 has a solution in kM . Then the theorem will follow from the undecidability
of Diophantine equations [22].

LEMMA 4.4. Let Y = (Y1, . . . , Y6). There exists a finite set

G ⊂ Q[σ i(X), σ i(Y) | i ∈ M]

such that, for every solution of G = 0 in kM , the sequence (xi)i∈M corresponding
to X has the property that (xi)i∈N contains infinitely many zeroes.

Moreover, for every sequence (xi)i∈M ∈ kM such that (xi)i∈N contains infinitely
many zeroes, there exists a solution of G = 0 in kM such that (xi)i∈M is the X-
coordinate of the solution.

Proof. We define G as

G := {XY1, Y2 − Y 2
3 − Y 2

4 − Y 2
5 − Y 2

6 , σ (Y2)− Y2 + 1− Y1}.

Consider a solution(
(xi)i∈M , (y1,i)i∈M , . . . , (y6,i)i∈M

)
of G = 0 in kM .

If (xi)i∈N contains only finitely many zeroes, then (y1,i)i∈N contains only finitely
many nonzero elements. In other words, there exists N ∈ N such that y1,i = 0 for
every i > N . Thus, y2,i+1 = y2,i − 1 for every i > N , so there exists i0 such that
y2,i0 < 0. This contradicts the fact that y2,i0 = y2

3,i0
+ y2

4,i0
+ y2

5,i0
+ y2

6,i0
> 0.

To prove the second claim of the lemma, consider a sequence (xi)i∈M such
that (xi)i∈N contains infinitely many zeroes. We will construct a corresponding
solution of G = 0 in kM . Consider positive integers i1 < i2 < i3 < · · · such that
xin = 0 for every n > 0. Then we set

y1, j =

{
im+1 − im, if j = im for some m,
0, otherwise

and

y2, j =

{
im+1 − j, if im < j 6 im+1 for some m,
i1 − j, otherwise.

The choice of i1, i2, . . . implies that x j y1, j = 0 for all j ∈ M . A direct computation
shows that y2, j+1 = y2, j − 1 + y1, j for all j ∈ M . Finally, the existence of y3, j ,

y4, j , y5, j , y6, j satisfying y2, j = y2
3, j + y2

4, j + y2
5, j + y2

6, j follows from the fact that
y2, j is a nonnegative integer and Lagrange’s four-square theorem [10, Theorem
369].
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We return to the proof of Theorem 3.6. We apply Lemma 4.4 n + 1 times, and
obtain n+ 1 systems G0 = 0, . . . ,Gn = 0 with distinguished unknowns X0, . . . ,

Xn . We set

FP := G0 ∪ · · · ∪ Gn ∪ {X0 − P(X1, . . . , Xn),

(σ (X1)− X1)
2
− 1, . . . , (σ (Xn)− Xn)

2
− 1}.

We will show that FP = 0 has a solution in kM if and only if P(t1, . . . , tn) = 0
has a solution in Z.

Solution of FP = 0 H⇒ solution of P = 0. Consider a solution of FP in kM .
For every 0 6 m 6 n, we denote the Xm-coordinate of the solution by (xm,i)i∈M .
For every 1 6 m 6 n, the sequence (xm,i)i∈M contains infinitely many zeroes due
to Lemma 4.4; every two consecutive numbers in the sequence differ by one, and
thus all the numbers in the sequence are integers. Since (x0,i)i∈N contains infinitely
many zeroes, the Diophantine equation P(t1, . . . , tn) = 0 has an integer solution.

Solution of P = 0 H⇒ solution of FP = 0. Consider a solution (a1, . . . , am) of
P(t1, . . . , tm) = 0 in Zn . Consider sequences (x1,i)i∈M , . . . , (xn,i)i∈M such that

• every two consecutive numbers in the sequences differ by one;

• for every 1 6 m 6 n, (xm,i)
∞

i=0 contains infinitely many zeros;

• x1,i = a1, . . . , xn,i = an for infinitely many i .

We define x0,i as P(x1,i , . . . , xn,i) for every i ∈ M and observe that (x0,i)i∈N
contains infinitely many zeroes. The defined sequences satisfy equations

X0 − P(X1, . . . , Xn) = (σ (X1)− X1)
2
− 1 = · · · = (σ (Xn)− Xn)

2
− 1 = 0.

The second part of Lemma 4.4 implies that, for every 0 6 m 6 n, the sequence
(xm,i)i∈M can be extended to a solution of Gm = 0. Thus, we obtain a solution of
FP = 0.

4.3. Proofs of Theorem 3.7 and Corollary 3.8. We will first establish a
lemma that draws a connection between the strong difference Nullstellensatz and
iterations of piecewise polynomial maps. This lemma is crucial for the proof of
Theorem 3.7 and for establishing the counterexample in Theorem 3.2.

Let k be a field. For a subset F of k[X] = k[X1, . . . , Xn], we denote the closed
subset of An

k defined by F with V (F). Recall that a subset V of An
k is locally

closed if it is of the form V (F)r V (F ′) for subsets F and F ′ of k[X]. A regular
function f : V → A1

k on V is a polynomial function if it is the restriction of a
regular function An

k → A1
k , that is, if it is given by a polynomial in k[X].
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DEFINITION 4.5. A piecewise polynomial function An
k → A1

k is a partition of An
k

into locally closed subsets C1, . . . ,Cm , together with a polynomial function fi on
every Ci .

A piecewise polynomial map p : An
k → An

k is an n-tuple (p1, . . . , pn) of
piecewise polynomial functions.

Note that a piecewise polynomial map p : An
k → An

k defines an actual map
An

k (K )→ An
k (K ) for every field extension K of k.

LEMMA 4.6. Let M be N or Z. Let p : An
k → An

k be a piecewise polynomial
map and let V be a closed subset of An

k . Then there exist (and can be computed
algorithmically) an integer r > 1 and difference polynomials f1, . . . , f`, g ∈
k[σ i(T1), . . . , σ

i(Tr )| i ∈ N] such that for every field extension K of k, the
following two statements are equivalent:

• There exists a sequence (xi)i∈N = (x1,i , . . . , xn,i)i∈N ∈ (KN)n such that

x0 ∈ V (K ), xi+1 = p(xi) for every i ∈ N,
and xn,i 6= 0 for i > 1.

• There exists a solution of f1 = · · · = f` = 0 in (K M)r such that g does not
vanish on this solution.

Before showing the construction of the systems of difference equations in full
generality, we will illustrate it on two examples.

EXAMPLE 4.7. We will use the notation of Lemma 4.6. Let

k = C, n = 1, p(x) = x + 1, V = {0}.

We introduce two difference variables X and U ′, and consider difference
polynomials

f̃1 := σ(X)− p(X) = σ(X)− (X + 1), f̃2 := XU ′ − 1.

Every sequence (xi)i∈N satisfying f̃1 = 0 obeys the recurrence xi+1 = p(xi).
Furthermore, such a sequence can be extended to a solution of f̃1 = f̃2 = 0 if
and only if xi 6= 0 for every i > 0 (compare with i > 1 in the statement of the
lemma).

Now we would like to force (xi)i∈N to have at least one term in V . For doing
this, we will introduce one more difference variable U and difference polynomials

f3 := U (U − 1), f4 := (σ (U )−U )(σ (U )−U − 1), g := σ(U )−U.
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Consider a sequence (ui)i∈N, which is a solution of f3 = f4 = 0, g 6= 0. The
equations f3 = f4 = 0 imply that (ui)i∈N is a ‘step sequence’ in the sense that it
takes only values zero and one and each next value is the same or greater by one.
There are three types of sequences that satisfy these conditions:

(0, . . . , 0, 1, 1, . . .), (0, 0, 0, 0, . . .), (1, 1, 1, 1, . . .).

The two last are ruled out by the extra condition g 6= 0.
We introduce new polynomials:

f5 := (σ (U )−U )X, f1 := σ(U ) f̃1 = σ(U )(σ (X)− (X + 1)),
f2 = U f̃2 = U (XU ′ − 1).

Consider a triple of sequences (xi , ui , u ′i)i∈N satisfying

f1 = f2 = f3 = f4 = f5 = 0, g 6= 0. (2)

As we have shown, there will be i0 ∈ N such that

u0 = · · · = ui0 = 0 and 1 = ui0+1 = ui0+2 = · · · .

Equation f5 = 0 ensures that xi0 ∈ V . The fact that we have multiplied f̃1 and f̃2

by σ(U ) and U , respectively, implies that f̃1 and f̃2 have to vanish on the indices
i > i0 and i > i0, respectively.

To summarize, we see that the sequence (yi)i∈N = (xi0+i)i∈N satisfies yi+1 =

p(yi), y0 ∈ V , and yi 6= 0 for i > 1. On the other hand, any such sequence can
be completed by u = (0, 1, 1, . . .) and u ′ = (0, 1/y1, 1/y2, . . .) to a solution of
Equation (2).

EXAMPLE 4.8. Now we consider a version of Example 4.7 where p is actually a
piecewise polynomial function, not just a polynomial. Let

k = C, n = 1, p(x) =

{
x + 1, if x 6= 2
1, if x = 2,

V = {0}.

We define C1 := A1
\ {2}, C2 := {2}, q1(x) := x + 1, and q2(x) := 1 so that

p|C1 = q1 and p|C2 = q2. Our strategy would be to define an indicator sequence
that will tell us whether xi ∈ C2 or not. For doing this, we introduce two difference
variables Y and Z and difference polynomials

f6 := Z(X − 2), f7 := Z + Y (X − 2)− 1.
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Consider any tuple of sequences (xi , yi , zi)i∈N satisfying f6 = f7 = 0. Whenever
xi 6∈ C2, f6 = 0 implies that zi = 0. If xi ∈ C2, then f7 = 0 implies that zi = 1.
Thus zi is an indicator for xi ∈ C2. Therefore, we have

p(xi) = (1− zi)(xi + 1)+ z1 · 1 for every i ∈ N. (3)

We can now adapt the system equation (2) from Example 4.7 as follows. We take
the same f2, f3, f4, f5, but change f1 to be

f1 := σ(U )(X − (1− Z)(X + 1)− Z)

according to equation (3). Then, combining the argument from Example 4.7 and
this example, one can see that any sequence (xi)i∈N with

x0 = 0, xi+i = p(xi), and xi 6= 0 for i > 1 (4)

can be extended to a solution of

f1 = f2 = · · · = f7 = 0, g 6= 0.

On the other hand, for every solution for the above system of difference equations,
the X -component satisfies equation (4) after removing several first terms.

Proof of Lemma 4.6. Let p = (p1, . . . , pn). Since finite intersections of locally
closed subsets are locally closed, we can find a partition C1, . . . ,Cm of An

k that
works for every pi . For j = 1, . . . ,m, let q j = (q j,1, . . . , q j,n) ∈ k[X]n be such
that p(a) = q j(a) for all a ∈ C j(K ) and all field extensions K of k.

For every closed subset W of An
k , we define a polynomial system SW as follows.

Let h1, . . . , ht ∈ k[X] be polynomials such that W = V (h1, . . . , ht). Let SW =

SW (X,Y, Z) be the system in the variables X = (X1, . . . , Xn), Y = (Y1, . . . , Yt)

and Z given by

Zh1(X), . . . , Zht(X), Z + Y1h1(X)+ · · · + Yt ht(X)− 1.

Note that for a field extension K of k and a solution (x, y, z) ∈ K n+t+1, we have
z = 1 if x ∈ W and z = 0 if x /∈ W . Moreover, for every field extension K of k
and x ∈ K n , there exist y ∈ K t and z ∈ K such that (x, y, z) is a solution of SW .

Now for every j = 1, . . . ,m, write C j = W j r W ′

j , where W j ,W ′

j are closed
subsets of An

k with W ′

j ⊆ W j and consider the systems S j = SW j = SW j (X,Y j , Z j)

and S′j = SW ′j = SW ′j (X,Y′j , Z ′j). Let g1, . . . , gs ∈ k[X] be such that V (g1, . . . ,

gs) = V .
Let S denote the system of difference equations in the variables

U,U ′,X,Y1, . . . ,Ym, Z1, . . . , Zm,Y′1, . . . ,Y′m, Z ′1, . . . , Z ′m
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given by

S1(X,Y1, Z1), . . . , Sm(X,Ym, Zm), S′1(X,Y′1, Z ′1), . . . , Sm(X,Y′m, Z ′m),

σ (U )(σ (X)− (q1(X)(Z1 − Z ′1)+ · · · + qm(X)(Zm − Z ′m))),

U (U − 1), (σ (U )−U )(σ (U )−U − 1),

U (XnU ′ − 1), (σ (U )−U )g1(X), . . . , (σ (U )−U )gs(X).

We will show that S = { f1, . . . , f`} and g = σ(U ) − U have the property of
the lemma. To this end, let us fix a field extension K of k and let us first assume
that

a = (ui , u′i , xi , y1,i , . . . , ym,i , z1,i , . . . , zm,i , y′1,i , . . . , y′m,i , z′1,i , . . . , z′m,i )i∈M ∈ (K
M )r

is a solution of S such that σ(U ) − U does not vanish on a. We observe that the
equations U (U − 1) = 0 and (σ (U )−U )(σ (U )−U − 1) = 0 imply that either
ui = 0 for all i , ui = 1 for all i or, there exists an i0 ∈ M such that

ui =

{
0 for i 6 i0,

1 for i > i0.

Since σ(U ) − U does not vanish on a, the sequence (ui)i∈M is of the latter kind.
The equations (σ (U ) − U )g1(X) = · · · = (σ (U ) − U )gs(X) = 0 imply that
g1(xi0) = · · · = gs(xi0) = 0, that is, xi0 ∈ V (K ).

For every j = 1, . . . ,m and i ∈ M , we have

z j,i =

{
1 if xi ∈ W j(K ),
0 if xi /∈ W j(K ).

Similarly,

z′j,i =

{
1 if xi ∈ W ′

j(K ),
0 if xi /∈ W ′

j(K ).

Therefore

z j,i − z′j,i =

{
1 if xi ∈ C j(K ),
0 if xi /∈ C j(K ).

Thus the equations σ(U )(σ (X)−(q1(X)(Z1−Z ′1)+· · ·+qm(X)(Zm−Z ′m))) = 0
show that xi+1 = p(xi) for all i > i0. Finally, the equation U (U ′Xn − 1) = 0
shows that xn,i 6= 0 for i > i0. Therefore the sequence (xi0+i)i∈N has the desired
properties.
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Conversely, let us assume that the sequence (xi)i∈N satisfies x0 ∈ V (K ), xi+1 =

p(xi) for i ∈ N and xn,i 6= 0 for i > 1. We extend this sequence to a solution

a = (ui , u′i , xi , y1,i , . . . , ym,i , z1,i , . . . , zm,i , y′1,i , . . . , y′m,i , z′1,i , . . . , z′m,i )i∈M ∈ (K
M )r

of S such that g does not vanish at a. For M = Z, we set x j,i = 0 for i < 0 and
j = 1, . . . ,m. We define

ui =

{
1 for i > 1,
0 otherwise

and u ′i =


1

xn,i
for i > 1,

0 otherwise.

For i ∈ M , we choose y j,i ∈ K s j and z j,i ∈ K such that (xi , y j,i , z j,i) is a solution
of S j(X,Y j , Z j). Similarly, we choose y′j,i ∈ K s′j and z′j,i ∈ K such that (xi , y′j,i ,
z′j,i) is a solution of S′j(X,Y′j , Z ′j). Then a is a solution of S such that g does not
vanish at a.

We will need one more preparatory lemma for the proof of Theorem 3.7. For
every n, by Tn we will denote the sequence of all nondecreasing n-tuples of
nonnegative integers listed in ascending colexicographic order. For example,

T1 = ((0), (1), (2), (3), . . .) and
T2 = ((0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), . . .).

LEMMA 4.9. For every n > 1, there exists a piecewise polynomial map p : An
Q→

An
Q such that for the sequence (xi)i∈N = (x1,i , . . . , xn,i)i∈N defined by

x0 = (0, . . . , 0) & xi+1 = p(xi) for all i ∈ N,

we have (xi)i∈N = Tn .

Proof. The successor of a nondecreasing n-tuple (a1, . . . , an) ∈ Nn in Tn is (a1,

. . . , ar−1, ar + 1, ar+1, . . . , an) if there exists an r with 1 6 r < n such that
a1 = · · · = ar 6= ar+1 and (0, . . . , 0, an + 1) if there exists no such r , that is, if
a1 = · · · = an . Thus, the piecewise polynomial map p = (p1, . . . , pn) defined by

pi(x1, . . . , xn) =


xi + 1 if x1 = · · · = xi 6= xi+1,

0 if x1 = · · · = xn,

xi otherwise

for i = 1, . . . , n − 1 and

pn(x1, . . . , xn) =

{
xn + 1 if x1 = · · · = xn,

xn otherwise
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has the desired property.

Proof of Theorem 3.7. We will prove Theorem 3.7 by showing that the
decidability of the problem of Theorem 3.7 implies the decidability of Hilbert’s
tenth problem for the integers. Let P ∈ Z[t1, . . . , tn] with P(0, . . . , 0) 6= 0 and
consider the piecewise polynomial map q : Am

Q → Am
Q, where m = n · n! + 1,

defined as follows: Thinking of Am
Q as (

∏
π∈Sn

An
Q)×A1

Q, we write x = ((xπ )π∈Sn ,

xr ), where each xπ is an n-tuple. We set

q(x) =

(
(pπ (xπ ))π∈Sn ,

∏
π∈Sn

P(xπ )

)
,

where pπ : An
Q → An

Q is the map p : An
Q → An

Q from Lemma 4.9 but conjugated
with the permutation π . So, if we define (xi)i∈N ∈ (QN)m by x0 = (0, . . . , 0) and
xi+1 = q(xi) for i > 0, we see that, for every element a of Nn , there exist i ∈ N
and π ∈ Sn such that (xi)π = a. It follows that xr,i 6= 0 for every i > 1 if and only
if P has no solution in Nn . Thus, by Lemma 4.6, there exist an integer r > 1 and
difference polynomials

f1, . . . , f`, g ∈ Q[σ i(T1), . . . , σ
i(Tr ) | i ∈ N] ⊆ k0[σ

i(T1), . . . , σ
i(Tr ) | i ∈ N]

such that g does not vanish on every solution of f1 = · · · = f` = 0 in kM if and
only if P has no solution in Nn .

Proof of Corollary 3.8. The undecidability of (P1) follows from Theorem 3.7 and
the fact that the system f1 = · · · = f` = 0, g 6= 0 has a solution in kM if and only
if g = 0 does not hold for some solution of f1 = · · · = f` = 0 in kM .

Let K be an uncountable algebraically closed field containing k. Theorem 3.1
implies that

g ∈
√
〈σm( f1), . . . , σm( f`) | m ∈ M〉

if and only if g = 0 vanishes on every solution of f1 = · · · = f` = 0 in K M . Thus,
the undecidability of (P2) follows from Theorem 3.7.

4.4. Proof of Proposition 3.9. We will first consider the case M = Z2 and
then reduce the case M = N2 to it.

Consider a set D = {D1, . . . , Dn} of dominoes (in the sense of [1, p. 1]) such
that the labels on the edges are integers from 1 to N . We will construct a finite
set F ⊂ Q[σm(X), σm(Y ) | m ∈ Z2

] such that the tilings of the plane by D
correspond bijectively to the solutions of F = 0 in kZ2 .
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For every 1 6 i 6 n, by Di(l), Di(r), Di(t), and Di(b) we denote the marks
on the left, right, top, and bottom edges of Di , respectively. Let

F :=

{
(X − 1)(X − 2) · · · (X − N ), (Y − 1)(Y − 2) · · · (Y − N ),

n∏
k=1

(
(Dk(b)− X)2 + (Dk(t)− σ (0,1)(X))2

+ (Dk(l)− Y )2 + (Dk(r)− σ (1,0)(Y ))2
)}
. (5)

Consider any tiling of the plane by dominoes from D. For every i, j ∈ Z, we
denote

• the mark on the edge connecting the points (i, j) and (i + 1, j) by xi, j ;

• the mark on the edge connecting the points (i, j) and (i, j + 1) by yi, j .

Then ((xi, j)i, j∈Z, (yi, j)i, j∈Z) is a solution of F = 0 in kZ2 because

• all marks are integers from 1 to N , so the first two polynomials in F vanish;
and

• the last polynomial in F vanishes if and only if each square is covered by a
domino from D.

For the other direction, let ((xi, j)i, j∈Z, (yi, j)i, j∈Z) be a solution of F = 0 in kZ2 .
Then all xi, j ’s and yi, j ’s are integers from 1 to N , so they are valid edge marks.
Moreover, if we mark the edges of the integer lattice by numbers xi, j and yi, j as
described above, then the fact that ((xi, j)i, j∈Z, (yi, j)i, j∈Z) satisfies the last equation
in F = 0 implies that these marks produce a tiling by dominoes from D.

Since the problem of determining whether there is a tiling of the plane by a
given set of dominoes is undecidable [1, page 2], the problem of determining
consistency of a system of Z2-polynomials in kZ2 is also undecidable.

The undecidability of the consistency problem for M = N2 follows from the
above argument and the following lemma.

LEMMA 4.10. Consider F ⊂Q[σm(X), σm(Y ) | m ∈ N2
] defined by equation (5).

Then F = 0 has a solution in kZ2
if and only if it has a solution in kN2

.

Proof. Consider a solution of F = 0 in kZ2 . If we restrict it on N2, we will obtain
a solution of F = 0 in kN2 .
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Assume that F = 0 does not have a solution in kZ2 . Let K be an uncountable
algebraically closed field containing k. The first two equations of F = 0 force all
the coordinates of any solution of F = 0 in K to be integers from 1 to N . Thus,
F = 0 does not have a solution in K Z2 as well. Then Theorem 3.1 implies that
1 belongs to the Z2-invariant ideal generated by F = { f1, f2, f3}, that is, there
exists a positive integer H such that

1 =
3∑
`=1

 ∑
−H6i, j6H

ci, jσ
(i, j)( f`)

 , (6)

where ci, j ∈ K [σm(X), σm(Y ) | m ∈ Z2
] and −H 6 a, b 6 H for every σ (a,b)

appearing in ci, j . Acting by σ (H,H) on equation (6), we conclude that 1 belongs
to the N2-invariant ideal generated by F in K [σm(X), σm(Y ) | m ∈ N2

]. Thus,
F = 0 does not have solutions in kN2 .

4.5. Proof of Proposition 3.10. We will prove Proposition 3.10 by reducing to
Corollary 3.8. More precisely, for every set of difference polynomials f1, . . . , f`,
g ∈ k0[σ

i(X) | i ∈ N] with X = (X1, . . . , Xn), we will construct a system F = 0
of M2-polynomials over k0 such that there exists a solution of f1 = · · · = f` = 0,
g 6= 0 in kN if and only if F = 0 has a solution in kM2 .

By adding new variables and equations, we may assume that g ∈ k0[X] and
f1, . . . , f` ∈ k0[X, σ (X)]. Let Y = (Y1, . . . , Yn), and denote the generators of M2

by a and b. From f1, . . . , f`, g, we obtain

f̃1, . . . , f̃`, g̃ ∈ k0[σ
m(Y), σm(Z) | m ∈ M2]

by replacing every σ by σ a and every X i by Yi . Then we set

F := { f̃1, . . . , f̃`, Zσ b(g̃)− 1}.

Let ( ym, zm)m∈M2 be a solution of F = 0 in kM2 . Then f̃1 = · · · = f̃` = 0 implies
that {ybai }i∈N is a solution of f1 = · · · = f` = 0 in kN. Furthermore, the equation
Zσ b(g̃)− 1 = 0 implies that g( yb) 6= 0, so g does not vanish on this solution.

Conversely, let (xi)i∈N be a solution of f1 = · · · = f` = 0, g 6= 0. By applying
σ to it, we may further assume that c := g(x0) 6= 0. For every m ∈ M2, we
denote by A(m) the largest i ∈ N such that m can be written as m ′ai for some
m ′ ∈ M2. For every m ∈ M2, we define ym := xA(m) and zm := c−1. We claim that
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(ym, zm)m∈M2 is a solution of F = 0. Let t0 and t1 be n-tuples of new algebraic
indeterminates. For every 1 6 i 6 `, let Pi ∈ k0[t0, t1] be a polynomial such that
fi(X) = Pi(X, σ (X)). Then f̃i(Y) = Pi(Y, σ a(Y)). For every m0 ∈ M2, we have

f̃i((ym)m∈M2)m0 = Pi(ym0, ym0a) = Pi(xA(m0), xA(m0a))

= Pi(xA(m0), xA(m0)+1) = fi((xi)i∈N)A(m0) = 0.

Let Q ∈ k0[t0] be a polynomial such that g(X) = Q(X) and g̃(Y) = Q(Y). Then,
for every m0 ∈ M2, we also have

σ b(g̃((ym)m∈M2))m0 = Q(ym0b) = Q(x0) = g(x0) = c.

This proves the claim.

4.6. Proof of Theorem 3.2. In this section, we present an example that shows
that the assumption |k| > |M | cannot be omitted from Theorem 3.1. In more
detail, we present a finite system F ⊆ Q[σ i(T1), . . . , σ

i(Tr )| i ∈ N] of difference
polynomials (with respect to M = N) such that I(V(F)) %

√
〈σ i(F) | i ∈ N〉.

Before going into the details of the construction of F , we explain the underlying
ideas. Very roughly, the idea is to construct a piecewise polynomial map p : An

Q→

An
Q that can detect if a given number is algebraic or transcendental and then to

obtain F from p via Lemma 4.6. More precisely, we will proceed in the following
steps:

(a) Construct a piecewise polynomial map p : An
Q→ An

Q such that for x0 = (c,
0, . . . , 0, 1) ∈ Cn and xi+1 = p(xi), we have the following property:

the sequence (xn,i)i∈N contains 0 ⇐⇒ c ∈ Q.

(b) Apply Lemma 4.6 with V = A1
Q × {0} × · · · × {0} × {1} ⊆ An

Q and p
being the map constructed in the previous step. This gives rise to difference
polynomials f1, . . . , f`, g ∈ Q[σ i(T1), . . . , σ

i(Tr )| i ∈ N] such that for
every field extension K of Q, the following are equivalent:

• g vanishes on every solution of f1 = · · · = f` = 0 in (KN)r ;

• K ⊆ Q.

(c) Taking K = Q, we see that g ∈ I(V(F)). On the other hand, since there is
a solution of f1 = · · · = f` = 0 in (CN)r , on which g does not vanish, we
conclude that g /∈

√
〈σ i(F) | i ∈ N〉.
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The piecewise polynomial map p : An
Q→ An

Q is explicitly given below (indeed
we will see that one can choose n = 5) and the proof of Lemma 4.6 is constructive.
So, in principle it would be possible to explicitly determine r ,

F = { f1, . . . , f`} ⊆ Q[σ i(T1), . . . , σ
i(Tr )| i ∈ N]

and g ∈ I(V(F))r
√
〈σ i(F) | i ∈ N〉. However, since the piecewise polynomial

map p : A5
Q→ A5

Q is already fairly complicated, this would be a very tedious task,
yielding an enormously large system F . Moreover, we do not expect any deeper
insight from determining F explicitly.

We will next define the piecewise polynomial map p : A5
Q → A5

Q that detects
whether or not a given number is algebraic. Again, we first explain the underlying
idea. The piecewise polynomial map p : A5

Q → A5
Q should have the following

property: If K is a field extension of Q, x0 = (c, 0, 0, 0, 1) ∈ K 5 and xi+1 = p(xi),
then (x5,i)i∈N contains 0 if and only if c is algebraic. This property will be satisfied
if the sequence x5,i consists of all expressions of the form P(c), where P ranges
over all nonzero polynomials in Z[x]. To achieve the latter, we will generate all
elements of Z[x] under iteration. We use the observation that, up to multiplication
with ±1, every element of Z[x] can be obtained from 1 by iterating the following
three operations (in a specific order): P 7→ P + 1, P 7→ x P , P 7→ −x P . We
formulate a more precise statement in Lemma 7.

We set P∅(x) = 1, and for a = (am, . . . , a0) ∈ {0, 1, 2}m+1, we define Pa(x) ∈
Z[x] recursively by

Pa(x) =


x Pa′(x) if am = 0,
−x Pa′(x) if am = 1,
Pa′(x)+ 1 if am = 2,

(7)

where a′ = (am−1, . . . , a0) (if m = 0, a′ = ∅). For N ∈ N with base 3 expansion

N = am3m
+ am−13m−1

+ · · · + a0,

that is, a0, . . . , am ∈ {0, 1, 2} and am 6= 0, we set PN (x) = Pa(x) for a = (am,

. . . , a0). For N = 0, we set PN (x) = P∅(x) = 1.

LEMMA 4.11. For every nonzero polynomial q(x) ∈ Z[x], there exists an integer
N > 0 such that PN (x) is equal to q(x) or −q(x).

Proof. The set of polynomials in Z[x] that can be obtained from 1 by a finite
sequence of the three operations P(x) 7→ x P(x), P(x) 7→ −x P(x), and P(x) 7→
P(x)+ 1 is the set of nonzero polynomials in Z[x] whose constant coefficient is
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nonnegative. Thus, up to multiplication with ±1, every nonzero polynomial in
Z[x] can be obtained in this way.

The set of all PN (x)’s consists of all polynomials in Z[x] that can be obtained
from 1 by a finite sequence of the three operations P(x) 7→ x P(x), P(x) 7→
−x P(x), and P(x) 7→ P(x) + 1 under the additional assumption that the last
operation is not x 7→ x P(x). This extra condition comes from the fact that in the
base 3 expansion N = am3m

+ am−13m−1
+ · · · + a0 of N one necessarily has

am 6= 0.
Let q(x) ∈ Z[x] be a nonzero polynomial. Multiplying q(x) with −1 if

necessary, we may assume that the constant coefficient of q(x) is nonnegative.
Thus, as observed above, q(x) = Pa(x) for a suitable tuple

a = (am, . . . , a0) ∈ {0, 1, 2}m+1.

If am 6= 0, then q(x) = Pa(x) = PN (x) for N = am3m
+ am−13m−1

+ · · · + a0. If
am = 0, then q(x) = −P̃a(x) = −PÑ (x) for ã = (1, am−1, . . . , a0) and

Ñ = 1 · 3m
+ am−13m−1

+ · · · + a0.

Now that we know how to iteratively produce all nonzero polynomials of Z[x],
at least up to sign, we return to the definition of the piecewise polynomial map
p : A5

Q → A5
Q that should detect whether or not a given number c is algebraic.

The idea to produce all the PN (c)’s as the entries of the sequence x5,i is to have
one coordinate, say the second coordinate, loop through all the natural numbers
N , while two other coordinates, say the third and fourth coordinates, are used to
compute the base 3 expansion of N . This base 3 expansion is then used to create
PN (c) in the fifth coordinate according to the rule from (7).

The computation of the base 3 expansion of a given natural number N in the
second coordinate works as follows. The fourth coordinate starts looping from 0,
with increments of 1, until it reaches a natural number A1 with the property that
N − 3A1 ∈ {0, 1, 2}. In other words, N − 3A1 = a0, where

N = am3m
+ am−13m−1

+ · · · + a0

is the base 3 expansion of N . Then A1 is stored in the third coordinate and the
fourth coordinate starts looping again from 0, with increments of 1, until it reaches
a natural number A2 with the property that A1−3A2 ∈ {0, 1, 2}, that is, A1−3A2 =

a1. Then A2 is stored in the third coordinate and the process continues like this
until we reach the index m, such that Am ∈ {0, 1, 2}, that is, Am = am . At this
point, the full base 3 expansion of N has been computed and we start over with
N replaced by N + 1.
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Explicitly, the piecewise polynomial map p : A5
Q → A5

Q is defined as p = (C,
N , R, A, P), where Q(x) := x(x − 1)(x − 2) and

C(x) = x1,

N (x) =

{
x2 + 1, if x3 = 0,
x2, if x3 6= 0,

R(x) =


x2 + 1, if x3 = 0,
x3, if x3 6= 0 & Q(x3 − 3x4) 6= 0,
x4, if x3 6= 0 & Q(x3 − 3x4) = 0,

A(x) =


0, if x3 = 0,
x4 + 1, if x3 6= 0 & Q(x3 − 3x4) 6= 0,
0, if x3 6= 0 & Q(x3 − 3x4) = 0,

P(x) =



1, if x3 = 0,
x5, if x3 6= 0 & Q(x3 − 3x4) 6= 0,
x5x1, if x3 6= 0 & x3 − 3x4 = 0,
−x5x1, if x3 6= 0 & x3 − 3x4 = 1,
x5 + 1, if x3 6= 0 & x3 − 3x4 = 2.

(8)

LEMMA 4.12. Let K be a field of characteristic zero and c ∈ K . Set x0 = (c,
0, 0, 0, 1) and xi+1 = p(xi) for i > 0. Then every entry of the sequence (x5,i)i∈N
is either equal to 1 or equal to Pa(c) for some a = (am, . . . , a0) ∈ {0, 1, 2}m+1.
Moreover, for N > 1, every PN (c) eventually occurs in the sequence (x5,i)i∈N.

Proof. The sequence (x1,i)i∈N is constant with value c. The entries of the sequence
(x2,i)i∈N are in N and in the step i  i + 1 the sequence remains constant or
increases by one. We shall see that (x2,i)i∈N eventually assumes every N ∈ N. The
sequences (x3,i)i∈N and (x4,i)i∈N also only take values in N.

Note that if x3,i 6= 0 and Q(x3,i − 3x4,i) 6= 0, then in the step i  i + 1, the
value for x4 increases by 1 but the values of all the other xi ’s remain constant. Let
us analyze what happens in the steps i  i + 1 i + 2 . . . when x3,i = 0. Then
the value for x2 increases by 1, say x2,i+1 = N > 1. We have

xi+1 = (c, N , N , 0, 1), xi+2 = (c, N , N , 1, 1), xi+3 = (c, N , N , 2, 1), . . .

and this continues until we reach an `1 > 1 such that a0 = N − 3x4,`1 ∈ {0, 1, 2},
that is, until x4,`1 = b

N
3 c. Note that a0 = N − 3x4,`1 is the last coefficient in the

base 3 expansion N = am3m
+· · ·+a13+a0 of N . So x`1 = (c, N , N , b N

3 c, 1) and
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because x3,`1−3x4,`1 = a0 ∈ {0, 1, 2}, we have x3,`1 6= 0 and Q(x3,`1−3x4,`1) = 0.
Thus, according to the definition of p:

x`1+1 =

(
c, N ,

⌊
N
3

⌋
, 0, Pa0(c)

)
, x`1+2 =

(
c, N ,

⌊
N
3

⌋
, 1, Pa0(c)

)
,

x`1+3 =

(
c, N ,

⌊
N
3

⌋
, 2, Pa0(c)

)
, . . .

and this continues until we reach an `2 > `1 such that a1 = b
N
3 c − 3x4,`2 ∈ {0, 1,

2}, that is, until x4,`2 = b
b

N
3 c

3 c. So x`2 = (c, N , b N
3 c, b

b
N
3 c

3 c, Pa0(c)) and because
x3,`2 − 3x4,`2 = a1 ∈ {0, 1, 2}, we have

x`2+1 =

(
c, N ,

⌊
b

N
3 c

3

⌋
, 0, P(a1,a0)(c)

)
,

x`2+2 =

(
c, N ,

⌊
b

N
3 c

3

⌋
, 1, P(a1,a0)(c)

)
, . . .

and so on, until we eventually reach an `m with `m > `m−1 > · · · > `1, am−1 =

x3,`m − 3x4,`m ∈ {0, 1, 2} and am = x4,`m ∈ {1, 2}. (The case x4,`m = 0 does not
occur because it contradicts the minimality of `m .) Then

x`m = (c, N , am3+ am−1, am, P(am−2,...,a0)(c))

and because x3,`m − 3x4,`m = am−1 ∈ {0, 1, 2}, we have

x`m+1 = (c, N , am, 0, P(am−1,...,a0)(c)).

Since x3,`m+1 − 3x4,`m+1 = am ∈ {1, 2}, it follows from the definition of p that

x`m+2 = (c, N , 0, 0, P(am ,...,a0)(c))

and
x`m+3 = (c, N + 1, N + 1, 0, 1).

Thus the whole process repeats with N incremented by 1. Since N = am3m
+

· · · + a0, the claim follows.

Lemmas 4.12 and 4.11 imply the following corollary.

COROLLARY 4.13. With notation as in Lemma 4.12, we have the following: The
sequence (x5,i)i∈N contains zero if and only if c is algebraic over Q.
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We are now prepared to prove Theorem 3.2.

Proof of Theorem 3.2. As above, we consider the piecewise polynomial map
p : A5

Q → A5
Q given by p = (C, N , R, A, P) with C, N , R, A, P defined

in equation (8). Let V denote the closed subset of A5
Q defined by X2 = X3 = X4 =

0, X5 = 1. According to Lemma 4.6, there exists an integer r > 1, a finite system
F = { f1, . . . , f`} ⊆ Q[σ i(T1), . . . , σ

i(Tr ) | i ∈ N], and a difference polynomial
g ∈ Q[σ i(T1), . . . , σ

i(Tr ) | i ∈ N] such that, for every field extension K of Q, the
following two statements are equivalent:

(i) There exists a sequence (xi)i∈N = (x1,i , . . . , x5,i)i∈N ∈ (KN)5 such that

x0 ∈ V (K ), xi+1 = p(xi) for every i ∈ N,

and x5,i 6= 0 for i > 1.

(ii) There exists a solution of F = 0 in (KN)r such that g does not vanish on
this solution.

Following Corollary 4.13, we see that (i) does not hold for the field K = Q,
whereas (i) does hold for the field K = C (or any transcendental extension of
Q). Thus, (for K = Q) we see that g vanishes on every solution of F = 0 in
(QN

)r , that is, g ∈ I(V(F)). However (for K = C), it follows that g does not
vanish on every solution of F = 0 in (CN)r . Since an element of

√
〈σ i(F) | i ∈ N〉

vanishes on every solution of F = 0 over any field extension of Q, we deduce that
g /∈

√
〈σ i(F) | i ∈ N〉.
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