J. Aust. Math. Soc. 73 (2002), 357-376

CHARACTERISTIC INVARIANT OF TENSOR PRODUCT
ACTIONS AND ACTIONS ON CROSSED PRODUCTS

YUKAKO MIWA and YOSHIKAZU KATAYAMA
(Received 10 May 1999; revised 13 March 2001)

Communicated by G. Willis

Abstract

The first purpose of this paper is to give a tensor product formula of the characteristic invariant and
modular invariant for a tensor product action of a discrete group G on AFD factors. The second purpose
is to describe a characteristic invariant and modular invariant of the extended action to a crossed product
in terms of the original invariants.

2000 Mathematics subject classification: primary 46L40.

1. Introduction

The cocycle conjugacy class of an action « of a countable discrete amenable group G
on an approximately finite dimensional (abbreviated AFD) factor .# was completed
in the recent article [11]. This was done by means of the associated characteristic
invariant x (&) € A(G, a~'(Cnt(#)), H)(F (A))) and the modular invariant v, €
Homg(a™!(Cnt(.#)), Hy(F (#3)) which is the canonical pullback of the intrinsic
invariant of the AFD factor, which is the underlying algebra of the action. These
results, due to many mathematicians [9, 10, 12, 13, 14, 17, 19, 20], started from the
work of Connes [3, 6]. A comprehensive account of the subject is presented in the
joint work of Katayama, Sutherland and Takesaki cited above. In this article we are
concerned with the problem of determining these invariants for tensor product actions
and actions on crossed product from those associated with the original action.

In the case that both carrier algebras .4, of a) and .#, of «, are of type II,, the
invariants of the tensor product action a; ® a,, say a, on .# = .#, @ .#, are almost
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just products of the original ones. So it does not pose any particular difficulty. But
in the case that .#, and .#, are not semi-finite, it poses an interesting challenge.
For example, the tensor product o, ® o, of 0 € Cnt(.#,) and o, € Cnt(.#,) is not
necessarily in Cnt(.#, ® .#,) which means that (a; ® o)~ (Cnt(A, @ A,)) #
o, (Cnt(A,)) N o' (Cnt(.#,)). Thus, the basic ingredient ' (Cnt(.#)) of the
characteristic invariant x (a) has to be determined based on more data {x(a), vy}
and {x (), v,,} not just N, = a,~'(Cnt(4})) and N, = a, 1 (Cnt(4,)) (See The-
orem 2.1). Every Ill-factor is a crossed product of II-von Neumann algebra .4 by
dual action 6 of modular automorphism group [21] and the centre ¥ of 4" with an
action 6 is called the smooth flow of weight for an AFD III factor. The AFD III
factors are classified up to isomorphism by [5, 4, 7, 13]. In the case of an AFD factor,
it is well known that every centrally trivial automorphism is an extended modular
automorphism up to inner automorphism and the canonical extension on .4 is also
inner [2, 8, 13]. Therefore in the proof of Theorem 2.1, we deal with automorphisms
on 4. To show that the tensor product formula is computable, we give a standard
form of characteristic invariant and modular invariant in the case of III, (0 < A < 1)
factors and we propose the tensor product formula of them exactly in this case.

The second purpose is to describe the characteristic invariant and modular invariant
of the action, which is extended to a crossed product, in terms of the original invariants.
Sekine [18] already gave the smooth flow of weight of the crossed product by making
use of the original smooth flow of weight and the invariants of an action. We utilize
his frame to define the characteristic invariant of the extended action. Here our
problem is also how to define the normal subgroup of G which is a centrally trivial
part of the extended action. We characterize this normal subgroup with a cocycle
(See Theorem 3.2). Once we characterize it successfully, the computations of the
invariants for the extended action are relatively easy. It is shown in Proposition 3.3
that its invariants are computed explicitly in the case of the crossed product of III,
(0 < A £ 1) factors by discrete abelian group.

The first author would like to express her sincere gratitude to Professor Hisashi
Choda for his helpful suggestions and constant encouragement.

2. Characteristic invariant for the tensor product of actions

First we give a brief review of the properties of characteristic invariants (see for
example [20]).

Let G be a separable locally compact group with a normal subgroup N and o be
an action of G on an abelian von Neumann algebra &

The set Z,(G, N, % (&) consists of pairs (A, ) such that

AMNXG-> %) and pu:N xN - % ()
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are Borel maps satisfying the following conditions:

1 pu(m, n)u(mn, Iy = an(pu(n, D)u(m,nl), m,n,leN;
2) ag(k(g"ng, h))A(n,g) = A(n,gh), meN,g, heq;
3) Am,m) = pu(m,m'nm)u(n, m)*, m,neN;
) Mm, g)a,(A(n, g))A(mn, g)*

= a,(u(g 'ng, g7 ' mg)u(n, m)*, m,neN,g € G;
&) um,n)=1 and i(n,g)=1

ifand only if m,n € N, g € G is the identity.

The set B,(G, N, ¥ (7)) consists of pairs (9,d, 3,d), wherethemapd : N - % (&)
is Borel and

(31d)(n, &) = a,(d(g™"'ng))d(n)*;
(32d)(m, n) = d(m)an(d(n))d(mn)*.

The quotient group A, (G, N, Z (&)) is as follows
Ao(G, N, % () = Z,(G, N, (U())/Ba(G, N, % (o)),

and it is called a characteristic invariant for the action a. The action « is extended
to an action of G x R (denoted by the same «) and N acts trivially on &7, and R acts
ergodically on &.

By [20, Theorem 2.2], we have a natural exact sequence

Ay(G xR, N, % (&) = Ay(G, N, % (&))* x Homg(N, H} (R, % ()))
5 H\(R, B,(G, N, % ())).
For x = [Au] € Au(G x R, N, % (&)), a restricted characteristic invariant
[Mwnxc, ] on G is an element of A,(G,N,Z (&))® andthe mapc : n € N —
Anxg(n,?) = c(n)(-) induces amap v : n € N — [c(n)] € H;(IR, U (A))
which is a G-equivariant homogorphism. This is called a modular invariant. For
x =[A, ] € Ao(G, N, % ()R, we define
X(t,n, 8) = a,(M)A*(n, 8);
e, n, g) =a,(w)u*(m,n), (teR,mneN, andg € G),
and
81: X € Ag(G, N, Z()* = 8:(x) = [X, il € HA(R, B.(G, N, % ()));
8, : v € Homg (N, HL(R, % (#)))
i 82(‘)) = [alcv aZC] € H(I,(IR9 Ba(Gv Nv %(d)))v
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where the map ¢ : n € N — ¢(n) € Z}(R, % («)) is a Borel map lifting v. For
(x,v) € Au(G, N, % ())® x Homg(N, H (R, % ())), we define

8(x,v) =81(x) — 8:(v).

We remark that by [20, Lemma 2.1], for7 € R, g € G,

@D a,(MA*(n, 8) = oy (A(g ™ "ng, A (n, 1)*;
' o, (L)t (m, n) = A(m, )o, (A(n, ))A(mn, t)*
forh e Z,(G x R, N, % ()). N

From now on, we assume that the group G is discrete. We consider a tensor
product of two actions of G on AFD factors of type III. Our aim is to show that the
characteristic invariant and the modular invariant for the tensor product of two actions
can be expressed by (2.4) and (2.5). We give an example in which its invariants can
be computed explicitly.

Let .# be approximately finite dimensional (AFD) factor of type III and « be an
action of G on .#. We may suppose that the action « admits an invariant dominant
weight ¢ on .#. A dual action 6, of the modular automorphism o ¥ associated with ¢
is defined on a crossed product A4 = .# x,. R by

0:(my(x)) = My (x),  Bi(Ay(5)) = €Ay (s),

where x € .# and t, s € R and the set {7,(x), A,(s) : x € .#,s € R} generates A'.
Thanks to Connes’ Radon-Nikodym cocycle [1], the isomorphic class of the crossed
product .# %,. R is independent of the choice of weights. For an automorphism
y € Aut(.#), we can extend canonically an automorphism ¥ € Aut(A4")

V(my(x)) = my(y (x)) forx € A

(2.2) ~
Y(Ao(8)) = m,((Dpy ™" : D) )A,(s) fors € R,

where (Dgy ™' : Dy), is Connes’ cocycle [7, 8]. The centre € of A is isomorphic
to a smooth flow of weight for .# and the restricted action 6, on ¥ is called a flow.
Let o be an action of G on .#. The restricted action &, on ¥ is just mod a, which
is called the module. We sometimes denote the above restricted actions by the same
symbol 6, and a,.

The definition of characteristic invariant and modular invariant for the action & on
flow of type 111 are found in [20] or [13). Here we give definitions which are equivalent
to the original ones in [20]. Let N = N, be a normal subgroup of G defined by

N, = [n € G:a, =Adu(a), for some u(a), € %(,/V)}
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and the unitary u, = u(a), yields a characteristic invariant A(a) = [A,u] €
AL (G, N, % (¥)) and a modular invariant v, = {c(n)] € Homg(N, H(‘,(IR, U (€)))
for the action « as follows:

&g(ug“'ng) = A'(na g)un;
(2.3) Uty = P(M, ) Upmn}
0, (u,) = c(n)(Hu,,

wheren,me N,g € Gandr € R.

Let .#; and .#, be AFD factors of type IlI and & and B8 be actions of G on .#,
and ., respectively. With notation as above for each .#) and .#,, we define crossed
products A = A X, R and A, = #, x,v R for invariant dominant weights ¢
and . The action o and B can be extended to action «, and 5g on A and A;.
Moreover &, and 8, commute with each dual action 6! and 67, which are denoted
by e, and B, respectively. We denote a product action @,6, of G x R on A by
0.,y Without any confusion. Similarly, we define 8, = B,62. It is easy to check
that the crossed product A3 = (M| @ ;) N,eev R is isomorphic to a subalgebra
(M Q@ M) Ayegov {(8,1) 1 1 € R) of (M) 3,0 RY ® (M, ¥,y R). By the Galois
correspondence [21, Theorem 7.2], the von Neumann algebra .45 is isomorphic to
the fixed point algebra {y € A ® A4 : a, ® B_,(y) = y}, which is identified
with .#5. The smooth flow of weight ¥, = Z(#3) for A4, ® #, is isomorphic to
(e @G :a,®@B..(y) =y, t € R}, & ®1), where &, = Z(A).

Let x, = [A;, 1] and x» = [A,, 2] be characteristic invariants in A, (G, N,
% (1)) and Ag(G, N,, % (€,)) associated with the actions a and B and ¢;(n)(2),
(i = 1,2) be their modular invariants. We identify %3 with {y € €, ® 6 : o, ®
B_.(y) =y, t € R}. We define a normal subgroup N; of G and A;(n, g), us(m, n) €
%, by

Ni={neNNNy:ici(nt)®c(n, ~t) =d, (o, ® B_))(d}),

for some d, € % (€, @ €»)):
Xa(n, ) = Mi(n, 8 ® ha(n, £)(@&, ® By n)d?, g € G
ns(m,n) =d dud.,pu,(m, n) ® p,(m, n), m,n € Ns.

(2.4)

We also define, forn € N3, r € R,
(2.5) a(n, 1) = (a, @ 1)(d)d, (c;(n, 1) ® 1),
where ¢;(n, t) ® c;(n, —t) = d, (o, ® B_,)(d}). Using

(a: ® 1)(d;) = (1 ® B)(d)(c1(n, 1) ® Bi(c2(n, —1))),
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it is easy to check that c3(n, t) = (¢t @ 8:)(d,)d; (1 ® c;(n, 1)).

It was shown in [16], by an algebraic method, that the tensor product of invariants
is well defined and it satisfies the conditions (1)—(5) of characteristic invariant and
modular invariant with §([A3, i3], [c3]) = 0. The proof is valid even when the real
field R is replaced by another locally compact group. Here we shall prove the tensor
product formula of invariants in the operator algebraic way.

THEOREM 2.1 (Tensor product formula). With notation as above, the characteristic
invariant and modular invariant for the product action a ® B of G on M\ @ #,
is [As, 3] € Aaap(G, Ny, Z (&)* and [5(n, )] € Homg(Ns, Hlg, (R, % (%)),
where )3, 3 and cs are derived in (2.4) and (2.5) from the invariants (A;, u;) and
vi = [e;(n)}, (i =1, 2) for the actions « and B on M, and #, respectively.

PROOF. By (2.2) we have that m on 4 is the restriction of@® B on A C
M ® M. For n € Nygg, take U, € A such that (&, ® B,)(x) = Ad U,(x) for
x € A5. By [3, 5, 13], the element » is contained in N, N Ng. Therefore, we have

(@n ® Ba)(x) = Ad u(e), ® u(B)a(x)
forx € # ® A and
Ad U (x) = Ad u(a), ® u(B).(x)

for x € A4. It follows from A5 O 4 ® .#, and [11, Lemma 1.1] that there exists
d, € % (¢ ® ¢€,) such that U, = d,(u(a), ® u(B),). Since (a;, ® B_,)(U,) = U, for
t € R, we have, by (2.3),

d(u(@), ® u(B)a) = (e, @ i) (dn)a (u(@)n) ® B (u(B)n)
= (a, ® B_)(dp)ci(n, yu(a), ® cr(n, —t)u(B)n,

which implies that d,a, @ B_,(d}) = c;(n, 1) ® ca(n, —1).
Conversely, suppose that for n € N, N Ng, there is some d, € % (¢, ® €,) such
that d,(a, ® B_,)(d}) = c1(n, t) @ c2(n, —t). We set U, by d,(u(a), ® u(B),). Then

Ad Uy (x) = Add, (@ ® B)(x) = (& ® B)(x)
for x € A ® 4. Moreover, since we compute

(al ® ﬂ—l)(Un) = (at ® ﬁ—l)(d)cl (nv t)u(a)n ® CZ(na —t)u(ﬂ)n
= dn(u(a)n ® u(ﬂ)n) = Uru

the unitary U, is in .45. We have shown that

Nags = {n € Ny N Ny : dy(e, ® B_)(d}) =c1(n, 1) ® ca(n, —1)
for some d, € % (¢, ® 6)}.
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Using (2.3) we obtain

A3(n, 8) = (&g ® By)(Up10) Us
= (@ ® By) (dy-1ng) @ (U(@))g-1ng) ® Bo(U(B)g-1ng) () @ u(B)?)d:
= (@ ® By)(dg-1ng)di 11 (n, &) ® Aa(n, 8);
us(m,n) = U, U, U, = d, ddn(i(m, n) @ us(m, n));
c(n, t) = (o, @ NU)U; = (a; ® )(dy)d; (ci(n, 1) @ 1). O

In the case of Illy-factors, the tensor product formula of characteristic invariant
and modular invariant depends heavily on the fiow of weights and we cannot give its
formula explicitly. We give a standard form of characteristic invariant and modular
invariant in the case of III,-factors (0 < A < 1) and we show the tensor product
formula of them exactly.

Let .# be a factor of type II[; (0 < A £ 1). It is well known that the flow of weight
(F(A), F*) = (¥,0,) is regarded as (L*°([0, — log 1)), translation by —¢) and the
cohomology group Hy(R, % (¥)) is as follows

{e““‘;s € IRZ./TZ} O<Xi<l)

(R, = .
HO( %(cg)) {e—us;s € [R} (A. = 1)1

where T = —2m/log . We may choose the modular invariant [c(n)] € H;([R, U (€))
to be of the form c(n)(t) = €™, where v(n) € [0, T). We identify the real number
v(n) with the modular invariant v(n) = [c(n)] € H},([R, % (¥)). The following lemma
was proved in [20], we include here a brief proof.

LEMMA 2.2. Let a be an action of G on AFD factor # of type 1II, (0 < A < 1).
The characteristic invariant [X, u] of « is of the form (up to cohomology)

(2.6) [)‘("v g)(w) is a constant function;

/‘L(m n)(w) =ﬁ(m n)eiw(u(nm)—v(m)—v(n)).

AN
SJor w € [0, —log X) and x(m, n) is T-valued function satisfying

—it(g)v(imn)—v(m)=v(n))
1

27 w(m, n)p(mn, l) = @(n, Hp(m, nl);
7 A0m, g)A(n, )A(mn, g) = (g™ ' mg, g7 ng)i(m, n)e

where mod o, (f )(w)=f (w—1(g)), for f eL*([0,—log A)), where t(g)€[0,—log 1).

PROOF. We may assume c(n)(¢) = "™, By (2.1) and v(g~'ng) = v(n), we have

a,(MA*(n, g) = &, (c(g™'ng, D)c(n, 1)* = "¢ = 1,
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Since a, is ergodic, the unitary A(n, g) must be constant. By the Fourier expansion
of u, u(m, n)(w) = Y, are™*@/ e where q; € C. By (2.1), we have

a (R (m, n) = c(m, 1)c(n, t)c(mn, )" = Emrm=vimm),

By comparison of the Fourier coefficients, we get
—ith2m/logh _ eit(v(m)+V(n)—v(mn))ak

aie

for k € Z. Then there exists a unique k(27/logA) = v(mn) — v(m) — v(n) such that
ay # 0. Therefore, pu(m, n) is of the form fZ(m, n)e™* ™M) where (m, n)
is scalar. The statement (2.7) follows from condition?(l) and (4). O

Let .#,, and .#, be AFD factors of type III,, and III, (0 < A;,A; £ 1), and «
and 8 be actions of the group G on .#, and .#, respectively. We remark that the
following lemma is related to [13, Lemma 1.7].

LEMMA 2.3. Let v; be the modular invariants for o and B, where v;(n) € [0, T;)
and T; = —2n/ log A, respectively (i = 1, 2).
(1) If #\ and M, are of type 111, and 111, withO < X, A, < 1, there is an operator
d € L°°([0, —log &) x [0, —log A;)) such that

(28) a, ® ﬂ,(d"‘)d =1 (n)(t) ® c,(n)(~1t) = e/t vitm=2(n)
if and only if there exists (k,(n), ky(n)) € Z* such that
(2.9) vi(n) + k() Ty = v (n) + k(M T,
Moreover, the operator d can be chosen to be of the form
(2.10) d(wy, wp) = e~ twikimTi+uwrka(n) )
Sfor (wy, wy) € [0, —log A1) x [0, —log Az).
(2) If A, is of type 11, withO < A < 1 and M, is of type 111,, we may replace the
condition (2.9) and the operator d in (2.10) by

2.9) vi(n) + ki (n) Ty = vy(n);
(2.10) d(w,) = e-b®T

PROOF. (1) The operator d is expressed by the Fourier expansion

—iw kT .
d(w., Ll)z) = E [ P4 W e rwzmTz.
k.m
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We compute

a, ® ﬂ_,(d) — § :ak'me—i(un—t)kﬂ X e—i(w2+l)mT2
k.m

— § :ak'meu(kﬂ—mTz)e—rwlkT] X e-iwzmTz;

k.m

e—it(u.(n)-vz(n))d — § :e—i!(v.(n)—vz(n))ak'me—iwlkﬂ x e-iwzmTz'

k,m

By (2.8), there exists (k;(n), k;(n)) € Z?* such that

iy (m)hy(my 7 0,
vi(n) — vy(n) = —k;(n) Ty + kr(n) To.

Conversely, take a function d(w,, w,) as follows d(w,, w,) = e (WhmWTi+twkmD)
then by the condition (2.9), we conclude

o ® ﬂ_,(d*)d - ei((wx—r)kl(n)Tl+(Wz+l)kz(n)Tz)e—i(w1k1(n)T|+wzkz(n)Tz)
— e—it(kl(n)ﬂ—kz(n)Tz) — eir(vn(n)—vz(n))‘

(2) If A, is of type 111, the smooth flow of weight .4 is trivial. Therefore the operator
d is a function on [0, — log A,). The statements in (2) can be shown by repeating the
argument of (1). ad

If the invariants (;, ;) are of the form (2.6) for i = 1,2, then we compute
¢3, A3 andp, using the definition, with the function d, = d in (2.10)

(2.11) c(n, 1) = (o, ® 1)(dp)d, (ci(n, 1) ® 1)

— e—i((uu =NkmT +w2kz(n)7'2)ei(w1k| [ +wzkz(")7'z)e""| (n)

— eil(V|(n)+kx(n)Tn);

(2.12) Xa(n, 8) = (& ® Be)(dg1ng)dr (M1 (1, 8) ® Aa(n, 8))

. -1 -1
= A(n, g))xz(n, g)et(n(g)kn(g ng)Ti+r2(g)ka (g™ ng) T2)

x e—iwl(kl(g_l"g)-kl("))Tle—iwz(kz(g""g)—kz("))Tz;

(2.13)  us(m, n) = d,, dnd,(p1(m, n) ® pz(m, n))
— m(m n)m(m n)eiw|(v|(mn)—v|(m)—v|(n))eiwz(vz(nm)—uz(m)—vz(n)

iw) (ky(mn)—k, (m)=k\ (n) Ty Liwz(kp(mn)—ky(m)—ka(n)) Ty)

X e e
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In the case when ., is of type III,, we can take d, as in (2.10'). Then

c3(n, t) — eil(vl(n)+k|(n)7);

. - _ oy
As(n, t) = A (n, g)hy(n, g)em(g)kl(g ng)Ti =iwi (ki (g™ ng) k.(n))Tx;

ps(m, n) = g, (m, n)pz(m, n)
fw (v (m")-Vl(m)—Vl(n))eiwl(kl (mn)—k((m)—ki(m)) Ty

(2.14)
X e

If log A,/ log A, is rational with logA,/logi, = L,/I, simple fraction (l,,!, € N),
then we set A3 = A;/? = A}’", and the tensor product factor .#; ® .#, is of type I1,,.

We set N

(2.15) v3(n) = (ki(m T, +vi(n)) — [(ki(n) Ty + ni(n))/ BT € [0, T3),

where T3 = —2m/log A5 and [ - ] is the Gauss symbol. If log A,/ log A, is irrational or
Ay = 1, then A ® A, is of type I11;. Hence we set

(2.16) v3(n) =k (n) Ty + vi(n) € R.
PROPOSITION 2.4. (1) IflogA,/logA, is rational, then the characteristic invari-

ant (A3, i3) for the product action a ® 8 of G on M ® M, is cohomologous to

'ng)=1i (e (g™ ng)~T2(gva (g™ ng)).
y

{k,(n, &)ra(n, g)el M@+t

m(m’ n)'u—z(m’ n)eiw(\)}(mn)—vg(m)—llg(n))

Jor w € [0, —log A3).
(2) IflogA,/logA, is irrational or #, is of type 111, then the invariant (A3, us) for
o ® B is cohomologous to

ng)-r2(ghva(g " ng)).

Ai(n, g)Aa(n, g)ei((tl(g)+rz(g))vs(g'lng)—r|(g)w(g'
{mm, W (m, n).
PROOF. (1) By identifying L>([0, —log A3;) x {0}) = L*=([0, —log A3)) with
{f € L*((0, —logA,) x [0, —log X)) : f (w) — t, wy + 1) = f (wi, o)},
we may regard A; and p3 in (2.12)—(2.13) as

As(n, g) = A (n, g)ha(n g)ei(n(g)h(g"ng)ﬂ+rz(g)kz(g"ng)Tz)
, ) ;
(2.17) x g~ iwiki(g™ np)—kim) T

[l.‘{("l ’1) _— p-l_(m n)m-(m n)eiw(v|(mn)—v,(m)—u.(n))eiw(kl(mn)—k,(m)—k,(n))Tl
3 ’ - L) ’
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forw € [0, —log A3). Since k, (n) T; + v, (n) — v3(n) € TZ, we can consider a function
f (n) on [0, —log A3)

f(n)(w) = eiW(kl(n)T|+v|(n)—va(n)).

We perturb A3 and p3 by f (n). Then we have, by v;(g~'ng) = v;(n) and v3(g " 'ng) =
v3(n),

~ a -
A3(n, 8)(@, ® By)(f (87 ng))f (n)*
= A3(n, g)ei(w"fl(8)—12(8))(k|(8_'"8)T|+v1(g_'ng)—vg(g"ng))e—iw(k,(n)T,+v,(,.)_v3(,,))
— A;(n g)eiw(h(g'lng)—kl(n))ﬂ e—i(U(g)+fz(g))(k|(g"ng)T|+u|(g"ng)—v3(g"ng))
since v(n) + k;(n) T, = v,(n) + k,(n) T» and (2.17),
= Ai(n, g)ha(n, g)ei((n(g)+rz(g))VJ(g"nx)—n(g)w(g”'ng)-rz(g)vz(g-'ng))’

and

us(m, n)f (m)f (n)f (mn)*

— #3("1 n)eiW(kl(M)Tn+v|(m)~V3(m)+k|(n)Tl+v1(n)—va(n)—(kl(mn)Tx+v|(mn)—v3(mn)))
- 1)

=i (m, n)itz(m, n)e

iw(v3(mn)—v3(m)—vi(n))

(2) Since v(mn) = v(m) + v(n), k(g 'ng) = k(n) and k(mn) = k(m) + k(n), we
have, by (2.15),

'ng)Ty.
»

As(n, 8) = Ai(n, @)ha(n, g)e™@hE”
wa(n, g) = p(m, n)pz(m, n).

It is easy to show (use (2.9)) that

(kg7 ng) Ty = (1i(g) + ©2(g))vs(g 'ng) — T1(g)vi(g~'ng) — 12(g)va (g~ 'ng).

Thus we obtain the conclusion of (2). 4

3. Characteristic invariant for discrete crossed product

Here we deal with characteristic invariant and modular invariant of the action
induced up to a discrete crossed product and we give an example in which its invariants
are computed explicitly.

Let G and H be discrete groups and « and B be actions of G and H on an AFD
factor .# with o, B, = Bsa, forg € Gand h € H. The action B is supposed to be an
outer action of an amenable group H in order that a crossed product .# x4 H is an
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AFD factor. The action a of G on .# can be extended to an action (which is denoted
by @) on the discrete crossed product 4 xg H satisfying

3.1) @, (mp(x)) = mg(a,(x)), og(Ag(h)) = Ag(h), xeHM, heH,

where # xg H is generated by {mg(x), Ag(h) : x € A ,h € H}. In this section
we compute the characteristic invariant and modular invariant for the action &. By
perturbing an action & x S, = a,B, by a cocycle, we may assume that it admits
an o x B-invariant dominant weight ¢ on .# [20, Proposition 1.1]. We extend the
actions & and B to actions @ and B on A = .# X, R. Since (A x5 H) X,: R is
canonically isomorphic to A" x; H, where ¢ a dual weight of ¢ [18], we may regard
the action & as

(3.2) [&K(”B(x)) =m5(0,(x)), x €N,

G, (Ag(h)) = Ag(h), heH,

where {75(x), iﬁ(h) :x € A&, h € H} generates A x; H. The action a is denoted
by the same symbol @. Let Ny be a normal subgroup of H defined by 7' (Int(A4"))
and (A, 1) and c(n, t) be the characteristic invariant and modular invariant of ¢ x B.
A twisted crossed product € x4, Ng of the centre € = Z(.4") by trivial action plays
a crucial role in the description of invariants for @ ([18]), where (i, is a restriction of
pon Nyg. The invariants A and c(n, t) give actions y of H and F of R on € X4 ,,, Ny
for an element E,eNﬂ dizy € € Xiq4,, Np as follows

yk(z d,zl) =Y Al B Bdu-)z;

leNy leNy
(3.3)
F, ( Z dlzl) = Z 6,(d)c(l, 1)z,
leNg leNy

where d; € €, 2,2, = us(li, L)z, and 6, is the flow on €. Moreover, for g € G, we
define an action p of G by -

(3.4) P ( 3 dlz,) = DA, 2)d,(d)z.

leNy leNy

We set a normal subgroup N,.sz = (E-;(/,B)"(Int(/)) of G x H and a, (k) €
€ Xigpu, Np :for (n, h) € Nyyp,and k € H,

(3.5) a, (k) = A((n, khk™"), kyu((n, h), (e, h™"khk™")Y Zu-1hi-t -
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LEMMA 3.1. For (n,h) € Ny, the a,, is y-cocycle in € Midu, Ng. Namely,
A i (K)vi(ann(l)) = ayn(kl). Moreover, a,, and a,; are cohomologous with
ul(n, h), (e, h='1))*z4-11, for (n, b), (n,1) € Nyyp, namely
@i (k) = (u((n, ), (e, 7' D) z-1) @u s (B (1e((n, 1), (e, B D)*24-1)

fork € H.
PROOF. We set a/ , (k) = y,(u(n, h)As(h)*)(u(n, h)As(h)*)*, where
¥ =AdAs(Dlww,n and @By = Adu(n, h).

Since Ad u(n, h)iﬂ (h)*| 4 = &, and Bk commutes with &, the a, , (k) is an element
of &' N (A x5 H). We compute, using kh~'k~'h € Ng,
a, ,(k) = Be(u(n, h)Ag(kh~' k™" hyu(n, h)*
= AM(n, khk™"), )u(n, khk )8\, i (u(n, B)*Yag(h™ khk™")*
= A((n, khk™"), k)u(n, khk™")
x u(e, h~'khk™"Y u(n, h)*u(e, h~'khk™")Ag(h~'khk™")*
= A((n, khk™"), Kyu(n, khk=Yu((n, k), (e, k™ 'khk~")) u(n, khk™")*
x u(e, h='khk™")z(h'khk™")*
= A((n, khk™"), k) ((n, h), (e, K™ 'khk™"))*
x u(e, h='khk=")Az(h~'khk™")*.
By the anti-isomorphism [T in [18, Lemma 2.4], we have Il(a, (k) = a, ,(k). It
follows from the definition of a;, ,, (k) that a;, , (k) satisfies y, (a, ,(D))a, , (k) = a, , (k).

Therefore, a, (k) satisfies a, ,(k)yi(a. (1)) = a.,(kl). We choose another unitary
u(n, ) satisfying m(m = Ad u(n, I) for (n, 1) € N,«g. Then we have

Adu(n, hy* Adu(n, 1) = & X By ,@ X By = Br-u = AdAg(h™' )| 4.

Therefore, there is d € A" N (A x5 H) such that u(n,l) =d - u(n, h)i,;(h"l) and
we have

d = u(n, kY u(n, Drg(h™'1)* = u(n, kY u((n, h) - (e, k' D)Ag(h™'1)*
= u(n, h)*u((n, h), (e, A" D) u(n, hu(e, h"l)):,g(h"l)
= u((n, h), (e, k' D) ule, ' DAg(R~'D).
Therefore, [T(u((n, h), (e, h~'1))*z4-;) = d. Since

a, (k) = y(d)ye(un, gk~ DA ag(Dhp k™' D)* u(n, h)*d*
= yi(d)a, ,(k)d",
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we conclude
an1(k) = (1((n, ), (e, 7' D) 24-11) @un )i ((((n, B), (e, A7 DY 74y). O

REMARK. If the group H is abelian, the y-cocycle a, (k) is just A((n, h), k). It
follows from (2) in the definition for A that A((n, A), -) is y-cocycle. By making use
of the definition (1)—(4) for the characteristic invariant, we can prove Lemma 3.1 in
an algebraic way, but its proof is rather complicated.

Next we shall show that the characteristic invariant and modular invariant for & can
be expressed as the operators in € X,4,, Ng by making use of the anti-isomorphism
ITin[18, Lemma 2.4]. h

THEOREM 3.2. Let N; be a normal subgroup a™'(Int(.# x; H)) of G and let
[@n.homy] denote the class of a, ymy (k) in H)',(H, € Xigu, Np).
(1) The group Nj is

{n € G:(n,h(n)) € Nyyg and [a, nml =0, for some h(n) € H}.
(2) The characteristic invariants (X, ) in (¢ Mid.u, Np)¥ for a are given by

X(n, g) = A((n, h(g™'ng)), g)
x u((n, h(n)), (e, h(n)~'h(g'ng)))"
X Zh(n)"h(g"ng)pg(b(g-lng))b(n)*;
(3.6) a(n, m) = A((n, h(m)~'h(n)h(m)), h(m)~")
x pu((m, h(m)), (n, h(m)~"' h(n)h(m)))
x u((mn, h(mn)), (e, h(mn)™' h(n)h(m)))’
X Zi(mny- h(myom) Vingmy (B(1) Y () b(mn)*
for (n, h(n)), (m, h(m)) € Nyxp, g € G.

The modular invariant c(n) is given by

(3.7) c(n)(t) = c(n, h(n))(¢) F,(b(n))b(n)",

where a, pny (k) = b(n)yi(b(n)*) for some b(n) € € x4, Ng and p,y and F are
given in (3.3) and (3.4).

PROOF. (1) We note, firstly, that the cohomology class of a, , is independent of the
choice of i(n) by Lemma 3.1. Take n € N; and choose a unitary U, € A" x; H such
thata, = Ad U, on 4" x; H. Since U, is of the form

Z Uhiﬂ(h)y

heH
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where v, € A, it follows from U,x = @.(x)U,, x € A x5 H that

Z vhﬁ,,(x)):ﬁ(h) = &,(x) thxp(h), for x € A

heH heH

Hence we have v,-x = &nﬁh(x)vh-u for h € H. By [18, Lemma 2.3], if &,,,3,,
is not inner, then v, must be zero. Hence there is h(n) € H such that &,,ﬁ,,(,,) is
an inner automorphism of .#. We choose unitary u(n, h(n)) € % (.4") such that
@nPhwy = Ad u(n, h(n)). We compute, forx € A,

Adu(n, h(n))xs(h(n))*(x) = &nBriny By *) = & (x) = Ad U, (x).

We set b'(n)* = u(n, h(n))Ag(h(n))*Ur € N’ O (A x5 H). Since the extended
automorphism &, satisfies &, (Ag(k~™")) = Az(k™") for k € H, we have

dp(k™) = @, (Ap(k™")) = Uphg (k™ U?
= b (n)u(n, h(n)Ag(h(n))*As (k™" YAg(h(n))u(n, h(n))*b (n)*.

This implies that

Ye(B'(n)*)b () = yi(u(n, h(n))Ag(h(n))*) (u(n, h(n))As(R(1)*)* = @, 4,y (k)
and we have

b(n)y(b(n)*) = T () y(THE (1)) = T (b (1)) (1)) = @ iny-

Conversely, suppose that there is b(n) € € X4, Np such that b(n)y,(b(n))* = a, i
for some (n, h(n)) € Nyxp. We set

(3.8) U, = b (n)u(n, h(n))As(h(n))*,
where #'(n) = IT7!(b(n)). Then\we have forx € 4,k € H,

Ad U, (x) = Ad ¥ (n)@, (x) = @n(x);

Ad U, (g (k™))
= b'(m)u(n, h(n))g(h(n))*Xs(k™"Ag(h(n))u(n, h(n))*b'(n)*
= (kY5 () ye(uln, h(n)) &g (h(n))*) (u(n, h(n))Xg(h(n))*)" b (n)*
= Ak ' (n)a, ()b (n)" = Ag(k™").

Hence the automorphism @, on A" X; H is inner with the unitary U, in N % 5 H.
Thus we have proved the statement (1).
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(2) Let U, be as in (3.8). We compute

G (Upng) Up = a,(b' (87" ng)u(g™"ng, h(g™'ng))is(h(g 'ng))*)

x Ag(h(n))u(n, h(n))*¥ (n)*

= b'(n)*a, (b'(g~'ng))A((n, h(g~'ng)), g)uln, h(g~'ng))
x Ag(h(g"'ng) ' h(n))u(n, h(n))*

= b'(n)"d,(b'(g~"ng))A((n, h(g~'ng)), g)u(n, h(g~'ng))
X Bhig-1ngry-him (u(n, A(n))YAg(h(n) " h(g~'ng))*

= b'(n)*&, (' (g~ 'ng)A((n, h(g~ing)), g)u(n, h(g 'ng))
X u(e, h(n)"'h(g™"'ng))*u(n, h(n))*u(e, h(n)"'h(g~'ng))
x Ag(h(n)~'h(g~"'ng))*

= b'(n)"a,(b'(g"'ng))A((n, h(g~'ng)), g)
x u((n, h(n)), (e, h(n)"'h(g~"ng))"
x u(e, h(n)~ h(g™'ng)ip(h(n) " h(g ' ng))".

Then the characteristic invariant A for @ is of the form

A(n, g) = A((n, h(g7'ng)), &)u((n, h(n)), (e, h(n)™'h(g~'ng))"
X Zhimy-thig-'ngy Pz (D(g ™ 0N b(N)*.

We compute

= b (myu(m, h(m))rs(h(m))*b (m)u(n, h(n))is(h(n))*
x (b'(mn)u(mn, h(mn))Ag(h(mn))*)*
= b'(mn)*b'(m)y,, (&' (n))u(m, h(m))is(h(m))*u(n, h(n))
X Ag(h(n))*Ag(h(mn))u(mn, h(mn))*
= b'(mn)*b' (m)y, o, (b’ (n))u(m, h(m))A((n, h(m)~"h(n)h(m)), h(m)™")
x u(n, h(m)~ h(n)h(m)Ag(h(m) " h(n) " h(mn))u(mn, h(mn))*
= b'(mn)*b'(m)y,;} (b())A((n, h(m)~"h(n)h(m)), h(m)™")
x u(m, h(m))u(n, h(m)~"h(nYh(m))u(e, h{(mn) ™' h(n)h(m))*
x u(mn, h(mn))*u(e, h(mn)"h(rz)h(m))i,g(h(mn)"h(n)h(m))"
= b'(mn)*b' (m)y, s, (6 (n)A((n, k(m)~ ' h(n)h(m)), h(m)™")
x p((m, h(m)), (n, h(m)™" h(n)h(m)))
x w((mn, h(mn)), (e, h(mn) ™' h(n)h(m)))*
x u(e, h(mn)~" h(n)h(m))Ag(h(mn)~ h(n)h(m))*.

U. U, U,

mn
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Then we obtain

R(n, m) = A((n, h(m)~ h(n)h(m)), h(m)~" Y ((m, h(m)), (n, h(m) ™" h(n)h(m))
x p((mn, h(mn)), (e, h(mn) "' h(n)h(m))) Zuimny- himyhim
X Viomy (B(n))b(m)b(mn)*.

Finally, we compute

6,(Up) U = b'(n)*8,(b'(m))c(n, h(n))(Du(n, h(n))As(h(n))*As(h(n))u(n, h(n))*
= b'(n)*6,(' (n))c(n, h(n))(t),

where 5, is a dual action on 4" x; H for the modular automorphism o®. Then we
obtain ¢(n, t) = c(n, h(n))() F,(b(n))b(n)*. ad

From now on, we assume that the group H is abelian and the factor .# is of type
I, (0 < A £ 1). We shall give a form of b(n) in Theorem 3.2 and the invariants
X, i, ¢ explicitly. If .4 is of type ITI, (0 < A < 1), we may assume that the invariants
(%, 1) and v for the action @ x 8 of G x H are as in Lemma 2.2. Since the y-
cocycle a, ,(k) is A((n, h), k), it follows from (2) in the definition for A that a map
k€ H — A((n, h), k) € T is a character of H. Therefore, we define ®(n, h) € ﬁby

(k, (n, h)) = A((n, h), k)

for k € H, where H is a dual group of H. Forp € Z, themap [ € H — "7 ¢ T
is also a character of H, where T = —2x/log A and we define ¥(p) € H by

(1 W(p)) = &0

forl e H. Thenthemap V¥ : p € Z —» ¥(p) € Hisa homomorphism. By (2.7), we

have
N

A((m, k), )A((n, 1), k) = A((mn, k1), ) Bi(((m, b), (n, D)) u((m, k), (n, D)*
= A((mn, hl), k)eir(k)(v(m.h)+v(n.l)—v(mn.hl)),

which implies that
3.9) d(m, h) + ®(n, 1) = ®(mn, hl) + Y(v(m, h) + v(n,l) — v(imn, hl)).

PROPOSITION 3.3. With notation as above, if A is of type lIl; (0 < A < 1)
(respectively I11,), we have the following statements.
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(1) The y-cocycle ay p, for (n, h) € Nyxp is coboundary with b(n) € € Mid,us Np»
namely a, 4 (k) = b(n)y«(b(n)*) if and only if there is | € Ny such that

Y(p) = d(n,h) + (e, l), (respectively d(n,h)+ Ple,l) =e)

for some p € Z. Moreover, we can choose h(n) € H and p(n) € Z such that
(n, h(n)) € Nyxg and ¥ (p(n)) = ®(n, h(n)) (respectively ® (n, h(n)) = e) and b(n)
can be chosen to be of the form b(n) = €"? ™7 € € %4, Ng, (respectively b(n) = 1),
where w € [0, — log A).

(2) The invariants X, i and ¢ are as follows

An, g) = M((n, k(8" ng)), ) ((n, h(m)),\(e, h(n)~'h(g 'ng)))’

iw(p(g"ng)—p(n))re-iug)p(g- ng)T,
b

X Zhin)~th(g='ng)€

p(m, n) = u((m, h(m)), (n, h(n))A((n, h(n)), h(m)™)
x u((mn, h(mn)), (e, h(mn) ™' h(n)h(m))" 2himm- hinyhomy
x eiw(p('")+p(n)—p('ﬂn))Te—it(h(m)")p(n)T;

&(n)(t) = c(n, h(n))(t)e?™T,
( respectively
A(n, g) = A((n, h(g™"'ng)), &)ul(n, h(n)), (e, h(n)~'h(g'ng)))"

X Zhin)-th(g='ng)>

a(m, n) = p((m, h(m)), (n, R(n))A((n, h(n)), h(m)™")
x u((mn, h(mn)), (e, h(mn)~" h(n)h(m))’

X Zhimny-th(n)h(m)>

\ &) = cln, hm) ). )

PROOF. (1) Suppose that there is b(n) € € X4, Ng with
(k, @(n, h)) = b(n)yi(b(n)*).

Since b(n) = Z,EN}’ dz; for.d, € €, we compute

ye(b(m) =Y Buld)r((e, 1), K)z;

leNg

(k, —=®(n, 1))b(n) = Y _(k, =D (n, h))dyz.

leNy
By the comparison of coefficients, we have

Be(d) = (k, =®(n, h) — (e, 1))d,
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for all I € Ny. Since ¥ is isomorphic to L*([0, —log A)), we have

Bud) = _ dj e ®rT,

pel

where d; = 3, d; ,e™P7 (Fourier expansion of d;). Then we obtain, again by the
comparison of coefficients,

dype”" NPT = (k, ~®(n, h) — d(e, D))dy,

for all p € Z. This implies that W(p) = ®(n, h) + P(e,!) for some p € Z and
I € Ng. Conversely, we suppose that for n € Ng, therearep € Z,1 € Ngand h € H
with (n, i) € Nyyp such that ¥(p) = ®(n, h) + P (e, ). We set

b(n) = €7z € € Ny, Np,
and compute

b(n)y(b(n)") = " T2z/X((e, 1), ke T PT = " OPT)((e, 1), k)
= (k, ¥(p) = (e, D) = (k, D(n, b)) = A((n, h), k) = a4 (k).

By (3.9), weset p(n) € Z and h(n) € Ny

p(n) =p +v(n, hl) —v(n, h) —v(e, );
h(n) = Ih,

which satisfies W(p(n)) = ®(n, h(n)). Then we may take b(n) = e*™7T, Making
use of b(n), (3.6) and (3.7), we conclude that the statement (2) holds. Even when .#
is of type III;, we can prove the statement using the same argument. d
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