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On a random solution of a nonlinear
perturbed stochastic integral
equation of the Volterra type

J. Susan Milton and Chris P. Tsokos

The object of this present paper is to study a nonlinear

perturbed stochastic integral equation of the form

z(t; w) = h(t, z(t; w)) + J:); k(t, (1; w); wjdt , t20,
where w € Q , the supporting set of the complete probability
measure space (f, A, u) . We are concerned with the existence
and uniqueness of a random solution to the sbove equation. A
random solution, x(%t; w) , of the above equation is defined to
be a vector random variable which satisfies the equation

almost everywhere.

1. Introduction

Stochastic integral equations play a major role in characterizing some
very important problems in life sciences and engineering [1, 2, 3, 4, 5, 6,
7, &, 9, 10, 11, 13, 14, 15]. The object of the present study is concerned
with a theoretical investigation of a class of nonlinear perturbed
stochastic integral equations. More specifically, we consider a stochastic

vector integral equation of the form

t
(1.1) z(t; w) = h(t, z(t; w)) + f k(t, z(t; w); wdr , t=z0,
0
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where

(i) w € 2 , the supporting set of the complete probability

measure space (fi, 4, W) ;

(ii) x(t; w) is the unknown m-dimensional vector valued

random function defined on & the non-negative real

+ »
numbers;

(iii) under appropriate conditions the stochastic kernel
k(T, x(T; w); uﬂ is an m-dimensional vector valued

random function on R+ H

(iv) for each t € R, and each m-dimensional vector valued

random function x(t; w) , h(t, x(t; w)} is an

m-dimensional vector valued random varigble.

We shall be concerned with the existence and uniqueness of a random
solution, & second order stochastic process, to random integral equation
(1.1). The above equation is very important in the formulation of
stochastic chemical kinetics models. The random equation (1.1) is a
generalization of the recent study of Anderson [1] and Tsokos [12] in that
both the stochastic kernel and the stochastic free term are functions of

the unknown m-dimensional valued random function x(%; w) .

2. Preliminary concepts

We shall now define several spaces of functions and state lemmas

which are essential in fulfilling the objectives of the present study.

DEFINITION 2.1. The random vectors

z(w) = (a,(w), =), ...y z,(w)

1]

y(@) = (y,(w), y(w), ..., ym(w))

are said to be equal if and only if

z;(w) = y,(w) u almost everywhere for each 1=1,2, ..., m .

DEFINITION 2.2. Let W¥(Q, A, u) Dbe the set of all random vectors of
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the form

3(w) = (5(w), zy(w), ..., 2 (w)) ,
where for each 2 =1, 2, ..., m , 'zi(w) is an element of [L_(R, 4, W)

LEMMA 2.1. ¥(R, 4, u) <s a complete normed linear space over the
reals with the usual definition of component-wise addition and scalar
multiplication where the norm in Y¥(Q, A, u) 1is given by

12 )hy(g,4, ) = 12(@lly = max I 2 (0] I -

DEFINITION 2.3. Let Cy CW(R+’ ¥(Q, A, 1)) be the set of all

continuous functions from R_ into ¥(Q, 4, u) .

Note that for each t € R+ we get an associated random vector
z(t; w) = [xl(t; w), z,(t5 W), ..oy z (t; w)) . We shall be tacitly
assuming that for each 7 the sample function xi(t; w) is continuous in

t for each w . Since we are dealing with a finite measure space, for

each t and each 1 , Elxi(t; w)|] < ® . The main purpose for defining

the norm in Y¥(Q, A, u) as it was done was to enable us to obtain a
relatively simple norm defined in terms of the components of the vector
involved.
LEMMA 2.2. CW 18 a linear space over the reals with the usual
definitions of addition and scalar myltiplication for continuous functions.
LEMMA 2.3. Let

£ = fllales wlll, : lieles W} = sup {lla(z; Wiy}
=t=n

n=1,2,3, ... . F 1ig a famly of semi-norms defined on Cy -

LEMMA 2.4. The space Cy can be topologized by the family F of

semi-norms defined in Lemma 2.3 and the topology obtained is locally convex
and hausdorff.

LEMMA 2.5. The topology T on Cy tinduced by the family F of

semi-norms defined in Lemma 2.3 is metrizable where the metric p 18
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de fined by

Jlac( tsw)-y ()l

T 1
pla(z; w), y(z; w) = Z 7 +lfx(t;w)-y(t;w)lln

Tne following lemme is important in that it characterizes the topology

T defined on C\y in a convenient manner.
LEMMA 2.6. The topology T on Cy induced by the family F of
semi-norms (and hence also by p ) is the topology of uniform convergence.

That is, =z (t; w) —= z(t; w) if and only if lim & (t; w)-x(t; w)] = 0

nm-co

wniformly on every interval [0, M] = R,

Throughout the paper I will represent a linear operator from

c (R+, ¥(Q, 4, u)) - C“,(R+, ¥(Q, A, u)) and B and D will represent

b4
Banach spaces contained in CW(R+, ¥(Q, 4, w)

DEFINITION 2.4. The Banach space B 1is said to be stronger than the
space C‘y if every sequence which converges in B with respect to its
norm also converges in Cq, but the converse need not be true.

DEFINITION 2.5. The pair of spaces (B, D) will be called
admissible with respect to the operator T if and only if TBC D .

LEMMA 2.7. Let T be a continuous linear operator from Cy > Cy -
If the pair of Banach spaces B and D are stronger than Cy and 1f

(B, D) 1is admissible with respect to T then T 1is continuous from B
to D .

Note that since T 1is a continuous operator from B to D it is

bounded and hence there exists a constant & such that

i (Tx) (25 Wil = Qllz(t; W]

B
Thus we can define a norm on 7 by
| (=) (50

M= I'TI'O = sup{m— : x(t; w) € B, jx(t; w)llB # 0} .

DEFINITION 2.6. By a random solution of equation 1.1 we shall mean
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the following: the random vector valued function z(t; w) on R+ is a
random solution of equation 1.1 if for each fixed t 20 , =z(t; w) is a

vector random variable and satisfies equation 1.1 p almost everywhere.

LEMMA 2.8. The operator T defined on Cy by

t
(Tx)(t; w) = J z(1; w)dt
0

i8 a continuous linear operator from Cy into Cy .

DEFINITION 2.7. Let Cé = C;[R ¥(Q, 4, W)} be the collection of

+’
21l continuous functions =x(%; w) from R+ into Y¥(S, 4, u) such that

for g a positive valued continuous function on R+ we have
lz(t; wllly = Ag(t)

for some positive constant A4 .
LEMMA 2.9. Cé is a complete normed linear subspace of Cy where

the norm in C; s denoted |lx(t; w)”c. » 18 given by

g

- {H:c;t;w)li\y} ‘

g o=t '

iz(t; W)l

DEFINITION 2.8. Let ¢' = C'{Rr,, ¥(Q, 4, u)) be the collection of

+,
all continuous and bounded functions x(t; w) from R, into ¥{Q, 4, v
LEMMA 2.10. ¢' 4is a complete normed linear subspace of Cy where

the norm in C' , denoted |x(t; w)hc, , 18 given by

liz(ts W)l = sup {ix(t; wly} .
¢ 0=t ¥

LEMMA Z2.11. The Banach spaces Cé and C' are stronger than Cy -
DEFINITION 2.9. Let F ©bve an arbitrary metric space with metric
p . A mapping Z of E +E is called a contraction if there exists a

real number r , 0 < r <1 such that p(2(z), 2(y)) = rp(x, y) for all

z,y in E .
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THEOREM 2.1 (Banach's Fixed Point Theorem). If a contraction
operator 7 18 defined on a complete metric space E , then there exists a
unique point x* € E such that 2x* = x* .

3. Existence of a random solution

With respect to the aims of the present study, we state and prove the

following theorems.

THEOREM 3.1. Asswme that equation (1.1) satisfies the following
conditions:

(z) B, Dc Cy are Banach spaces stronger than Cy and the

pair (B, D) <is admissible with respect to the operator

t
T given by (Tx)(t; w) = [ x(T; w)drt ;
0

(i1) k(t, z(t; w); w) is a mapping from the set

W= {x(t; w) : z(t; w) €D, Hx(t; wlt, = o}

into the space B for some p =2 0 such that

k(s z(ts ©); w)-k(z, ylt; w); w)IIB = Miz(t; w)-y(t; w)HD

for z(t; w), y(t; w) € ¥ and a constant A = 0 ;

(iit) =x(t; w) + h(t, x(t; w)) is a mapping from W into D
such that

in(t, =(t; w))-n(t, ylt; w))-llp syllz(t; w-y(¢; w)IID

for some Y 20 .
Then there exists a unique random solution of equation (1.1), an element of
W , provided that Y + A\ < 1 , vhere M = IITII0 and

Ir(e, =(e5 W)l + Milk(t, =(t; w); wlly =e.

Proof. Note that by Lemmas 2.7 and 2.8 the operator

t
(Tz)(t; w) = J x(T; w)dt is continuous from B to D . Define the
0

operator U from W into D by
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(Uz)(t; w)

t
h(t, x(t; w)) + J k(t, z(1; w); w)dt .
0

We must show that UW C W and that for some r € [0, 1) ,
I(w) (£ w)-(y) (25 )l = rlla(t; w)-y(t; W, .
Let x(%; w), y(¢; w) € ¥ . Since (Ux)(¢t; w) and (Uy)(t; w) €D and D
is a Banach space, (Ux)(t; w) -~ (Wy)(¢t; w) € D . Thus,
t

"h(t, z(t; w)) + Io k(t, z(1; w); w)dr

1l

1(Uz) (t; w)=(Uy)(t; w)”D

t
- h(t, y(t; ) - Jo k(t, y(t; w); m)d‘r"p

nh(t, z(t; w))-h(t, y(t; w))

t
+ J (1, =(1; w); w) - k(T1, y(1; w); w)]d‘r"
0 D

(e, =(¢; w))-u(t, y(e; w)]HD

1A

s - o

1A

Ylz(t; w)-y(t; Wi,

+ Mlk(t, z(t; w); w]-k(t, y(t; w); w]IIB
vhere the last inequality is due to the Lipschitz condition and the fact
that T 1is continuous from B to D and therefore bounded. However,
vliz(t; w)-y(t; W)l + Mik (s, =(t; w); w)-k(t, y(¢; w); W)l
vliz(t; w)-y(t; Wl + MiMllx(z; w)-y(t; Wi,

1A

(veM) llx(t; w)-y(E; WM, .

Since Y + MA <1 , one condition of the definition of contraction map is

satisfied.

We must now show inclusion. Let x(t; w) € ¥ . We have
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(=) (25 w)ll,

uh[t, z(t; w)) + ]: k(t, x(1; w); w)d'ruD

A

W (2, a(t; )i, +

t
I k(t, z(t; w); m]drn
0 D

1A

(£, =t W)l + Mk (e, 2(t; w); )i,
=p .

Hence, (Uz)(t; w) € ¥ implying UW € W . Thus by Banach's fixed point
theorem there exists a unique point x(#; w) € ¥ such that
t
(Uz)(t; w) = A(t, x(t; w) + f k(t, z(t; w); w)dt = x(t; w)
0

and the proof is complete.

The following theorem is a special case of Theorem 3.1 which is useful

in various applications.

THEOREM 3.2. Assume that equation (1.1) satisfies the following
conditions:

(i) k(t, x(t; w); w) <8 a mapping from the set

W= {x(t; w) 2 x(t; w) €c', Jlalts Wl = o}
into the space Cg’ for some p zZ0 ;

& (2, 2(t; w)s w)k(ts ylts @) Wlye = Alalts w)y(Es Wl
g

for x(t; w), y({t; w) €W , A 20 a constant; g 4is
also integrable on R, ;

(i) x(t; w) +h(t, =(t; w)) ie a mapping from W into C'
such that

(e, z(ts w)h(t, y(t, ) . - vzl Dy (25 0)ll,,

for some Y 20.

Ther there exists a wnique vandom solutiom o] equation (1.1) € W provided
that Y + MM < 1, where M = HTHO (T as defined in Theorem 3.1 (1)) and
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n(t, 2t @))ligr + Mik(E, 2(t; 0); w)lg <0 .

g

I

The proof consists of showing that under the assumption g is
admissible with respect to the operator T given by
t

(72)(t; ) = f 2(t; wdt .
0

Let x(t; w) € Cg’ . Consider

t
I[Txi)(t; w)| ”0 z, (15 w)dt

1A

[:c (1; w)|dt

A

i x; (1; w)|lldt , p almost everywhere

(T) g(T)drt

T{TW
g(T)

1A

g(t)dt

l
l

SJ t =, (T5w) i
[, gt

(0l
< J: W g(T)dt

(s w)IIC; rg('r)d'r
g ‘0
=B .

A

By definition of the norm in Lw(ﬂ, A, u) , we can conclude that

il (Ta:i)(t, w)|lll =8 for each % . This in twn implies that

(=) (5 wlly = max {lll (z=,)(¢; w) I} <8,
i
which is the condition needed for (Tx)(%t; w) to be an element of ('

Since the remaining conditions are identical to those of Theorem 3.1 the

proof is complete.
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