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Medium range atomic ordering (MRO) attributes to nanometer scale structural heterogeneity in metallic 

glasses (MGs), and it has been under extensive interest due to its potential connection to the important 

properties of the material, including mechanical properties and glass forming ability. However, the precise 

characterization of MRO has been challenging. Conventional large area diffraction methods, such as using 

X-ray, neutron, or electron, inherently average the structure within the illuminated volume, through which 

the MRO information tend to be lost. MRO domains in MGs is typically smaller and much less ordered 

as compared to nanocrystals, and therefore observing them using high-resolution TEM is also very 

difficult. The difficulties have made the understanding of the exact relationship between MRO and 

important properties of MGs very challenging. For example, it has been speculated that MRO may be 

related to the mechanical properties of MGs (e.g. [2]), especially their ductility, but no clear experimental 

evidence for this suggested relationship has been shown so far. MRO may also be related to the glass 

forming ability of MGs [3], although spatially resolved information of MRO must be required to confirm 

the hypothesis. 

In this work, we determine the structural parameters of MRO with unprecedented details using 4-

dimensional scanning transmission electron microscopy (4D-STEM) [4, 5]. Our 4D-STEM is enabled by 

the quantitative analysis of the data acquired using the new-generation Electron Microscopy Pixel Array 

Detector (EMPAD) [6], which provides high dynamic range essential for the quantification. About 

250,000 nanodiffraction patterns were acquired per sample using STEM probes with 1 nm in diameter, 

continuously throughout the sample area with over sampling (Fig. 1a). The resulting 4D data were then 

reconstructed into dark field images in the real space for all scattering vector magnitude, k, and the in-

plane azimuthal angle of (Fig. 1b and 1c). These images show bright speckles of the MRO domains, which 

we use to quantitatively determine the MRO parameters, including their type, size, distribution, and 

volume fraction. 

The determined MRO parameters are shown to be directly related to the important properties of the Zr-

Cu-Co-Al MGs. The data shows that the smaller and more diverse MRO types (Fig. 1d) lead to higher 

ductility. Certain MRO types are more structurally frustrated, as revealed by the angular correlation 

function analysis of the 4D-data (Fig. 2a), which correlates well with the glass forming ability of the MGs. 

To understand the mechanism of the observed correlation, we have used mesoscale deformation 

simulation directly incorporating the MRO data determined by 4D-STEM (Fig. 2b). The simulation shows 

the changes in the deformation behavior, including the full development of shear bands and predictive 

quantities for materials’ failure, which confirms the correlation between the MRO and properties observed 

experimentally [7]. 
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Figure 1. Figure 1. (a) Schematic of 4D-STEM. Nanodiffraction patterns are acquired using electron 

probe (diameter = 1 nm) from oversampled probe positions (p1, p2, ..) on the sample. The intensities (i1, 

i2 ,..) in the acquired stack of patterns can then be reconstructed in the real space by selecting any (kx, ky) 

pixel within the pattern. (b and c) The reconstructed “dark-field” using the “b” and “c” pixels in (a), 

respectively. (d) Average MRO size calculated from the 4D data. 
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Figure 2. Figure 2. (a) Angular correlation determined from 4D-STEM data showing different types and 

degree of MRO in different MGs. (b) Mesoscale deformation simulation results confirming the effect of 

MRO to mechanical properties. 
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