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Abstract
Soft robots show an advantage when conducting tasks in complex environments due to their enormous flexibil-
ity and adaptability. However, soft robots suffer interactions and nonlinear deformation when interacting with soft
and fluid materials. The reason behind is the free boundary interactions, which refers to undetermined contact
between soft materials, specifically containing nonlinear deformation in air and nonlinear interactions in fluid for
soft robot simulation. Therefore, we propose a new approach using material point method (MPM), which can solve
the free boundary interactions problem, to simulate soft robots under such environments. The proposed approach can
autonomously predict the flexible and versatile behaviors of soft robots. Our approach entails incorporating auto-
matic differentiation into the algorithm of MPM to simplify the computation and implement an efficient implicit time
integration algorithm. We perform two groups of experiments with an ordinary pneumatic soft finger in different
free boundary interactions. The results indicate that it is possible to simulate soft robots with nonlinear interactions
and deformation, and such environmental effects on soft robots can be restored.

1. Introduction
Soft robotics has become a popular research field. Compared to traditional robots, soft robots can achieve
large deformations while ensuring interaction safety, making them advantageous in areas such as flexible
grasping [1, 2], medical rehabilitation [3–5], underactuated finger [6, 7], and operations in unstructured
environments [8, 9].

However, since the actuation of soft robots is often intrinsic to their structure, their kinematics result
from a coupling of geometric relationships and complex mechanical mechanisms, making it difficult
to directly solve for design parameters based on the desired motion. During the design process of soft
robots, the researchers need to use simulations to evaluate the performance and behavior of the pro-
totype, so that the soft robot works appropriately in the consistency of expectation. As soft materials
such as rubber and hydrogel provide soft robots with enormous flexibility and adaptability, the behav-
iors of soft robots exhibit nonlinear interactions and deformation in complex environments and are hard
to predict. Thus, the physical simulation based on continuum mechanics is adopted. Simulation of soft
robots can be regarded as mathematics of physics. It contains continuum mechanical, geometrical, dis-
crete, and surrogate models [10]. Continuum body assumption is made that material is continuously
distributed in the occupied space of an object and can be divided into infinitesimal elements of identical
properties [11]. Based on continuum body assumption, solving the partial differential equation derived
from constitutive equations such as conservation of mass and energy leads to physical simulation based
on continuum mechanics. Finite element analysis (FEA) is a widely used Galerkin method for solving
PDEs numerically and has been applied to continuum mechanics successfully for a long time. A soft
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finger for hand rehabilitation was developed, and its deformation was evaluated with FEA [11]. Another
work Comber et al. [12] shows that a soft robot can drive the surgical needle, and they inspected the actu-
ator displacement with FEA. An iterative algorithm was developed to optimize the structural design of
pneumatic soft robots [13], and FEA was used to quantify the deformation of the intermediate optimized
result. These approaches show that the physical simulation based on continuum mechanics supports and
promotes the development of soft robots.

However, these approaches do not consider the effect of complex environments. The shortcoming
of FEA, which is the incapability to handle free boundary interactions, does not support such consid-
eration. For FEA, the two-step contact formulation procedure [14] and slave–master body technique
[15] are used to handle naive fixed boundary coupling by fixing elements position and applying contact
force on the contact boundary. A two-step scheme is adopted to solve solid and fluid systems separately
and alternately [16] when the contact problem comes to a scenario with both fluid and solid materials.
Aforementioned methods fail in such interactions and deformation scenarios because the contact cannot
be determinant before simulation. Thus, FEA is incapable of simulating the scenario of soft robots in
complex environments, and a new approach is required.

Meshless methods, that is, material point method (MPM) [17] and smoothed particle hydrodynamics
(SPH) [18], are significantly different from FEA because they can autonomously solve the coupling of
free boundary. The reason is how the shape function is supported. In FEA, a shape function is supported
by a set of grouped nodes (which is an element). When boundary contact happens, two elements will go
across as they will not contribute to the shape functions of each other. While in the meshless methods,
all nodes (in favor of using the terminology of particles) within the support range will contribute to
the same support function, which facilitates the information exchange between different phases and
objects of materials. Though the shape function of SPH and MPM are supported similarly, SPH requires
extra computation to search supporting particles compared to MPM. Research shows that MPM takes
advantage of SPH in both computational efficiency and accuracy [19]. For such reasons, we use MPM
to develop our approach for the simulation of soft robots. The proposed approach can handle nonlinear
interactions and nonlinear deformation of soft robots.

Recently, many methods [20] and frameworks have been proposed to address the interaction problems
between free boundaries and the environment. Differentiable simulators have also been integrated with
gradient-based optimization algorithms specifically developed for soft robotics applications. DiffPD
[21], a differentiable soft-body simulator based on finite element method (FEM), is designed for effi-
cient soft-body learning and control and can be used to simulate an underwater starfish robot [22].
SoftCon [23], another differentiable soft-body simulator based on FEM, serves as a versatile framework
for designing and controlling underwater soft-bodied organisms. ChainQueen [24, 25] and its follow-up
work DiffTaichi [26] introduce differentiable physics-based soft-body simulators using the MPM. There
are also other differentiable frameworks, such as Elastica [27]. In addition, many researchers use fluid–
structure interaction (FSI) to simulate the deformation of soft robots in fluid environments. For instance,
Xavier et al [28] employ bidirectional FSI to study the deformation of soft robots underwater impact,
while Soomro et al [29] use FSI to investigate the interaction between a soft biomimetic frog robot and
water.

These methods have made significant contributions to soft robot simulation with free boundary inter-
actions. However, MPM has advantages over other methods in handling free boundary interactions in soft
robotics. MPM naturally handles large deformations and interactions, which are common in soft robotics
but are often not modeled in mesh-based approaches due to computational expense. As mentioned
earlier, by utilizing a mesh-free approach, MPM handles complex boundary problems more effec-
tively compared to mesh-based methods like FEM [21, 23] and Coupled Eulerian–Lagrangian (CEL).
Compared to other mesh-free methods like SPH, MPM offers higher accuracy and computational.

Although ChainQueen has already applied MPM to soft robot simulation, our method offers greater
stability. The explicit time integration in their method requires small timesteps to maintain numerical
stability and leads to significant numerical errors when the timestep is large. In contrast, our MPM
framework uses implicit time integration, which ensures numerical stability and guarantees higher
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Figure 1. An illustration of MPM update framework. From left to right: particle to grid, grid update,
grid to particle and reset grid state. [17]

numerical accuracy. Additionally, we have introduced automatic differentiation to relatively improve
computational efficiency and accuracy.

In this study, the main contribution in this article can be described in two aspects:

• We address the open problem of simulation of soft finger with free boundary interactions.
The proposed approach can be applied automatically without complicated algorithm design,
especially in nonlinear deformation and interaction cases.

• We integrate automatic differentiation and implicit time integration into the modeling frame-
work, which makes it more computationally efficient and stable, respectively.

Our key strengths include the ability to manage large deformation problems and complex boundary
conditions with excellent stability. Although this process involves several simplifications when extend-
ing to multiphysical phenomena, such as Rayleigh damping and Coulomb friction, it can be theoretically
proven that their impact is negligible in most cases. We have also experimentally verified that the
simulation results remain highly accurate even after disregarding these factors.

The rest of the paper is organized as follows. In section 2, we will discuss the dynamic model princi-
ples for simulation of soft robot. It contains MPM framework and our modification in detail. Then, we
illustrate the implemented algorithm in section 3. The simulation and experiment results will be shown
in section 4.

2. Dynamic modeling for simulation of soft robot
2.1. MPM based modeling framework
When conducting simulation via MPM, the space is discretized by background grids, while the object is
discretized by particles. The physical information is stored on particles, but grids enable such physical
information to be updated. The MPM can perform both dynamic and static simulations, but for the
simulation of soft robots, the dynamic simulation is more important since inertia affects the robot’s
behavior. Each time step of a dynamic MPM simulation involves three steps [24]. In the first stage, the
physical properties of particles are transferred to the adjacent grids (spatial points at which the shape
functions are centered). Mass, momentum, and external forces are transferred from particles to grids by
mi =∑

p αipmp, mivn
i =

∑
p αipmpvn

p, and f ext
i =

∑
p αipf ext

p , where variables with subscript p is the physical
information on particles and variables with subscript i is the intermediate variables on grids, αip is the
weight between specific particle p and grid i. In the second stage, the internal force f intn

i is computed
and intermediate variables on grids are to be updated using explicit time integration, vn+1

i = vn
i +�tan

i ,
where an

i = (f intn

i + f ext
i )/mi. In the third stage, the intermediate variables on grids are transferred back to

update the particles as vn+1
p =

∑
i αipvn+1

i and xn+1
p = xn

p +�tvn+1
p . These stages are combined and referred

as update framework of MPM. After these main stages, intermediate variables on grids are to be reset.
An illustration is shown in Figure 1.
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Table 1. Constitutive equations for solids.

Type Strain Energy Density Function (SEDF) Strain Range
Mooney-Rivlin � =C01

(
I1 − d

)+C10

(
I2 − d

)+ 1
D1

(J − 1)
2 <200%

Yeoh � =∑n
i=1 Ci0(I1 − d)i +C11(J − 1)2 <400%

Ogden � =∑n
i=1

μp

αp

(
λ

αp

1 + λ
αp

2 + λ
−αp

1 λ
−αp

2 − 3
)

<400%

However, numerous MPM implementations have modified those above equations. Not all MPM
frameworks are suitable for soft robot simulation. The most representative frameworks of MPM are
fluid implicit particle (FLIP) and particle in cell (PIC). However, PIC and FLIP have flaws that cannot
be applied directly in the simulation of soft robots. The PIC technique does not guarantee the conserva-
tion of angular momentum because it overlooks the local rotational motion, which severely dissipates
energy. As soft robots often suffer from nonlinear deformation of shear and rotation, PIC method cannot
handle the simulation correctly. FLIP was proposed to solve such a flaw in the simulation of fluids, but
angular momentum is not conserved unless using a full mass matrix [30]. Thus, FLIP is not a proper
framework for the simulation of soft robots.

Affine particle in cell (APIC) introduced affine velocity field tensor to store the angular momen-
tum on particles, making APIC free from energy dissipation when simulating deformable objects.
As the affine velocity field is added into the framework, it needs to be computed and updated for
numerical computation. In the third stage, the updated affine velocity field Cn+1

p is computed as Cn+1
p =

4
∑

i vn+1
i (xi − xp)Tαip/h2, it is used to update the deformation gradient Fn+1

p = (I +�tCn+1
p )Fn

p, where
I represents the identity matrix and which will be used to compute internal force. The proof of exact
angular momentum conservation has been reported in a previous work [31]. APIC is more stable when
compared with PIC and FLIP [32]. Moving least squares material point method (MLS-MPM) [24, 33]
simplifies the computation of APIC framework by introducing the moving least squares function into
interpolation. Our MPM soft robot simulation approach is based on APIC and MLS-MPM.

2.2. The nonlinear material models with automatic differentiation
Automatic differentiation is a technique to compute the derivatives of functions specified by a program
[34]. When a mathematical function is computed, it executes a consecutive series of basic operation and
functions. By using chain rule, the overall derivative of the given function is the product of all derivatives
during each operation. Moreover, this idea makes sure the result is purely analytical when compared to
the finite difference method.

We mainly focus on soft solids and Newtonian fluids as they are ubiquitous in soft robotic systems.
Soft robots are often fabricated by materials like hydrogel, silicon-based rubber, and some sorts of
polymers. Hyperelastic models can restore the nonlinear stress-strain relationship exhibited by those
materials, which fails in linear elastic models. We use Mooney-Rivlin, Ogden, and Yeoh [35] model to
exhibit the simulation of soft robot. Their constitutive equations are listed in Table 1 (In the table, d
refers to the dimensionality of the simulation). The simulation results based on three material models
are shown in Figure 2 (visualized using Matplotlib [36]).

For Newtonian fluids [37], the authors mentioned that using fixed corotational model (which is a
SEDF) is capable to simulate Newtonian fluid as � = λ/2(J − 1)2, where λ is bulk modulus for the
fluid and J is the determinant of the deformation gradient. Furthermore, taking the derivative of this
function yields a relation identical to the equation of state (EOS) used in SPH simulations [38]. For
fluids simulation, the deformation gradient needs to be reset as F= J

1
d I.

To incorporate these material models into the MPM framework. The relation exists in MLS-MPM
[33] as
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Figure 2. The simulation results of a bending soft finger based on three material models: (a)
Monney-Rivlin. (b) Ogden. (c) Yeoh.

f intn

i =−4/h2
∑

p

V0
p ∂�/∂Fn

p

(
Fn

p

)T (
xi − xp

)
αip (1)

Therefore, the derivative ∂�/∂F is required. A manual calculation is usually performed to obtain this
value. However, for some complex SEDF, such a calculation is not feasible. In these cases, the strain
energy of the local volume of the deformed soft robot can be computed over the entire volume of the
soft robot to obtain the total strain energy.

e=
∫

�0

�(F(X))dX =
∑

p

V0
p �

(
Fp

)
(2)

Accordingly, the strain-based internal force is the derivative of total strain energy to the location of
space grid xi:

f intn

i

(
x̂i

)=−∂e/∂xi (3)

where the location of space grid xi is the function of space grid velocity vi, which is

f intn

i

(
x̂i (vi)

)=− (∂vi/∂xi) (∂e/∂vi)=− (1/�t) (∂e/∂vi) (4)

As we measure the internal force before the grid updating, thus the grid velocity is 0, as it is an
intermediate variable. We can get the internal force by computing e and its derivative using automatic
differentiation. This modification is used in explicit time integration framework.

2.3. The implicit time integration
As mentioned previously, the computation of MPM framework relies only on the current states of the
system (known as the explicit time integration). As a result of explicit time integration, numerical errors
accumulate, reducing the simulation’s stability and accuracy in three aspects:

1) the material parameters are significant in numbers (from MPa to GPa for common materials),
which increases this error.

2) the interval between time steps needs to be small enough to compensate the accumulation error.
3) there is always a tradeoff between material parameters and accuracy to get a robust simulation.
A solution to these problems is implicit time integration. Unlike the explicit framework, implicit time

integration requires solving an equation involving both the current time step of the system and the next
time step. Usually, it is solved by an optimization algorithm with finite difference method providing
gradient information at the cost of accuracy and running time. We incorporate automatic differentiation
to overcome the flaws of finite difference method using implicit time integration. The difference in
stability between explicit and implicit time integration is illustrated using a simulation case of a cube
freely falling under gravity with a large time step. The results, shown in Figure. 3, demonstrate that MPM
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Figure 3. The difference of explicit and implicit time frameworks’ simulation results: (a) MPM using
explicit framework fails when the simulation with large time step and large material parameters. (b)
MPM using implicit framework and automatic differentiation improves the robustness of simulation.

with an explicit framework fails when using a large time step, whereas MPM with an implicit framework
and automatic differentiation proves to be more robust, improving the stability of the simulation.

A previous work [39] describes the implicit time integration scheme of APIC. However, our approach
is innovative in three aspects. First, we use grid velocity as independent variable rather than intermediate
grid position, which is more accurate and precise. Second, our method is based on MLS-MPM. Lastly,
the adoption of automatic differentiation makes our approach to compute derivatives much faster and
accurate.

The only difference between implicit and explicit time integration is the update of grid velocity. For
an implicit time integration, the update of grid intermediate variable vi becomes [40]:

vn+1
i = vn

i +�tan+1
i (5)

According to kinematics, an+1
i = (vn+1

i − vn
i )/�t, and dynamics, an+1

i = (f intn+1

i + f ext
i )/mi. The two

expressions are equal:

h= (
vn+1

i − vn
i

)
/�t−

(
f intn+1

i + f ext
i

)
/mi (6)

The roots which satisfy h= 0 is going to be calculated. By solving this equation, the grid velocity is
then updated. In Eq. 6, there are two variables of next time step n+ 1, vn+1

i and f intn+1

i , but the internal
force is dependent on grid velocity. To represent the internal force in terms of grid velocity, we begin
with the total strain energy:

e (x)=
∫

�0

�(F(X))dX =
∑

p

V0
p �

(
Fp

)
(7)

The updated intermediate grid position is x̂i = xi +�tvi, and the stress-based force on grid f int
i (x̂i) is

− ∂e

∂ x̂i

=−∂
∑

p

V0
p �

(
F̂p

(
x̂i (vi)

))
/∂ x̂i (8)

The internal force can be written in terms of grid velocity by taking a second derivative:

− ∂e

∂ x̂i

=− ∂e

∂vi

∂vi

∂ x̂i

=− 1

�t

∂e

∂vi

(9)
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In Eq. 8, the intermediate deformation gradient F̂p can be calculated by

F̂p

(
x̂i

)= (I +�tC (vi)) Fp (10)

For implicit time integration, by taking vi = vn+1
i and Eq. 6 for h(vn+1

i ) becomes

mi

(
vn+1

i − vn
i

)
/�t− f ext

i + 1/�t
(
∂e/∂vn+1

i

)
(11)

Eq. 11 has only one unknown variable vn+1
i . Also, at h= 0 it is a large set of nonlinear equations.

In order to simplify the process of finding the roots, we perform an integration of Eq. 11 over vn+1
i , to

construct an objective function for optimization E(vn+1
i ).

∑
i

1

2�t
mi

∥∥∥∥vn+1
i − vn

i −�t
f ext

i

mi

∥∥∥∥
2

+ 1

�t
e
(
vn+1

i

)
(12)

By using automatic differentiation, the derivative ∂E(vn+1
i )/∂vn+1

i can be easily obtained. In our
implementation, we use chain rule to decouple contribution from different grids, which fastens the
computation.

3. Numerical implementation for simulation of soft robot
There are three stages to be taken in a time step of dynamic analysis. For the first stage, the physical
properties of particles are transferred to the adjacent grids (spatial points at which the shape functions
are centered). Mass, momentum, and external forces are transferred from particles to grids by weight
factor. For weight αip, we choose quadratic B-spline function [41] as it takes less time to compute.

N (x)=
⎧⎨
⎩

3/4− |x|2 , 0≤ |x|< 1/2
1/2 (3/2− |x|)2 , 1/2≤ |x|< 3/2
0, 3/2≤ |x|

(13)

The external force is applied on grids, indicating that the driven sources can be simulated by analyz-
ing and modeling the mechanics of driven sources and then computing their direction and magnitude.
There are many driven sources, for example, pneumatic pressure, hydraulic pressure, and heat driven.
We use pneumatic soft robots [24, 25] to demonstrate how to apply driven sources to soft robot simula-
tion. Air drives the soft robots using pressure. The driven pressure is required to simulate the behavior
of pneumatic soft robots. For every particle located at the driven loading surface, there exists a force
proportional to the input pressure and parallel to the normal direction of local surface. Thus, by estimat-
ing the particle’s normal direction and area, the driven pressure can be applied in simulation. Nanson’s
relation [26] can be used to compute. The formula is given as follows:

nda= JF−TNdA (14)

where da and dA are the area of the particle located at driven loading surface in current and reference
configuration, respectively, and n, N are the normal direction pointing to the interior of the material of
da and dA, respectively. When generating the geometric model, particles on the driven loading surface
are marked, and normal directions N are estimated. The area A is obtained when meshing the geometric
model. For any time step after starting the simulation, the forces on particles located at the driven loading
surface can be computed.

f ext
p = ploadnda (15)

where pload is the magnitude of the input pressure. Then, the forces on particles are interpolated to grids:

f ext
i =

∑
p

αipp
loadnda (16)
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Table 2. The implicit framework with automatic differentiation.

Algorithm 1: Implicit time integration framework of MPM based on automatic differentiation
procedure: The procedure for a time step update
1: Reset all variables on grid (with subscript of i)
#Particle to Grid: map physical information on particles to grids
3: for all p do
4: for all i in adjacency of p do
5: mi, mivi

update← αip, mp, vp, xp

6: f ext
i

update← f ext
p

7: end for
8: end for
# Grid updating
9: Set vn+10

i = vn
i as original value, set k= 0

10: While not converge do
11: F̂p

update← vi = vn+1
i

12: e=∑
p

∑
p V0

p �(F̂p)
13: Compute E(vn+1k

i )

14: vn+1k+1
i

update← ∂E

∂vn+1k
i

# ∂E

∂vn+1k
i

by automatic differentiation
15: k= k+ 1
16: end while
#Grid to particle: map intermediate variables on grids to particles
17: for all p do
18: for all i in adjacency of p do
19: xn+1

p , vn+1
p , Cn+1

p , Fn+1
p

update← vn+1
i

20: end for
21: end for
22: end procedure

By using Eq. 16, we can incorporate the pneumatic pressure into our simulation without having
to compute the normal direction and magnitude of local force for each time step separately. For the
second stage, the internal force f intn

i is computed using automatic differentiation, and intermediate grid
variables are updated using implicit time integration. To utilize automatic differentiation, JAX [42], a
programing tool developed by Google, is used. It supports both forward and backward mode of automatic
differentiation. As simulation requires extensive computation, so we used JAX which provides parallel
computation on GPU. In the last stage, the intermediate variables on grids are transferred back to update
the particles as vn+1

p =
∑

i αipvn+1
i and xn+1

p = xn
p +�tvn+1

p . Algorithm 1 summarizes the implemented
numerical simulation approach to clarify shooting interloop (Table 2).

4. Validation and results
4.1. Setup of experiments
Soft finger is the fundamental component of soft robotic systems, as they are responsible for moving or
controlling wearables, haptic, and medical devices [43]. We chose soft finger to validate our simulation
because it possesses a high degree of flexibility and has been applied to a variety of tasks. We use
DragonSkin-30 silicone rubber to construct the soft finger’s body and RTV silicone glue as the adhesive.
The material parameters for DragonSkin-30 silicone rubber in Mooney-Rivlin is set as C1 = 1.19kPa,
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Figure 4. Particle based geometry model from the meshed geometry model.

C2 = 23.028kPa, 1/D1 = k/2= 1.75GPa/2, where k is the initial bulk modulus. For fluid simulation, its
bulk modulus λ is set to less than 2.1GPa.

Our geometric model is generated using two steps shown in Figure 4. Firstly, we use Gmsh [44],
an opensource software for FEA meshing, to generate tetrahedral mesh. Then, we make the center and
volume of each element as the position and volume of the particle, respectively. In order to simulate the
pressure acting on the inside chambers of the soft finger, a set of particles on chamber walls are specially
marked out and assigned two extra properties. One is the area da on the wall surface, and other is the
normal direction of area n. These settings make it possible to apply the Nanson’s relation to compute
the input pressure.

4.2. Validation of simulation’s accuracy
In our simulation’s object, the free boundary condition contains two cases: specifically nonlinear defor-
mation and nonlinear interactions with nonsolid materials. Therefore, in order to validate the algorithm’s
accuracy, we test two cases, respectively, which are soft finger simulation with nonlinear deformation
and interaction. The figures and the error rate of experiments show that our framework can model the
soft finger effectively to predict its behavior in complex environment.

Experiment I: Validation of simulation with nonlinear deformation
In this experiment, we validated the accuracy of our algorithm based on implicit time integration

by using nonlinear deformation in air. We use von-Mises stress to demonstrate the concentration of
stresses, as shown in Figure 5 (Visualization using Open3D [45]). The simulation results are consis-
tent with experimental results. Moreover, our computation indicates that the stress concentration occurs
simultaneously with severe local deformation at key locations. The results indicate that our method can
accurately predict the deformation and stress distribution of soft robots.

When the deformation is nonlinear, the boundary coupling becomes complex. In FEA, handling
such complex contact of free boundary requires extra computation. However, our approach solves such
a problem autonomously.

Experiment II: Validation of simulation with nonlinear interactions
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Figure 5. Soft finger experiment and simulation results at different input pressures.

We choose a fluid environment as the representative of nonlinear interactions, and we compare our
results with those obtained using the Coupled Eulerian–Lagrangian (CEL) in Abaqus with C3D10M
elements for dynamic explicit analysis. The results are shown in Figure 6 and Figure 7. In Figure 6,
the y-axis indicates the Euclidean distance of the fingertip from its original position, and the x-axis
is the input pressure. In Figure 7, the tracked point on the soft finger is marked as red dot, and the
comparison is made between simulation and experiment. The results show that our approach can recover
the deformation effects from the environment of the soft robot. Furthermore, the comparison reveals
that our proposed method is more accurate, demonstrating the superiority of our method in simulation
accuracy.

In Table 3, we computed the error ratio γ /β, where γ is euclidean distance between simulation
and results of experiment in water, while β is the euclidean distance between simulation and results of
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Figure 6. Comparison of fingertip Euclidean distance under varying input pressure between our method
and CEL simulation.

Figure 7. Comparative analysis of deformation of soft finger in fluid environment between simulation
and experimental results.
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Table 3. Error ratio of simulation.

Pressure (kPa) 0 5 10 15 20
Ratio (%) 0.6 13.7 16.7 15.1 8.7

experiment in air. During the initial pressure at 0 (kPa), we achieved an error rate of 0.6%. Similarly, for
5, 10, 15, and 20 (kPa), we achieved error rate of 13.7%, 16.7%, 15.1%, and 8.7%, respectively, which
indicates that the computation results are nearly 10 times closer in fluid than in air. This indicates that
our model meets the requirement of setting up a virtual environment where the interactions are fully
exhibited.

5. Discussion
We proposed a novel method for soft robot simulation using MPM by employing automatic differen-
tiation and implicit integration to address the challenges associated with free boundary interactions.
We also designed experiments to validate our approach and performed comparisons to demonstrate the
advantages of our proposed method in solving free boundary condition problems.

Moreover, there are two major aspects that will significantly increase the applicability of the proposed
approach.

In order to emphasize the advantages of free contact simulation and accurate deformation prediction
in complex environments, many possibilities for extending the approach to multiphysical phenomena
are simplified, including Rayleigh damping and Coulomb friction (both of which dissipate energy in a
nonconservation system), turbulent fluid models (which are effective in facilitating bidirectional inter-
actions between fluids and solids), and magnetic and thermal effects in soft robots. In addition, applying
different types of soft robot driven sources to simulation is an important topic.

This approach eliminates the need to explicitly determine contact surfaces within the soft robot itself
or with other objects in its environment, so it can be used in exploring the adaptability of different soft
robot systems to their working environments, which serves as the backbone for the design of optimal
topological structures for soft robots.

Although we use a single example for a single type of soft robot, our approach has the potential to be
applied to different kinds of soft robots. In practice, there are several complex soft robots with complex
chambers, complex structures (even composed of multiple materials), and more diverse functions (not
limited to bending or gripping). However, their simulation methods do not differ in principle from ours.
The reason is that these soft robots will deform largely and have complex interactions with the environ-
ment, which causes the free boundary coupling and makes the simulation difficult. At the same time,
our approach can handle these soft robots’ nonlinear interactions and deformations.

Many driven sources other than pneumatic pressure need to be modeled. For pneumatic pressure, we
find out that the force obeys Nanson’s relation and then integrate it into our simulation. Nevertheless,
the forces applied to soft robots are different for other driven sources. As the framework expressed, the
external force is applied on grids, which means the driven sources can be simulated by analyzing and
modeling the mechanics behind other driven sources, then computing their direction and magnitude.

This article primarily uses pneumatic bending soft robots as an example for simulation and exper-
imentation. In future research, we will conduct more comprehensive simulations and experiments on
other types of soft robots to analyze the impact of various parameters, including but not limited to
pneumatic pressure, on the performance of soft robots.

6. Conclusion
In this article, we propose an approach for soft robot simulation using MPM, in order to overcome the
free boundary interactions problem, particularly nonlinear deformation and interactions, so that a variety
of soft robot scenarios (i.e., subsea bio-sampling, in-vivo surgery) of multiple phases and objects can be
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simulated. In the proposed approach, a vivid virtual environment can be set up easily to accurately pre-
dict the behavior of soft robot, which fastens and promotes the design of soft robots. Also, we explored
the application of automatic differentiation and implicit integration, which achieve efficient and stable
simulation, respectively. The error rate of experiments shows that our framework can simulate the soft
robot effectively to predict its behavior in complex environment. In the future, we will extend our work
based on soft finger for more complex morphological soft robots.
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