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On Gap Properties and Instabilities of
p-Yang—Mills Fields

Qun Chen and Zhen-Rong Zhou

Abstract. We consider the p-Yang-Mills functional (p > 2) defined as YM (V) := % Sy IRV (2.

We call critical points of Y M ,( - ) the p-Yang—Mills connections, and the associated curvature RY the
p-Yang—Mills fields. In this paper, we prove gap properties and instability theorems for p-Yang—Mills
fields over submanifolds in R"** and S+,

1 Introduction

Let M be a compact Riemannian manifold and E a Riemannian vector bundle over
M with structure group G. Denote the space of E-valued p-forms by

OP(E) =T(A’T*M ® E).
A connection V on E is V: Q°(E) — Q!(E) which satisfies
V(fo)=df @ o+ fVo, VYfeC M), oc QE).
The space of connections on E is denoted by Cg. For each V € Cp, the curvature
2-form RY € Q?(gg) is defined by R;Y = [Vx, Vy] — Vixy], where gg is the

bundle of the Lie algebra of G over M on which there is an invariant metric, and this
induces a metric in Q%(gg). For p > 2, we define the p-Yang—Mills functional as

(1.1) YM,(V) ::l/ [RV|?.
P Jm

We call critical points of YM,(-) the p-Yang—-Mills connections, and the associated
curvature RV the p-Yang-Mills fields. When p = 2, (1.1) is the usual Yang-Mills

functional.
At each minimizer V of the p-Yang—Mills functional, the second variation is non-
negative:
d2
(1.2) o YMp(V)limo 2 0
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for any smooth family of connections V', with || < &, V® = V. In general, we call
a connection V € Cg satisfying (1.2) weakly stable. Otherwise, we call V is unstable.
The case p = 2, i.e., the usual Yang—Mills functional, has been intensively studied.
In the well-known papers [1,2], Bourguignon and Lawson obtained a series of results
on the stability and gap phenomena of Yang—Mills fields over S$" and other locally
homogeneous spaces. Among other things, they proved the following.

Theorem A ([2]) There are no weakly stable Yang—Mills fields over the Euclidean
sphere §” forn > 5.

Theorem B ([2]) Let RV be a Yang-Mills field over S” ( n > 5) which satisfies the

pointwise condition
IR¥IE < 2 (7).
2\2

Xin [8] generalized the above instability result to Yang—Mills fields over compact
submanifold M" of the Euclidean space R"** under an assumption on the second
fundamental form. Namely, he proved the following.

Then RY = 0.

Theorem C ([8]) Let M" be an n-dimensional compact submanifold in R"** with
the second fundamental form h(-, -) satisfying the pointwise condition

> [2(h(er,e), here))) — (hlere), hei, e))] O+ 2(h(e;, €j), hex, en)) < bdijou

t

for 1 < 1i,j,k 1 < n, where {¢;} is local orthonormal frame on M and b < O is a
constant. Then any Yang—Mills field over M is unstable.

Instability of Yang-Mills fields over submanifolds of spheres $"** was obtained by
Shen [4], and by Kobayashi, Ohnita and Takeuchi [3]. Results for the case of convex
hypersurfaces in R"*! and compact symmetric spaces can also be found in [3].

Actually, the p-Yang—Mills functional (1.1) was first considered by Uhlenbeck [6]
who proved a weak compactness theorem for sequences of connections {V,} with
uniformly bounded YM ,(V,). As a geometric variational model, the p-Yang-Mills
functional is a natural generalization of the usual Yang—Mills functional and has in-
terests in its own right. Recall the similar case of p-harmonic maps, where a satisfac-
tory theory of representing homotopy classes is established, and new simple proofs of
many well-known theorems in geometry such as the Cartan—-Hadamard theorem, the
Preisman theorem, the Gromoll-Wolf (or Lawson—Yau) theorem and the Bochner—
Frankel theorems can be given by using the tools of p-harmonic maps, cf. [7]. On the
other hand, a good understanding of the p-Yang-Mills functionals should be helpful
for the study of the usual Yang—Mills functionals, as we have seen in [6], and similarly
in the well-known work [5] of Sacks and Uhlenbeck who used p-harmonic maps to
deduce significant results on the usual harmonic maps. Therefore, it seems natural
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and interesting to investigate the p-Yang—Mills functional (1.1). In this paper, we fo-
cus on instability and gap phenomena of p-Yang—Mills fields over submanifolds M"
of the Euclidean spaces R"** and the spheres $"**.

Suppose M" is a submanifold of N"**, and denote the second fundamental form
by h(-, -). Set the indexranges 1 < i,j < m;n+1 < p < n+ k, and choose
local orthonormal frames {e;, e;, ..., er} on N such that {¢; | i = 1,2,...,n}is
tangent to M and {e, | p = n+1,...,n+k} is normal to M. Let h(e;, ¢;) := hf‘jeu
and H* = Zi hfi; here we use the Einstein summation convention. We will prove
the following results.

Theorem 3.1 Let M"(n > 5) be a submanifold of R"* satisfying either

(' Wy — )0 — ikl < (2 — )y

jm" ml
or
(H”’hljll - h‘j‘mh“l)éki - h,:lkh,jl < —(2 - n)5ik5ﬂ.

mi

If a p-Yang—Mills field RN over M satisfies
1
IR <5 (3)
2\2
then RV = 0.

If M" = S" C R™, then M satisfies the condition in the above theorem. There-
fore when p = 2, we obtain Theorem B. Thus Theorem 3.1 is a generalization of
a result in [2]. For the case of submanifolds of the Euclidean spheres we have the
following.

Theorem 3.2 Let M"(n > 5) be a submanifold of S"** satisfying either

(Hﬂhlfl — h/jl'mh”l)(ski - hilkhl;l < b5jk5il

or
(HM B — W )Gy — MR < —boyd

jm" ml

for some b < 0. If a p-Yang—Mills field RV over M satisfies
1
K< 5(5).
2\2

For the instability of p-Yang—Mills fields, we will prove the following results in the
cases of submanifolds of R"** and §"**.

Theorem 4.1 Let M" be a submanifold of R™* satisfying

then RY = 0.

Cijklsr = (—H”’h’;l + 2h‘j‘mhfjd)6k,~5$, + 2hih3‘155r + 2(p — 2)hikhsr6ﬂ
< boixdibs

for some constant b < 0. Then any p-Yang—Mills field over M is unstable.
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Remark When p = 2, our result is just Theorem C above (Xin [8]). For M = §",
we have Cjjus = (2p — n)0id 10y, so any p-Yang—Mills field over S" with n > 2p is
unstable.

Theorem 4.3 Let M" be a submanifold of S™** satisfying
Cijklsr = (—Huh;;l + 2h§‘tmhlrf1])5ki65f + th;{h';l(;s, + 2(p — 2)hikh5,5jl
< (n - Zp)éikéjl(ssr-
Then any p-Yang—Mills field over M is unstable.

2 Preliminaries
Denote by dV: Q7(gg) — QP! (gg) the exterior differential operator with respect to
V,and by 8V its adjoint operator. The Laplacian is defined by AV = dV§Y +6VdV.
Set D = %V%:O, where V! = V + A", A" € Q!(gg) with A’ = 0. The associated
curvature RY of V' is

RY =RV +dVA" + —[A' A A"].

1
2
Recall that for ¢, ¢ € g, [ N Ylxy = [ox, ¥y] — [¢y, ¥x].

By direct computation, we have the following first variational formula:

d oo v p—2/ v [ GA R V.
(2.1) EYMP(V)—/MHR [ <d (I)+[A /\?},R >
It follows easily that

d
d—YMp(Vf)lt:o:/<5V(|\RV|\P*2RV),D>.
t M

Consequently, the Euler—Lagrange equation of Y M ,(-) is
(2.2) SY(IRV||P~2RY) = 0.
From o
dR dA* 1d
—— =dV—— + - [ATAA
dt dt 24t [ )
and (2.1) we have
d : drRY
ZYMy(V) = [ RY 2 S k).
Mo = [ RS S
Furthermore,

& . - dRY" i\ 2
4 o _ p—a/ AR v
SYM(V) = (p—2) /M IRV 7=+ ==, k™"

: dRY" |2 #RY o :
N e iy R e A T
M dt v\ di?
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Hence, we have the following second variational formula:

dz
(2-3) Ip(D) = EYMp(vt”t:O

= (p=2) [ IRT|FHaTDR)? + [ R D)
M M

+ /M<[D AD],RY)|RY P2

Next, we derive a useful integral identity via the Weitzenbock formula. Let ¢ €
Q%(gg), and let w be a linear map-valued 2-form with (¢ o w)xy := %goej_wx‘yej.
Denote by R and Ric the Riemannian curvature tensor and Ricci curvature operator
of M, respectively. Set

(RicA Dyy := Ric(X) AY + X A Ric(Y),

RV (@)xy = [Rz,xy%j,y] - [Rg,yﬁpej.x],
where (X AY)Z := (X, 2)Y — (Y, Z)X.

Lemma 2.1 For any p-Yang—Mills field RV, we have

Qo [IRIPRT (- 2) [ R VIR
M M
+/ IRV||P~2(RY o (Ric AI +2R),RV)
M

+ / IRV ||P~3(R(RY),RY) = 0.
M
Proof For any ¢ € Q%(gg), we have the following Weitzenbock formula [2]:
AV = V*Vp+ o (RicAl +2R) + RV ().

It follows that

SAlel = (A¥g, ) ~ IVl ~ (o (Rie AT+ 2R), ) — (R (), ).
Consequently,
(25) %Auwup = el Al = 0 = Dol VIl
= [P [(AY @, ) — [Vell* = (¢ o (Ric AT +2R), )
—(®V (), )] — (p = Dl Vllell]|”

= [lell?=*(AY ¢, ) — [lellP 72| Vel?
— [lellP2{¢ o (Ric AI +2R), )

—Jel? 2RI (@), ) — (p — 22?2 VIl
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Now let ¢ = RV. Then by (2.2) we have 6V (||RV||?~2RY) = 0. Recall that RY
satisfies the Bianchi identity: d¥ RV = 0. From these we see that

0o [ IR HATRTRT) = [ (TSR R
M M

— / <(5VRV7 5V(HRVHP72RV)>
M
=0.
Integrating (2.5) with ¢ = RV and using (2.6), we obtain (2.4). [ |
Let us choose orthonormal frames {X,} of gz, and let
Rzej = ]?;‘Xau (VekRv)e,',ej = i‘;‘qu-

Lemma 2.2
(i)  Let M" be a submanifold of the Euclidean space R"**. Then

(RY o (Ric AI +2R),RY) = [—(H" W}y — W, )0 + iy £ £
(ii) Let M" be a submanifold of the sphere S"™**. Then
(2.7)  (RY o (Ric A +2R),RY)
= [—(H"W) = W, 1 )60 + HHG £ fig + 2(n = 2)[[RV |2,

Proof (i) By using the Gauss equation, we can write the Riemannian curvature ten-
sor and the Ricci curvature of M as

i plgp IS (T N NN
Riju = hyhly — hyhty  and - rj = H'h — Wi;hy,

respectively. Then

. 1
(RY o (Ric ANI+2R),RY) = S1=2m (RY s R o) + Rijua(RY ., RY )]
1 ,
= 5[ —2tHy — W (RS RT )

+ (KR — KRR O(RY, RY )

ikt ™ M) e e Rey o)

L 4 a £a 1 L 4 a fa
= —(H"H}, — WiH) fiifa + E(hﬁkh?z — i) i fi
= —(H"Iy — Wh) fiifa + Wl £ fa

[ —(H" 1y — Wl 0 + By £ i
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(ii) In this case, the Riemannian and Ricci curvature tensors can be written as
Rijkl = ((S,‘]ASj] — 5i15jk) + (h':;(h;; — hlzulh;;k) and rj = (n— 1)5]'1 + Hﬂh?l — hfjhﬁ,

respectively, and (2.7) can be proved similarly. ]
Later on, we will need the following.
Lemma 2.3 ([2]) If|[RV|]* < 1(3), then for n > 3, we have
(IRY 4 B, ). BY,)] < 200 — 2| RV

€€ ) " ei,ej

Furthermore, when n > 5 and RV # 0, the inequality is strict.

Proof This is a corollary of [2, Proposition 5.6]. ]

3 Gap Phenomena of p-Yang-Mills Fields

First, let M" be a submanifold of R"**. Suppose RV is a p-Yang-Mills field over M.
In this case, we have the following theorem on the gap phenomena of RV .

Theorem 3.1  Suppose M" (n > 5) is a submanifold of R"* satisfying either
(Huh/;l — h’]f’mhﬁ’ﬂ)éki — hi;{hl;l S (2 — n)5jk5il

or
(H“h;‘l — W R ok — hﬁch;‘l < —(2—n)dixdji.

jm"tml
n
2 )

If a p-Yang—Mills field RV over M satisfies

IRV]? <

N | —

then RY = 0.

Proof ByLemma 2.1,

—_ _ 2
/||Rv||p 2HVRV||2+(P—2)/ IRV(|2=*|| ZIRV|[||
M M
:-/ HRVHP_2<RVo(Ric/\I+2R),RV)—/ IR [*-2(RY (RY), RY)
M M

= (1) + (1D).

Using Lemma 2.2(i) and the assumptions on hf‘]- of M, we have

(1) §2(2—n)/ IRV .
M
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From Lemma 2.3, and noting that (RV(RV),RY) = ([RY,,RY, ],RY ), we see

€k,€i 7 7€ ,e;) €,k
that if RV is not identically zero, then

<H)<2<n—2)/ IRV [P
M

Combining these we deduce that
_ _ 2
/ IRV I[P VRY |1 + (p — 2) / IRV |72 VIR < o,
M M
which is a contradiction. Thus, RY = 0. ]
In a similar way, we can prove the following.
Theorem 3.2  Let M" (n > 5) be a submanifold of S"** satisfying either
(H"’h’j‘l — K B )oK — hﬁ(h’;l < béjrdi

jm' m

or

(H#h/jl’l — hﬂl)éki — hilkhl;l < —b5ik5jl

jm'm

for some b < 0. If a p-Yang—Mills field RV over M satisfies
K< 5(5).
2\2

We remark that if we let M" = S" C R""! in Theorem 3.1, then it is easy to see
that

then RY = 0.

(Y iy = W )00 — Wghly = (n = )60

jm'ml

Therefore, Theorem 3.1 generalizes the theorem of Bourguignon and Lawson men-
tioned above (Theorem B). More generally, for convex hypersurfaces M" of R"*!,
if we write h?j“ := h;jj = M;id;; where ); is the i-th principal curvature of M,
i=1,2,....,n,H:= A\ + Xy +---+ A\, then

(H"h’fl — h?mhﬁ;l)dki — hfkh’;l = (HXj — AjA — XA 0.

We thus obtain the following.

Corollary 3.3  Suppose M"™ (n > 5) is a convex hypersurface of R"*! satisfying
NiH=X—=X)<n—=2, i,j=12,...,n,

where \; is the i-th principal curvature and H is the mean curvature of M. Then any
p-Yang-Mills field R over M with ||[RV ||* < 1(%) must identically vanish.
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Similarly, we also have the following.
Corollary 3.4 Suppose M™ (n > 5) is a convex hypersurface of S"*! satisfying
ANi(H=Xi—=Xj) <0, i,j=1,2,...,n

)

where \; is the i-th principal curvature and H is the mean curvature of M. Then any
p-Yang-Mills field RV over M with ||RY ||* < 1(3) must identically vanish.

4 Instability of p-Yang—Mills Fields

In this section, we will prove some results on instability of p-Yang—Mills fields RY
over submanifolds M" of R"** and S"**.

Theorem 4.1 Let M" be a submanifold of R"* satisfying
Cijusr == (— H"h” + 2h‘]‘mh‘r‘n )0kiOsr + thj(h’j"lésr +2(p — 2)hikhy6j1 < boird jidse

for some constant b < 0. Then any p-Yang—Mills field over M is unstable.

Proof We first note that for tangent vectors V, X to M, let D = iyRY. Then Dy =
(ivRv)X = R‘YX’ and

(dvD)e,-.e]- = (ve,-D)ej - (VeJD)e,-
= (VeiRv)V,e]- - (veij)V,ei + Rgeiv,e) RV Ve,
Now take the standard orthonormal basis {Es | A = 1,2, ...,n+k} of R***, and

choose V4 := vi,e; to be the tangent part of E4. Here the indices A, B, C run from 1
to n + k. We note that

(4.1) VBV = 0pe, Vo Va = vAh“

Then for Dy := iy, RV, A = 1,2,...,n+k, it follows from (2.3) that

(4.2) ZI (Dy) = —2)2/ IRV ||P=4(RY,dV Dy)?
3 [ RSP dDA 4 3 [ (R 104 A DA R
A M A IM

Sincefori =1,2,...,nandA=1,2,...,n+k,
(43) (dvDA)e,-,e]- = (ve;Rv)VA,ej - (VEij)VA,e,- + quvmej - Rge_vmel

= Y (VeR oo, = Vo (Ve RY e + VARIRY . — VAHERY

eej e’
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we have
<Rv>dvDA> = _< €i\ej 7(dvDA)e, ej>

1 1
= EVIZA<RZeJ-v (vele)ez,ej> - EVIZL\< e (ve)Rv)a o)

+ VAh/’<RZe] RY.) — vahﬂ (RY. RY.)
= VU (RY » (Ve RY )oye) + VAHG(RY L RY ),

eiejr Nee;

from which with (4.1) we have

(4.4) S TRY,dVDA)? =S (RY, . (VoR )e,)?
A 1
+ hfllhfm <Reve ’RZE ><RZES Rem es>

Using the second Bianchi identity, we have

< €iej? (ve,Rv)el eJ>

< €;,ej 7(V€1Rv)€J €1> < €j,ej) (VQRV)& €1>
:< ei.ej? (VezRv)e, e,> < ej,ei0 (ve]Rv)ezez>

which implies

Z< ei.e; v(ve,Rv)m e]> = %Z< eiej? (vezRv)e,,e,> = <RV, V61RV>~

ij ij
Putting this into (4.4) then yields

> (RY,dVDs)? =Y (RY, VRV ) + Wikt (RY ,  RY, V(RY

eiejr Nepej e .,e5) e,,,,e5>
A I

— IRV RYN||* + Hentt (R, R V(R

eiej hene; €r,8s) e, es>

Hence
45) (p—=2)) / IRY [P~(RY,d¥Da)> = (p - 2) / IRY |72 7[RV |||
7 IM M

+(p—2) / [RY (|7~ * Wkl (RY L RY  V(RY .,

eiej) Nee; €, 1 Ve, es>

The second term on the right-hand side can be written as

(p—2) /M R |12 b £5 155 il fs = (0 = 2) /M IRV 1P Highly 80 £5 £ £ -
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Inserting this into (4.5) yields:

(46) (p— 2)2/ IRV|IP=4(RY,d¥Da)* = (p — 2)/ IRV [PV IRV |[]|?
= M M
o [ RS 1P — 2 1
Now we compute the second term on the right-hand side of (4.2). By (4.3),
1
D 1d¥DallP = 2 D (@ Da)eseys (47 Dadese,)
A A
= ffie — fiifia; + Wk G 15 — hi'li;h?zﬂaj Ii-
Since from the Bianchi identity we have f¢, fii; = 3 f% f = [[VRY||?, therefore
> _Nd¥DalP = [IVRY [ + (hfyhiy 5 fif — Hh 15 £)-
A

Consequently,

@7 3 [ IR
A M
— /M IRS |72 | VRY P + /M IR |22 (HLHl £ i — WL ).

As for the third term on the right-hand side of (4.2), we first note that

1
(RY, [Ds A Dal) *(RZW [Da A Dale; o)

2
= (R ¢+ [Dae;s Dag]) = (R s [Daes Dae;)
= —(RY 1, [RY, o RY, . 1) = —ViVi (R, [RY , RY D)
— v v v _ VipV \Y%
- _<Rej,ek’ [Re,.,ewRe,',eJ'D - <R (R )7R >

Hence,

4.8 RY,[Da ADAD|RY[[P72 = [ (RV(RY),RV)||RY P2
(48) z/M< D4 ADADIRTIP = [ (R R, R)T]
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Substituting (4.6), (4.7) and (4.8) into (4.2) yields
_ 2 _
S 100 = (p = 2) [ IRV P2 VIR + [ R P2 9R
mn M M
o IR ;= i g
o [ IRS 141 = 20 £ A
M
o [ (R R), R R P2
M
By Lemma 2.1, we obtain that

EA:I(DA) = —/MHRVHP’Z(RVo(Ric/\I+2R),RV)
o [ IR — D A5
o [ RS I RO = WA
Using Lemma 2.2(i), we then have
S0 = [ RSP, 3+ 15
A
o [ IR0 ~ D50 RS2
o [ RS IR gy W )
_ /M IRY [P~ 2[(— "Ry + 20 )8y + 2 £
o [ IR ~ D50 RS2
= 5 IR I 2 e+ 2 A1
o [ IR 11 ~ D50 RS2
- % /M IRV [P~ [(—HF B + 21 W 51061y + 2Ha 0,51

jm' ml

+2(p — DRSS ) L f FL L
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l - L1, ” "
=3 /M IRV ([P~ *[(—H" By + 2K, 0 )81y + 2H R

+2p — W) LSS
Let Cijiie == (—HP B+ 20 B )65y + 2H4 50, + 2(p — 2)h4hS 1. Then
1 — a f£a
(49) S 100 = 5 [ IRV Cn A
A

By the assumption on C; s, we obtain that

1 — a f£a
> I(Dy) < Eb/MIIRVHP 46810 £ fit fo £
A

b Vip— b b
2 IR

- zb/ IR||? < 0.
M

Therefore, RV is unstable. This completes the proof. ]

Corollary 4.2  Let M" be a convex hypersurface of R with principal curvature
A1, A2y .oy Ay and mean curvature H =), \; satisfying

HAj > 200 + 203+ 2p — DAk, Vi, jk=1,2,...,m,

then any p-Yang—Mills field RV over M is unstable. In particular, any p-Yang—Mills
field over S" (n > 2p) is unstable.

Proof Direct calculations show that for submanifold M" in R"*!, the following
holds:

Cijkisr = [2)\,‘)\]‘ +2M N —HAj + (2p — 4))\i)\5]5ik6jl65r-

In particular, for $* C R™**L, C; ikisr = (2p — n)0;x0 105 The conclusions then follow
from these and Theorem 4.1. [ |

This result generalizes [8, Theorem 3] and [3, Theorem 5.3]. Now let us consider
the case that M" is a submanifold of the sphere $"**. We note that the second formula
in (4.1) becomes

(4.10) Ve Va = (H + v 6 e

Here hﬁ'] is a component of the second fundamental form of M in $"**.
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Theorem 4.3  Let M" be a submanifold of S"* satisfying

Cijklsr = (_Hﬂhﬂ + 21 hul)ékiésr + Zhﬁch?[(ssr + 2(P - 2)hikhsréjl

jl jm'"m

< (1’1 - zp)éikéjl(ssr-
Then any p-Yang—Mills field over M is unstable.

Proof Comparing to the proof of Theorem 4.1 and using (4.10), it follows that (4.6)
becomes:

@i (p-23 [ IRIHRTaVD.) = p—2) [ RSP VIRY
~ M M
o [ RS I — 20 ot + 40 = 2) [ T
Also, corresponding to (4.7) we have
@) Y [ 1RSI aTDulE = [ RS
+ JIm M
o [ WRE g 5 - g 4 [ 1RSI,
M M
We note that (4.8) remains unchanged, that is, we still have
(4.13) Z/ (RY, [Da ADAD|IRY P72 = —/ (RY(RY),RY)|RY P2,
+ M M
Putting (4.11), (4.12) and (4.13) into (4.2) gives
> I(Dy) = —/ IRV ||P~%(RY o (Ric AT+ 2R),RY)
n M
b [ RS — 20 2
M
o | IR = Wi £
+(4p—4)/ IRV ([P
M

Similar to deriving (4.9), except that here we use Lemma 2.2(ii) instead of Lemma
2.2(i), we have

1 _
> 1) = 5 / IRY 12 Cyjas 5 £ £ £ + (4p — 2m) / IR "
A M M
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Since Cjjusr < (n — 2p);x6 104, it follows that

which means that RV is unstable.

ZI(DA)<(2n—4p)/ ||RVHP+(4p—2n)/ IRY|? =0,
A M M
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