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ABSTRACT. Our main goal is to exemplify the study of ice-stream dynamics via Bayesian statistical
analysis incorporating physical, though imperfectly known, models using data that are both incomplete
and noisy. The physical–statistical models we propose account for these uncertainties in a coherent,
hierarchical manner. The initial modeling assumption estimates basal shear stress as equal to driving
stress, but subsequently includes a random corrector process to account for model error. The resulting
stochastic equation is incorporated into a simple model for surface velocities. Use of Bayes’ theorem
allows us to make inferences on all unknowns given basal elevation, surface elevation and surface
velocity. The result is a posterior distribution of possible values that can be summarized in a number of
ways. For example, the posterior mean of the stress field indicates average behavior at any location in
the field, and the posterior standard deviations describe associated uncertainties. We analyze data from
the ’Northeast Greenland Ice Stream’ and illustrate how scientific conclusions may be drawn from our
Bayesian analysis.

1. INTRODUCTION
1.1. Background
Modern studies of the behavior of glaciers, ice sheets and
ice streams rely heavily on both observations and physically
based models. Data acquired via remote sensing provide
critical information on geometry and movement of ice over
large sections of the Antarctic and Greenland. Although these
datasets represent significant advancements in terms of spa-
tial coverage and the variety of processes we can observe, the
physical systems to be modeled are nevertheless imperfectly
observed. Uncertainties associated with measurement errors
are present and physical models are also subject to uncer-
tainties. There is therefore a need for combining observations
and models in a fashion that incorporates uncertainty and
quantifies its impact on conclusions.
The goal of combining models and observations is hardly

new in glaciology (e.g. MacAyeal, 1993; Arthern and
Hindmarsh, 2003; Gudmundsson, 2006) nor in the broad
areas of the geosciences (e.g. data assimilation as practiced
in numerical weather forecasting). We address the goal
by formally modeling the uncertainties present, then using
Bayes’ theorem to deduce information about all unknowns in
the data. We focus on the development of statistical models
with strong reliance on physical modeling, a strategy Berliner
(2003) called ‘physical–statistical modeling’. This is different
from traditional physical modeling, with perhaps data-based
parameter estimates, and traditional statistical modeling
which possibly relies upon qualitative physical reasoning.
An in-depth illustration based on data from the ’Northeast

Greenland Ice Stream’ (NEGIS) is presented. The physical
models used are simplified approximations, but are famil-
iar and provide an accessible arena for exemplifying the
physical–statistical approach. Specifically, we develop stat-
istically enhanced versions of a simple model of basal shear
stress as the sum of driving stress and a corrector process
representing other effects, such as lateral resistive stress.

Inference for these unobservable stresses is a primary goal
here. Bayesian inference is carried out using recently ac-
quired datasets of ice thickness, surface elevation and sur-
face velocity.
The introduction and uncertainty analysis of the corrector

process is a crucial feature of our approach. Rather than
introducing the correctors, it is natural to suggest that
the effects they represent should be formally modeled.
This would require more assumptions and/or more data,
thereby introducing additional sources of uncertainty. In
any case, we do not expect any implementable physical
model to remove concerns regarding its applicability nor its
uncertainty. Hence, the ability not only to combine models
and observations, as discussed by MacAyeal (1989), Blatter
(1995) and Joughin and others (2001), but also to analyze
indicators of model validity and uncertainty is paramount.
The primary output of a Bayesian analysis is a posterior

distribution, namely the joint probability distribution for un-
known quantities conditional on the observed data. Even
in our simple illustration, explicit presentation of their joint
distribution is not feasible. Hence, a key aspect of Bayesian
analysis in such settings is the ability to generate realizations
or ensembles from the posterior distribution; the posterior
is then studied through statistical summaries of such en-
sembles. A key by-product of such techniques is the ability to
provide ensembles of initial conditions for use in a dynamic
forecasting model. That is, one application of the modeling
here is as a method for combining models and observations
in support of full dynamical prediction or forecasting.

1.2. Glaciological motivations
That glaciers flow under the force of gravity means that
important factors in determining velocities include the
constraints of the constitutive relationship (Whillans, 1987)
and ice thickness, in combination with resistive forces acting
along the sides and at the base of the glacier. The lithostatic
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Fig. 1. Fifty posterior realizations of velocity profiles and the
posterior mean (black) of velocities based on 2000 realizations. The
original velocity data are shown (black dashes). Ensemble members
are color-coded by importance-sampling Monte Carlo probability
weights α (grey: α > 0.01; light grey: α < 0.01).

stress at some depth in the ice equals the weight of the ice
above that depth, and horizontal gradients in this stress drive
ice-stream flow. The flow of the ice stream is impeded by
resistive stresses given by the difference between the full
stress and the lithostatic component. A separation is therefore
made between action or gravitational forces and reaction or
resistive forces. After partitioning the full stress into lithostatic
and resistive components, substitution into the horizontal
balance equation and integration over the full ice thickness
gives the following equation for driving stress along the flow
(e.g. Van der Veen, 1999):

τdx = τbx + τRx , (1)

where τbx is basal shear stress and τRx represents resistive
stresses arising from gradients in longitudinal stress and
lateral drag. Defining the driving stress as

τdx = −ρgH
ds
dx

(2)

where s is ice-surface elevation, H is the ice thickness, ρ is
the density of ice and g is the gravity constant, we have

τbx = −ρgH
ds
dx
− τRx . (3)

Noting that no direct observations of these stresses are
available, the main problem in this paper is estimation of
the stresses. A further limitation on such estimation involves
the degree of lubrication at the base of the ice. This feature is
crucial to understanding glacial dynamics and predicting the
glacier’s response to climatic controls. However, this feature
is not observable directly.
Treating the flow parameter A as a constant, the surface

velocity u(x) is approximated by

u(x) = ubx +
2A
n + 1

H τnbx , (4)

where ubx is sliding velocity and n is a flow parameter (e.g.
Paterson, 1994, p. 251, equation 21). We fix n = 3 in this

paper. Motivated by Equation (3), we model τbx as

−τbx = ρgH
ds
dx
+ ηx , (5)

where ηx is a corrector process needed to explain the velocity
data. To clarify, we substitute Equation (5) into Equation (4)
and estimate all quantities in light of the data. If ηx is
found to be negative in some region, the velocities in that
region are smaller than those expected based on a simple
balance between driving and basal shear stresses. Hence,
such ηx indicates additional resistive stresses acting on the
flow. Alternatively, positive ηx suggests that the glacier is
moving faster than expected, perhaps indicating an area of
high lubrication at the base.
The simple interpretations above are of course flawed to

some degree; we are attempting to use a single quantity ηx to
explain the combined effect of at least two phenomena. For
example, there may well be regions of both high lubrication
and high resistive stress due to lateral effects. These are
confounded in the simple approach here. This also suggests
a confounding in modeling both sliding velocity ubx and ηx
as relatively unconstrained functions of x. We can break
this confounding either by introducing very strong priors
to constrain these processes or by constraining one of
the processes while leaving the other relatively free and
responsive to the observations.
In this paper, we compromise between these two notions.

First, no matter how the modeling is carried out, we found
that the data mandated the use of at least two different
models. The estimated value of this change point between
models is indicated in Figure 1. This estimate is close to
an observable lineament. As will be indicated, creep flow
appears to be the dominant mechanism upstream of this
change point. Near the change point, sliding gains critical
importance. We note that Joughin and others (2001) suggest
that there is a till plain downstream of where our analysis
ends. We hope our results cast light on the nature of the bed
between our change point and the start of the till plain.
Based on the previous notions, we specified sliding

velocity as a constant upstream of the change point, and
used a relatively uninformative prior for ηx (see section 3.4).
Downstream of the change point, we used approximations to
Weertman-type models for sliding velocity (e.g. Paterson,
1994, ch. 7) of the form

ubx = kτ
p
bx (ρgH)

−q (6)

for various combinations of p and q with τbx given in
Equation (5), i.e. without a corrector process. We found that
the data strongly favored the selection of p = q = 1; we
assume these values throughout the rest of this paper. Note
that with these specifications, Equation (6) reduces to

ubx = k
ds
dx

. (7)

We also tried using Equation (4) with no corrector process,
no change point and ubx as given in Equation (6) for all x
and various combinations of p and q. None of these models
was competitive with the model presented here.
Another interesting issue arises in the inference of driving

stress based on observations of s and H. Reliance on the
slope of the upper ice surface in Equation (2) implies
that results are very sensitive to small-scale variations in
surface topography and to small-scale, perhaps unimportant,
variations in ice thickness. Hence, driving stress is usually
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Fig. 2. Observations of surface elevation and basal elevation along
a 400 km profile of the NEGIS.

estimated based on averaging over horizontal distances of
a few ice thicknesses to eliminate small-scale flow features
not important to the flow (Kamb and Echelmeyer, 1986;
Paterson, 1994). Indeed, if averaging is not done, driving-
stress estimates exhibit unreasonably large variations. Hence,
we incorporate a statistical smoothing step in our Bayesian
model.

1.3. Data
We assembled surface topography and ice-thickness obser-
vations for a portion of the NEGIS (Figs 2 and 3). The data
were gathered as part of the Program for Arctic Regional
Climate Assessment (PARCA). Surface topography and ice
thickness were sampled every few hundred meters using
equipment mounted on the Wallops Flight Facility P-3 air-
craft. Surface velocity data were calculated (personal com-
munication from I. Joughin, 2002) dataset. The three derived
datasets are S (surface topography), B (basal topography), and
U (surface velocities). Datasets S and B are shown in Figure 2;
U in Figure 1.

1.4. Hierarchical Bayesian analysis
One rationale for the Bayesian approach is that it is a math-
ematically rigorous method for combining information in the
presence of uncertainty. Two primary sources of information
are available for inferring the unknown quantities of interest:
(1) observations or data that convey some information re-
garding those unknowns, and (2) prior information based
on scientific reasoning regarding the unknowns, including
physical models as well as past experience and data. Both
sources of information are subject to uncertainties. In the
Bayesian approach, all such uncertainties are modeled prob-
abilistically. The primary computational tool used is Bayes’
theorem, which is simply a result in probability theory relat-
ing various conditional distributions. However, the Bayesian
view of statistical modeling and analysis involves more than
the simple application of probability theory. It is a paradigm
that involves the modeling of unknowns as random variables
and using observations to update that modeling effort.
Many procedures used in the analysis of geophysical data

are Bayesian or approximately Bayesian. For example, the
Kalman filter is a Bayesian procedure (e.g. Meinhold and
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Fig. 3. The basal elevation (black dashes), 50 realizations (grey)
of smoothed basal topography from the posterior distribution
conditional on those data, and the corresponding posterior mean
(black) based on 2000 ensemble members.

Singpurwalla, 1983). Other examples associated with data
assimilation are discussed by Lorenc (1986) and Evensen and
Van Leeuwen (2000). A general review of Bayesian analysis
intended for geophysical audiences is given by Wikle and
Berliner (2006); see also Epstein (1985) and Tarantola (1987).
Nevertheless, the full power of the methodology has only

recently been making progress in geophysics (e.g. Berliner
and others, 2000; Wikle and others, 2003; Tebaldi and
others, 2005). Advances in computation, through variants
of Markov chain Monte Carlo (MCMC) algorithms, now
enable hierarchical Bayesian modeling that is capable of
dealing with the complexities in models and data that arise
in geophysics. A skeleton of hierarchical reasoning begins
with consideration of three basic collections of variables
to be modeled: data (our observations) labeled y ; process
(those physical, state variables of interest (e.g. velocities,
stresses, etc.)) labeled x; and parameters labeled θ, including
unknown physical constants and parameters introduced in
the statistical components of the model.We use the following
notation for probability distributions: (1) the distribution of
a random variable, say X , is written as [x]; and (2) the
conditional distribution of Y given X = x is written as [y |x].
A review of the basic strategy and associated computations
is given by Gelman and others (2004).
Hierarchical thinking suggests a model with three primary

components (e.g. Berliner, 1996):

1. Data model: [y |x, θ];
2. Prior process model: [x|θ]; and
3. Prior on parameters: [θ].

Although the construction of these components is often not
easy, once the modeling process is complete, Bayes’ theorem
yields the posterior distribution [x, θ|y] given by

[x, θ|y] = [y |x, θ][x|θ][θ]
[y]

. (8)

The denominator [y] is the marginal distribution of the data. It
can be viewed simply as that constant which normalizes the
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numerator ensuring that the posterior is indeed a probability
distribution, depending upon the observed data but not the
unknowns.
In the Bayesian treatment of parameters, even unknown

constants are treated as if they are random. This is important
since the definitions of some model parameters may be
based on approximations. For example, flow parameters are
not really unknown physical constants but rather functions
of other unmodeled process variables (e.g. temperature or
pressure) which introduce uncertainty. Hence, while the
Bayesian approach may appear complicated compared to
others, its advantage is that it quantifies and manages un-
certainties through to final conclusions.

2. PHYSICAL–STATISTICAL MODELING OF THE
’NORTHEAST GREENLAND ICE STREAM’
Recall our three datasets: S (surface observations), B (basal
observations), and U (surface velocity). The corresponding
processes of interest are true surface topography s(x), true
basal topography b(x) and true surface velocities u(x), where
x indexes a transect down the middle of the ice stream. There
are no observations on the stresses acting on the ice, although
physical relations allow inference from modeled stresses.

2.1. Translating physics into statistical models
In response to the issues introduced in section 1.2 regarding
averaging of surface and thickness data for the estimation of
driving stress, our first step is to model the basal topography
b and the surface s as smoothed versions plus local noise,
denoted generically by N. We therefore assume

b(x) = ψb (x) +Nb (x) and s(x) = ψs(x) +Ns (x), (9)

where ψb (x) and ψs(x) are smooth versions of the base and
surface, respectively.
Applying these definitions in Equation (2), we model

smoothed driving stress as

τ̃d(x) = −ρgH̃(x)
dψs (x)
dx

, (10)

where the smoothed ice thickness is H̃(x) = ψs(x) − ψb (x).
In all computations, we set ρ = 911 kgm−3 and g =
9.81m s−2.
We next define the partially smoothed basal shear stress in

the region upstream of the currently undetermined change
point, by applying Equation (5) for velocities taken in the
negative x direction as

τ̃b(x) = τ̃d(x) + η(x). (11)

We say τ̃b(x) is only partially smoothed because we do
not smooth the corrector process. As clarified later, η(x) is
modeled as an unknown stochastic process. This enables
further interpretation of the posterior behavior of η(x) as
an indication of regions where successful or unsuccessful
smoothing has occurred.
We then incorporate the velocity model Equation (4)

(recall that we set n = 3) and the approximate sliding
velocity model Equation (7) into a statistical model:

u(x) = k
dψs(x)
dx

+ 0.50A1H̃(x) (τ̃d(x))
3 +Nu (x)

if x < c (12)

= ub + 0.50A2H̃(x)(τ̃b(x))
3 +Nu (x)

if x ≥ c, (13)

where k ,A1, ub ,A2 and c are treated as unknown, random
parameters and Nu (x) is an error process.
Before proceeding with the specifics, we emphasize that

these formulae motivate probability models that are updated
in light of the observations. More directly, we do not produce
single estimates of smoothed processes ψs (x) and ψb (x)
based on the data and substitute those estimates into the
stress and velocity models. Rather, we produce an ensemble
of these quantities simulated from their posterior distributions
and propagate them forward into our models. This produces
an ensemble of stresses and velocities, which in turn are
updated based on the velocity observations.

2.2. Underlying probability theory
Ourmain task is the development of the following probability
distributions:

Data model: [B, S,U|b, s,u, η,θ]
Prior process model: [b, s,u, η,ψb ,ψs |θ]
Prior on parameters: [θ],

where θ denotes the collection of all model parameters.
Our goal is to obtain the posterior distribution [ψb ,ψs, u, η,
θ|B, S,U], which can then be used to obtain the posterior
distribution of stresses.
Our main assumption regarding the data model is that

the three primary datasets are conditionally independent
given the true processes they represent and given the model
parameters. Notationally, the data model takes the form

[B, S,U|b, s,u, η,θ] = [B|b,θB][S|s,θS ][U|u,θU], (14)

where notation such as θB is used to indicate those
parameters (subsets of θ) explicitly appearing in the indicated
models. A possible objection to Equation (14) arises since the
basal data B are actually computed as the difference between
surface and thickness observations. The assumed conditional
independence therefore may not hold. We checked our
posterior results for indications of degrees of departure from
this assumption and found none that would affect our results.
Our modeling of the processes begins with a probabilistic

equality (i.e. this is not an assumption, but a fact):

[b, s,u, η,ψb ,ψs |θ]
= [u, η|b, s,ψb ,ψs ,θ][b, s,ψb ,ψs|θ]. (15)

Similarly, we have

[u, η|b, s,ψb ,ψs ,θ]
= [u|η,b, s,ψb ,ψs ,θ][η|b, s,ψb ,ψs ,θ]. (16)

We make the following two assumptions.

1. In formulating the second term on the right side of
Equation (15), we assume that the base b and the surface s
are independent, conditional on their smoothed versions
and the model parameters. We then obtain

[b, s,ψb ,ψs |θ] = [b|ψb ,θb][s|ψs,θs], (17)

where again notation such as θb is used to indicate
appropriate subsets of θ. It is critical to note here that
we are not assuming that the base and the surface are
independent. Our modeling of both the base and surface
is conditional upon smooth processes ψb and ψs . Our
assumption is that the small-scale departures from those
large-scale processes are independent.
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2. Consider the conditional model for u, namely the first
term on the right side of Equation (16). We assume that
the velocity profile depends on the base and surface only
through their respective smoothed versionsψb andψs , i.e.

[u|η,b, s,ψb ,ψs ,θ] = [u|η,ψb ,ψs,θ]. (18)

The specifications of prior distributions for the parameters
are given in Appendix A.

3. COMPONENTS OF THE HIERARCHICAL MODEL
3.1. Basal model
First, the process model is described. We chose to use wave-
lets to model the smoothed basal topography ψb (x) because
of their flexibility in representing highly variable processes
and because we can easily control their smoothness.
Wavelets work best for equally spaced data where the

number of data points is an integer power of 2. Hence, we
partition the domain of the data into 211 = 2048 bins of
equal length (189.5m). Let b̄ denote the 2048-dimensional
vector constructed by averaging b within each bin. Note that
b̄ is not observed.
We used multi-resolution Daubechies wavelets (e.g. Bruce

and Gao, 1996; Vidakovic, 1999). Two collections of
wavelets were used. The first set is thought of as the smooth
signal, while the second represents the detail signal. We
consider a smooth signal of four wavelets. To this component
we added a detail signal containing 28 more wavelets. All
32 wavelets are mutually orthogonal.
After converting to a discrete wavelet form, we obtain a

linear model for [b̄|ψb ,θb]:
b̄|ψb ,θb ∼ N(WC,σ2bΣ(φ1,φ2)), (19)

where W is the 2048 × 32 matrix of discretized wavelet
basis functions, C is the 32-dimensional vector of wavelet
coefficients and Σ(φ1,φ2) is the correlation matrix of an
autoregressive process of order 2 (AR(2)) with variance σ2b .
Notationally, ψb =WC and θb = (σ

2
b ,φ1,φ2). The selection

of an AR(2) process to account for spatial dependence among
the model errors (i.e. local variations in basal topography)
was based on preliminary data analysis and practicality;
our Bayesian computations require repeated inversion of a
2048×2048 matrix involving the inverse of Σ(φ1,φ2), which
is straightforward for an AR(2) process.
We performed analyses for four resolutions, corresponding

to 8, 16, 32 and 64 coefficients in Equation (19). We found
that the model with k = 32 coefficients provided the best
results in terms of maintaining fidelity to the thickness data
(i.e. not over-smoothing), yet providing good inferences for
velocity and therefore stress.
Turning to the data model, we define the basal data vector

B̄ of length 2048 with the ith element given by the simple
arithmetic average of those basal observations lying in bin i.
Let ni (i = 1, . . . , 2048) be the number of data points lying
in bin i. In our case, none of the ni were equal to zero; most
were either 1 or 2.
Our data model (i.e. [B|b,θB] in Equation (14)) is

B̄|b̄ ∼ N(b̄, σ2B diag{n−1i }), (20)

where σ2B represents measurement-error variance and
diag{n−1i } is a 2048× 2048 matrix with diagonal elements
equal to n−1i and off-diagonal elements equal to 0 (i.e. the
elements of B̄ are assumed to be conditionally independent).

This suggestion arises from a familiar result from element-
ary statistics. The sample mean of n independent observa-
tions with common mean and common variance σ2 has
variance σ2/n.
Specifications of priors on parameters are given in Appen-

dix A.

3.2. Surface model
Our modeling strategy for [s|ψs,θs] in Equation (17) separ-
ates the large-scale and small-scale behaviors of the surface.
Recalling Equation (9), we suppose

s(x) = ψs(x) + Ns (x), (21)

where the large-scale surface is given by a function ψs,
assumed known up to a low-dimensional set of parameters,
and Ns is a zero-mean spatial stochastic process described
in Appendix A. To model ψs, we rely on an analysis given
in Paterson (1994, p. 243, equation 8) and assume the basic
model for the surface:

ψs (x) = μ+ K
[
L1+n

−1 − (L− x)1+n−1
]0.50n/(n+1)

, (22)

where θs = (μ,K , L) are treated as unknown parameters.
Although we set n = 3 here, we could also model n as an
unknown.
We use only the large-scale surface Equation (22) to

compute ice thickness, the surface derivative and hence the
stress in Equation (10). Nevertheless, the presence of Ns is
important in determining the data model in Equation (14).
Under the strategy which uses Equation (22) to obtain
the stress, we need a data model [S|ψs,θs ,θS ], where θS
includes measurement-error variances and parameters of the
distribution of Ns in Equation (21); our specification is given
by Equation (A3) in Appendix A.

3.3. Velocity model
For the data model [U|u,θU], we assume that, conditional
on the true velocities, the elements of U have independent
Gaussian distributionswith means equal to the true velocities
at the corresponding locations and common variances σ2m .
That is, at each observation location x, we assume that

U(x) = u(x) +m(x), (23)

where m(x) is a zero-mean, Gaussian measurement error
with variance σ2m . Substituting for u(x) as prescribed in
Equations (12) and (13), we have

U(x) = k
dψs(x)
dx

+ 0.50A1H̃(x)(τ̃d(x))
3 +Nu (x) +m(x)

if x < c (24)

= ub + 0.50A2H̃(x)(τ̃b(x))
3 + Nu (x) +m(x)

if x ≥ c. (25)

We next combine the model errors Nu and traditional
measurement errors m into a single error

eU (x) = Nu (x) +m(x), (26)

assuming that eU (x) are independent, zero-mean, Gaussian
random variables with common variance σ2U . (Note that
these steps mean that there is no need for further use of
the symbol u.) This simplification can be relaxed, but would
require additional modeling of the process Nu .
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Fig. 4. Fifty posterior realizations of (a) smoothed driving stress (grey)
and its posterior mean (black) and (b) the corrector process (grey)
and its posterior mean (black), each based on 2000 realizations.

To simplify the presentation of the statistical model, we
write our models in vector notation. Recalling Equations (9–
11) and (19), we define the vector of smoothed ice
thicknesses

H̃ = ψs −WC, (27)

where ψs is the 2048-dimensional vector of smoothed sur-
face elevations. Similarly, we define the vector of smoothed
values of driving stress τd as

τ̃ d = ρgH̃ ∗ vec
(
dψs
dx

)
, (28)

where ∗ indicates the Hadamard product, i.e. we compute
the vector of element-wise products of the coordinates of
the smoothed thickness and the derivative of the smoothed
surface.
Next, we let η denote the vector of stress corrections at

the locations of velocity observation and set

τ b = τ̃ d + η. (29)

From Equation (12) we model u, the vector of true velocities
at the observation locations, as a linear function of the
corresponding coordinates of smoothed thickness multiplied
by the third power of coordinates of τ b.
In preliminary data analyses, we noted that at least two

models (one for small x and another for large x) are needed.
Let x = c be an unknown change point and consider
different linear functions above and below the change point.
Finally, the model for the velocity data vector U is

U =

(
k vec

(
dψs
dx

)
ub 12

)
+

(
0.50A1 (H ∗ τ 3d)1
0.50A2 (H ∗ τ 3b)2

)
+ eU ,

(30)
where subscripts 1 and 2 indicate the varying dimensions of
the vectors H ∗τ 3d, H ∗τ 3b and 12 (a vector with all elements
equal to 1) depending on the value of the change point c and
eU which are measurement and model errors, respectively
(recall Equation (26)).

Table 1. Prior and posterior results for model parameters

Error variance

Prior mean Posterior mean

m2 m2

Basal measurement 50 3.6748
Basal process 2000 4115
Velocity measurement 9.000 3.850

3.4. Stress corrector process
Since the corrector process arises from unmodeled and
unobserved effects (e.g. longitudinal and lateral drag, basal
lubrication, local under- or over-smoothing, etc.), we assume
a relatively uninformed prior for η. Specifically, our prior
[η] indicates that each element has a uniform distribution
on the interval (–100 kPa, 100 kPa) and that all elements are
mutually independent.

3.5. Bayesian calculations
Althoughwe can write down Bayes’ theorem for the posterior
distribution of all unknowns conditional on the observations,
the result is typically not computable in closed form. We
use a Monte Carlo approach that produces an ensemble of
realizations from the target posterior distribution.
The method relies on the emerging technology of MCMC.

The idea of MCMC is to simulate a Markov chain that has
been carefully designed so that its stationary distribution co-
incides with the target posterior distribution. It follows that,
after a burn-in or transience period, the generated realiz-
ations of the chain comprise a simulated sample from the
posterior. Data analysis (often known as ‘output analysis’) is
performed on this sample to produce the desired inferences.
In our case, direct use of MCMC is possible but challen-

ging, primarily due to the non-linearities present in Equa-
tions (3) and (12). Hence, we combine MCMC with the
technique of importance-samplingMonte Carlo (ISMC). Con-
sider a setting in which direct simulation from a target dis-
tribution is difficult or inefficient. In ISMC, one generates
an ensemble from another more manageable distribution.
The theory of ISMC provides formulae for the calculation of
weights that are used to re-weight the ensemble, permitting
inferences relative to the original target. General introduc-
tions to both MCMC and ISMC can be found in Robert and
Casella (1999). An illustration of these technologies in a
geophysical problem is given in Berliner and others (2003).
An outline of the calculations used here is as follows. We

first run separate, independent MCMC algorithms (simple
versions known as Gibbs samplers) for the basal model
and the surface model. These runs produce ensembles from
the posterior distributions [ψb ,θb ,θB |B̄] and [ψs ,θs ,θS |S].
They are then used in conjunction with the velocity model
[u|η,ψb ,ψs,θb ,θs ,θu] (recall Equation (18)) to simulate
velocities conditional on B̄ and S. (As described in Appendix
A, we actually use a portion of S.)
To incorporate the velocity data U, we re-weight all of

these samples using ISMC results, yielding the ensemble
used to summarize the full posterior distribution. Technical
details regarding the actual implementation are presented in
Appendix B.
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Table 2. Prior and posterior results for model parameters, before and
after change point

Parameter Prior mean Posterior mean Posterior SD

Before change point
k (m s−1) 7× 10−4 5.497× 10−4 6.50× 104

A1 (s−1 kPa−3) 5× 10−16 1.257× 10−16 1.03× 10−17

After change point
ub (m a−1) 35 46.07 0.34
A2 (s−1 kPa−3) 10−16 1.43× 10−15 0.033× 10−15

4. POSTERIOR RESULTS
Figure 3 presents 50 realizations of the smoothed base
ψb = WC (recall Equation (19)) from the posterior
distribution conditional on the basal elevation data. The
corresponding posterior mean basal topography, estimated
using an ensemble of size 2000 and the original data,
is also depicted. We see that the posterior distribution of
the smoothed base is relatively faithful to the basal data, i.e.
the wavelets are able to capture much of the variation of the
basal data with 32 coefficients.
Figure 4a presents 50 realizations and the posterior mean,

conditional on the basal and surface-elevation datasets, of
the smoothed driving stresses ψd (recall Equation (28)).
Figure 4b presents 50 realizations and the posterior mean
of the correctors η, conditional on all three datasets (recall
that we only modeled the corrector process to the right
of the change point). In both cases, the posterior means
were estimated using ensembles of size 2000. We note that
except for the upper end of the data extent, the correctors
are relatively small compared to the values of the driving
stress. However, we also note that there is spatial structure
indicated in the posterior for the correctors, although none
was imposed by the prior.
For example, we see a run of positive correctors (perhaps

due to lubrication) over the approximate range 100–120 km
and a run of negative values (perhaps due to additional
resistive stresses beyond those explained by the model) from
∼260km to 330km. The large negative correctors at the top
end of the range are probably the combined result of a poor
surface model in that region and a failure of the approximate
physics so far upstream.
Figure 1 presents 50 realizations from the posterior

distribution of velocity and the posterior mean velocity,
estimated using ensembles of size 2000; the original velocity
data are also shown. As explained in Appendix A, our
estimate of the change point is x = 127.3km; this point
is also indicated on the plot. Interestingly, this location
corresponds roughly to that of an apparent lineament.
As mentioned in section 3.5 and developed in Appendix

B, ensemble members shown in Figures 1 and 4b are
to be weighted according to importance-sampling theory.
Although not indicated in these figures, the correct weights
were used in producing posterior mean estimates.
The estimates (i.e. posterior means) for the other param-

eters in the model of the large-scale surface elevation
(Equation (22)) are μ̂ = −450.53, K̂ = 4.75 and L̂ =
444901. Posterior results for other key model parameters
are presented in Tables 1–3.

Table 3. Posterior credible intervals (95%) for velocity model
parameters

Parameter Interval

Before change point
k (m s−1) (5.37, 5.62)× 10−4
A1 (s−1 kPa−3) (1.05, 1.48)× 10−16

After change point
ub (m a−1) (45.39, 46.72)
A2 (s−1 kPa−3) (1.33, 1.45)× 10−15

5. CONCLUSIONS
Tables 1 and 2 list various prior and posterior means and
posterior standard deviations of selected model parameters.
Table 3 provides 95% posterior credible intervals (Bayesian
analogues of confidence intervals) for the approximate
Weertman coefficient, sliding velocity and flow parameters
of the velocity model.
We note that while our prior estimate of sliding velocity

upstream of the change point was fairly small (35ma−1), the
posterior value is substantially larger. Next, we find that the
posterior results for the flow parameters A on either side of
the change point are plausible, although the results upstream
from the change point may suggest warmer conditions than
expected. Our treatment of A is of course linked to the
specification of ρ = 911 kgm−3. It is very easy to determine
the results of other choices since it enters the model as a
multiplicative constant.
We proposed smoothed surface and basal elevation

models and showed that their use, in combination with
simple physical models coupled with a corrector process,
resulted in good predictions of velocity over much of
the study region. There are regions to the right of the
change point where the fitted corrector process indicates
interesting interpretations regarding unmodeled dynamic
controls, including lubrication at the base and additional
resistive stresses. To the left of the change point, sliding
modeled via aWeertman-like approximation with p = q = 1
dominates our model. Indeed, even if we removed the stress
component of the model in the region, we would obtain very
similar results.

ACKNOWLEDGEMENTS
This research was supported by the US National Science
Foundation, Office of Polar Programs and Probability and
Statistics Program, under grant No. 0229292. We are grateful
to G.H. Gudmundsson and R. Greve for useful suggestions
and to two other reviewers for their remarks.

REFERENCES

Arthern, R.J. and R.C.A. Hindmarsh. 2003. Optimal estimation of
changes in the mass of ice sheets. J. Geophys. Res., 108(F1),
6007. (10.1029/2003JF000021.)

Berger, J.O. 1985. Statistical decision theory and Bayesian analysis.
New York, Springer-Verlag.

Berliner, L.M. 1996. Hierarchical Bayesian time series models. In
Hanson, K. and R. Silver, eds. Maximum entropy and Bayesian
methods. Dordrecht, etc., Kluwer Academic Publishers, 15–22.

https://doi.org/10.3189/002214308786570917 Published online by Cambridge University Press

https://doi.org/10.3189/002214308786570917


712 Berliner and others: Modeling dynamic controls on ice streams

Berliner, L.M. 2003. Physical–statistical modelling in geophysics.
J. Geophys. Res., 108(D24), 8776. (10.1029/2002JD002865.)

Berliner, L.M. and C.K. Wikle. 2006. Approximate importance
sampling Monte Carlo for data assimilation. Physica D, 230(1–2),
37–49.

Berliner, L.M., C.K. Wikle and N. Cressie. 2000. Long-lead
prediction of Pacific SSTs via Bayesian dynamic modelling.
J. Climate, 13(13), 3953–3968.

Berliner, L.M., R.F. Milliff and C.K. Wikle. 2003. Bayesian hierarch-
ical modelling of air–sea interaction. J. Geophys. Res., 108(C4),
3104. (10.1029/2002JC001413.)

Blatter, H. 1995. Velocity and stress fields in grounded glaciers:
a simple algorithm for including deviatoric stress gradients.
J. Glaciol., 41(138), 333–344.

Bruce, A. and H.Y. Gao. 1996. Applied wavelet analysis with
S-PLUS. New York, Springer-Verlag.

DeGroot, M.H. 1970. Optimal statistical decisions. New York,
McGraw-Hill.

Epstein, E.S. 1985. Statistical inference and prediction in climat-
ology: a Bayesian approach. Boston, MA, American Meteoro-
logical Society.

Evensen, G. and P.J. van Leeuwen. 2000. An ensemble Kalman
smoother for nonlinear dynamics. Mon. Weather Rev., 128(6),
1852–1867.

Gelman, A., J.B. Carlin, H.S. Stern and D.B. Rubin. 2004. Bayesian
data analysis. Second edition. Boca Raton, FL, Chapman and
Hall/CRC.

Goldstein, R.M., H. Engelhardt, B. Kamb and R.M. Frolich. 1993.
Satellite radar interferometry for monitoring ice sheet motion:
application to an Antarctic ice stream. Science, 262(5139),
1525–1530.

Gudmundsson, G.H. 2006. Case study: estimating basal properties
of glaciers from surface measurements. In Knight, P.G., ed.
Glacier science and environmental change. Oxford, Blackwell,
415–417.

Joughin, I., M. Fahnestock, D. MacAyeal, J.L. Bamber and P. Gogin-
eni. 2001. Observation and analysis of ice flow in the largest
Greenland ice stream. J. Geophys. Res., 106(D24), 34,021–
34,034.

Kamb, B. and K.A. Echelmeyer. 1986. Stress-gradient coupling in
glacier flow: I. Longitudinal averaging of the influence of ice
thickness and surface slope. J. Glaciol., 32(111), 267–284.

Lorenc, A.C. 1986. Analysis methods for numerical weather
prediction. Q. J. R. Meteorol. Soc., 112(474), 1177–1194.

MacAyeal, D.R. 1989. Large-scale ice flow over a viscous basal
sediment: theory and application to Ice Stream B, Antarctica.
J. Geophys. Res., 94(B4), 4071–4087.

MacAyeal, D.R. 1993. A tutorial on the use of control methods in
ice-sheet modeling. J. Glaciol., 39(131), 91–98.

Meinhold, J. and N. Singpurwalla. 1983. Understanding the Kalman
filter. Am. Stat., 37(2), 123–127.

Paterson, W.S.B. 1994. The physics of glaciers. Third edition.
Oxford, etc., Elsevier.

Robert, C.P. and G. Casella. 1999. Monte Carlo statistical methods.
New York, Springer-Verlag.

Tarantola, A. 1987. Inverse problem theory: methods for data fitting
and model parameter estimation. New York, Elsevier.

Tebaldi, C., R.L. Smith, D. Nychka and L.O. Mearns. 2005.
Quantifying uncertainty in projections of regional climate
change: a Bayesian approach to the analysis of multi-model
ensembles. J. Climate, 18(10), 1524–1540.

Van der Veen, C.J. 1999. Fundamentals of glacier dynamics.
Rotterdam, A.A. Balkema.

Vidakovic, B. 1999. Statistical modeling by wavelets. New York,
etc., Wiley.

Whillans, I.M. 1987. Force budget of ice sheets. In Van der Veen,
C.J. and J. Oerlemans, eds. Dynamics of the West Antarctic ice
sheet. Dordrecht, etc., D. Reidel Publishing Co., 17–36.

Wikle, C.K. and L.M. Berliner. 2006. A Bayesian tutorial for data
assimilation. Physica D, 230(1–2), 1–16.

Wikle, C.K., L.M. Berliner and R.F. Milliff. 2003. Hierarchical
Bayesian approach to boundary value problems with stochastic
boundary conditions. Mon. Weather Rev., 131(6), 1051–1062.

APPENDIX A
DETAILS OF THE HIERARCHICAL MODEL
Basal model: parameter priors
Our prior for the measurement-error variance σ2B is that
it has an inverse gamma distribution with mean 50 and
standard deviation 15. We also assumed an inverse gamma
prior distribution for σ2b with mean 2000 and standard
deviation 200.
While we could treat φ1 and φ2 as unknown parameters,

they are only of minor interest here and small variations in
their values do not affect our results. Hence, we considered
ordinary least-squares fits to the data and used the resulting
residuals to estimate φ1 and φ2, resulting in

φ1 = 1.603 and φ2 = −0.638.
Next, we describe our prior for the wavelet coefficients.

Regarding the four coefficients Cs for the smooth signal,

Cs ∼ N(μ,σ2sc I4), (A1)

where μ is the vector of conventional, ordinary least-
squares estimates of Haar-wavelet coefficients. Regarding the
coefficients for the detail signal, we assume their prior means
to be zero and that they are independent.
The model is completed by forming priors for the variances

of the wavelet coefficients. We assumed these variances to
be independent and to have inverse gamma distributions. For
σ2sc , we used prior mean 200

2 and standard deviation 40. For
the variance σ2c of the detail signals, we assumed prior mean
10002 and prior standard deviation 100.

Surface modeling
Recall that we assume s(x) = ψs (x) + Ns (x) (Equation (21)),
where the large-scale parameterized surface is given by ψs
as defined in Equation (22). Assume Ns is a zero-mean,
Gaussian spatial stochastic process with constant variance
σ2Ns and stationary correlation function γ(x, x ′) = γ(|x−x ′|).
To produce a data model readily usable to isolate the

large-scale surface, we first assumed that the individual
observations were conditionally independent with means
equal to the true surface values. Next, we formally eliminated
the small-scale process Ns from the model via a probabilistic
method. The result then leads to observations whose means
are equal to the large-scale model but whose values are
correlated. Informally, they inherit the correlation structure
of Ns .
Rather than dealing with the overhead of modeling that

correlation structure, we make a simple assumption. We
assume that for all locations separated by at least 150m, the
correlation is approximately zero. (We arrived at this value
by fitting the surface by conventional least-squares analysis
and then inspected the correlation function of the residuals
of the fitted surface. Residuals at locations separated by more
than 150m were essentially uncorrelated.)
We then took a subsample of the surface data such that

all observations were at least 150m apart, which resulted in
a subsample of 600 observations. We should have very little
loss in efficiency in basing our analysis of the surface on such
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a subsample: 600 is a very large sample size for estimating
three parameters (μ, K and L). Further, we tried a total of six
such subsamples and obtained essentially the same results.
Of course, the analysis hinges on the approximation that the
decorrelation length scale of small-scale variations is 150m.

Data model
We assume that, conditional on the true surface and the
measurement-error variance σ2S ,

S|s,σ2S ∼ N(s,σ2S I), (A2)

where s is the vector of true surface values at the observation
locations. Standard results from probability theory imply that
if we integrate out Ns in Equation (21), the resulting data
model is

S|θs , σ2S , σ2Ns ,Γ ∼ N(ψs ,σ
2
S I+ σ2Ns Γ), (A3)

where ψs is the vector of the large-scale parametric surface
model evaluated at the observation locations and Γ is the
matrix of correlations of Ns at pairs of those locations, as
implied by the correlation function γ.

Process model
A Bayesian or a non-Bayesian analysis (e.g. generalized
least squares) based on Equation (A3) requires modeling and
estimation of Γ (in parallel with the estimation of Σ(φ1,φ2)
in Equation (19)). Assuming a decorrelation length of 150m,
a subsample Sl such that all observations are at least 150m
apart has distribution

Sl |ψs ,σ
2
S ,σ

2
Ns ∼ N(ψs,l , σ

2
S ,l Il ), (A4)

where σ2S ,l = σ2S + σ2Ns and ψs,l is the vector of large-scale
surface values at the subsample locations.

Parameter model
Under the assumptions and simplifications outlined above,
we need only consider a prior for the parameters μ, K , L and
σ2S ,l . Probability theory greatly simplifies our task. Having
reduced the original problem to that of only 4 parameters
and 600 conditionally independent observations, we can
approximate the desired posterior. For all but the most highly
concentrated priors, the posterior is approximately Gaussian,
withmeans given by the conventional least-squares estimates
and covariance matrix given by the estimated inverse
information matrix for our setting (Berger, 1985, section 4.9).

Velocity modeling
Data model
We assume

U|u,σ2U ∼ N(u,σ2U I), (A5)

where u is the vector of true velocities at the observation
locations and σ2U is the measurement-error variance.

Process model
Based on the corresponding smoothed versions of thickness
Equation (27) and stress Equation (28), we consider the
change-point models

u =

(
k vec

(
dψs
dx

)
ub 12

)
+

(
0.50A1 (H ∗ τ 3)1
0.50A2 (H ∗ τ 3)2

)
+ eU .

(A6)

This leads to the data models

U = u+ eU (A7)

as given in Equation (30).

Parameter model
We next describe our prior distribution for the unknown
parameters k , ub ,A1,A2,σ

2
U and c.

Our prior for k , ub ,A1,A2 and σ2U is the following so-called
conjugate multivariate normal-inverse gamma distribution.
The prior is described hierarchically as

[k , ub ,A1,A2, σ
2
U] = [k , ub ,A1,A2|σ2U][σ2U ], (A8)

where ⎛
⎜⎝

k
0.50A1
ub

0.50A2

⎞
⎟⎠ |σ2U ∼ N(μ,σ2UW) (A9)

and

σ2U ∼ IG(a, b), (A10)

where all off-diagonal elements ofW are zero and

μ = (7× 10−4, 5× 10−16, 35, 10−16)T (A11)

W = diag(10−6, 10−32, 142, 0.50× 10−30) (A12)
(a,b) = (11, 90). (A13)

Under these specifications, the prior means of the regres-
sion coefficients are given in Equation (A11), the prior vari-
ances of the regression coefficients are

9× (10−6, 2× 10−32, 142, 10−30)T

and the prior mean and variance of σ2U are both equal to 9
(Goldstein and others, 1983).
We remark that the prior above may seem cumbersome

and strange in that we model the regression-model param-
eters conditioned on the error variance σ2U . However, this
strategy leads to a computable posterior distribution for the
regression parameters and σ2U . Specifically,

[k , ub ,A1,A2,σ
2
U |U] = [k , ub ,A1,A2|σ2U ,U][σ2U |U], (A14)

where the first distribution is the usual multivariate normal
posterior holding σ2U fixed, and [σ

2
U |U] is an inverse gamma

distribution with updated parameters. Hence, it was a
popular prior model before the advent of MCMC. A complete
discussion and explanation is given by DeGroot (1970,
ch. 9); see also Berger (1985, p. 288). We use the prior in
this case because it readily adapts to our use of ISMC.
To closely mimic an uninformative analysis regarding the

change point, we performed a least-squares piecewise linear
regression with an unknown change point. We found very
strong agreement on the value of c and, hence, treated c as
known and equal to 127.3 km.

APPENDIX B
MCMC–ISMC APPROACH
Our computational approach combines MCMC and ISMC.
The following derivations are motivated by a need to
make the ISMC steps efficient. To achieve efficiency, we
seek to generate ensembles of unknown quantities that are
reasonably similar to ensembles generated directly from the
posterior distribution. To do so, we apply Bayes’ theorem
to portions of the hierarchical model in an attempt to allow
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the observational data to strongly influence the simulations.
The details of these derivations involve interplay of our
modeling assumptions and repeated use of two basic facts
from probability theory. First, for the random quantities A and
B, we have [A|B][B] = [B|A][A] (Bayes’ theorem). Second,
such expressions hold conditionally. That is, if C is also some
random quantity, we have [A|B,C ][B|C ] = [B|A,C ][A|C ].
We may write the full posterior distribution as

[unknowns | U, B̄, Sl ]
∝ [U|θu , σ2U ,η,ψb ,ψs][θu ,σ

2
U ][η]

· [ψb ,ψs ,θb ,θB ,θs,θS |B̄, Sl ]. (B1)

Note that we have incorporated the basal and surface data-
sets into a partial posterior distribution [ψb ,ψs,θb ,θB ,θs ,
θS |B̄, Sl ] for the basal and surface processes and parameters.
This model is amenable to simple MCMC. Further, as in-
dicated in Figure 2, simulated smoothed basal topographies
from this partial posterior are clearly responsive to the ob-
servations. Next, we rewrite the first two terms on the right
side of Equation (B1) as

[U | θu , σ2U ,η,ψb ,ψs][θu , σ
2
U]

= [θu ,σ
2
U |U,η,ψb ,ψs][U|η,ψb ,ψs], (B2)

and then note that

[U|η,ψb ,ψs][η] = [η|U,ψb ,ψs][U|ψb ,ψs]. (B3)

In summary, we have

[unknowns | U, B̄, Sl ]
∝ [θu ,σ2U |U,η,ψb ,ψs][η|U,ψb ,ψs][U|ψb ,ψs]

·[ψb ,ψs ,θb ,θB ,θs ,θS |B̄, Sl ]. (B4)

Our basic algorithm is as follows.

1. Via MCMC, produce an ensemble of sizeM from the par-
tial posterior distribution [ψb ,ψs ,θb ,θB ,θs ,θS |B̄, Sl ]
(recall Equation (B1)). The result includes an ensemble

{(ψm
b ,ψ

m
s ) : m = 1, . . . ,M}

of smoothed basal and surface elevations.

2. For each (ψm
b ,ψ

m
s ), generate ηm from [η|U,ψm

b ,ψ
m
s ].

3. Similarly, generate (θmu ,σ
2,m
U ) from

[θu , σ2U |U,ηm ,ψm
b ,ψ

m
s ].

Finally, define ISMC weights:

αm ∝ [U|ψm
b ,ψ

m
s ]. (B5)

Coupling these weights with the ensemble members yields
a weighted ensemble from the full posterior distribution.
We remark that the selection of the prior described in

Appendix A for θu and σ2U enables the exact calculation
of the partial posterior distribution needed in step 3
(Equation (A14)). However, there are two difficulties with

implementation in our example. First, [U|ψb,ψs] is not eas-
ily obtained, disabling our ability to compute the weights
in Equation (B5). To deal with this problem, we apply the
general reasoning suggested in Berliner and Wikle (2006) to
claim that the earlier steps in the analysis, particularly step 3,
have sufficiently accounted for the information in the velocity
data regarding the unknowns. Therefore, a good approximate
analysis arises if we ignore these weights.
Similarly, step 2 is problematic in that the required

distribution [η|U,ψm
b ,ψ

m
s ] is not obtainable in closed form.

Recall that our prior for the elements of η is that they
are independent, uniform random variables on the interval
(−100, 100). Hence,

[η|U,ψb ,ψs] ∝ [U|η,ψb ,ψs] (B6)

for vectors η lying in the 2880-dimensional cube with
sides given by (−100, 100). We can obtain the exact form
of [U|η,ψb ,ψs]. Specifically, it is a multivariate t density
(Berger, 1985, p. 561), i.e.

U|η,ψb ,ψs ∼ T (2a,Zμ, (a/b)−1(I + ZWZ′)), (B7)

where μ, W and (a,b) are defined in Equations (A11–
A13) and Z=Z(η,ψb ,ψs ) is a 2880× 4 matrix obtained by
rewriting Equation (30) as

U = Z

⎛
⎜⎝

ub,1
0.50A1
ub,2
0.50A2

⎞
⎟⎠+ eU . (B8)

Although we have Equation (B7), it is intractable viewed
as a probability density function for η. To deal with this
problem, we appeal to importance sampling. Specifically,
rather than sampling from [η|U,ψb ,ψs], we sample from
another distribution, [η]IS, chosen to mimic it. Specifically,
we used a multivariate t distribution, with mean specified
by inverting the regression model and degrees of freedom
parameter equal to 10. By inverting the regression model, we
mean the following. For each observation of velocity U(x)
at a location x after the change point, and each ensemble
member, our regression model (Equation (30)) is

U(x) = ub + 0.50A2 H̃(x)[τ̃d(x) + η(x)]3 + eU (x), (B9)

where we have suppressed notation indicating dependence
on the ensemble member. We then simply approximate eU
by 0, yielding the approximation

η(x) ≈
(
U(x) − ub
0.50A2 H̃(x)

)1/3

− τ̃d(x). (B10)

The right side of this expression is then used to specify
the mean of [η]IS. This may appear to be cheating, but it
is perfectly legal. One may construct importance-sampling
distributions in any required fashion, including using the
data, as long as ISMC weights are used. These weights are
readily approximated by

α̃m ∝ [ηm |U,ψm
b ,ψ

m
s ]/[η

m]IS. (B11)
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