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Abstract

Consider a financial market with nonnegative semimartingales which does not need to
have a numéraire. We are interested in the absence of arbitrage in the sense that no
self-financing portfolio gives rise to arbitrage opportunities, where we are allowed to
add a savings account to the market. We will prove that in this sense the market is free
of arbitrage if and only if there exists an equivalent local martingale deflator which is a
multiplicative special semimartingale. In this case, the additional savings account relates
to the finite-variation part of the multiplicative decomposition of the deflator.
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1. Introduction

There exists now a rich literature on no-arbitrage concepts and the relationships between
them. This literature involves a wide range of statements and proofs, and their links are not
always obvious. Some no-arbitrage concepts remain difficult to interpret for real markets
because of their purely mathematical orientation. Any form of potential arbitrage can only
be exploited by market participants with the self-financing portfolio of their entire wealth.
The legal concept of limited liability ensures that these portfolios remain nonnegative. Self-
financing and nonnegativity of potential arbitrage portfolios are not always assumed in the
no-arbitrage literature, which has created a wide range of theoretical no-arbitrage concepts.
However, to be practically relevant, these two properties need to be considered when clarifying
whether a market model makes sense from a realistic no-arbitrage point of view.

This paper focuses on no-arbitrage concepts with the above-mentioned practically relevant
self-financing and nonnegativity properties, and also covers many other of the more theoretical
no-arbitrage notions. It provides crucial new results concerning the links between no-arbitrage
concepts and notions of deflators. Its approach leads to compact proofs and clarifies the links
between no-arbitrage concepts. The theoretical key to these results is the handling of no-
arbitrage concepts in topological vector lattices, which were developed in [55]. The current
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1034 E. PLATEN AND S. TAPPE

paper applies and systematically extends this methodology, which generalizes and systematizes
the existing no-arbitrage theory.

Before giving in this introduction a brief description of the main results of the paper, let us
first list some of the important papers in the no-arbitrage literature which relate to our results.
These include the papers [17, 31, 32, 38, 43, 57, 58, 62] and the textbook [25], which treat
the fundamental theorem of asset pricing (FTAP) in discrete time. The papers [18, 20] and the
textbook [21] establish the FTAP in continuous time and the connection between NFLVR (No
Free Lunch with Vanishing Risk) and the existence of a martingale measure. Concerning the
no-arbitrage concepts used in this paper, we refer the reader to Definition 2.1 for the formal
definitions, and to Remark 2.1 for interpretations of these concepts. Under the NFLVR condi-
tion, the density process of a local martingale (or, more generally, a σ -martingale) measure is
a strictly positive local martingale deflator. The latter is a process that acts multiplicatively and
transforms nonnegative wealth processes into local martingales. The papers [16, 19, 26, 27,
37, 41, 46, 50, 56, 60] and the textbooks [40, 45] treat further developments and related topics
concerning the FTAP. In certain situations, results about criteria for the absence of arbitrage
have been derived, for example, in [13–15, 51].

Empirical evidence, e.g. in [6, 7, 54, 63], and theoretical considerations, e.g. in [44, 49, 52],
point out that the NFLVR condition may be too restrictive for realistic long-term modeling,
and that there are less expensive ways of producing long-term payouts than widely practiced
under the NFLVR condition, which is somehow equivalent to risk-neutral pricing and hedging.
Several market viability properties that are weaker than NFLVR turn out to be equivalent to
the existence of supermartingale (or local martingale) numéraires, where the papers [11, 47,
61, 64] present versions of the FTAP which connect the notions NA1 (no arbitrage of the first
kind), NAA1 (no asymptotic arbitrage of the first kind), and NUPBR (no unbounded profit
with bounded risk) with the existence of a martingale deflator. Finally, the articles [12, 29,
34–36, 42, 44] study related topics, including the NINA (numéraire-independent no-arbitrage)
condition.

So far, there are only a few references (such as [8–10, 30, 34, 65]) which deal with finan-
cial market models without a numéraire. As a consequence, versions of the FTAP are typically
formulated under the assumption that the market under consideration, S= {S1, . . . , Sd, 1}, is
already discounted by some numéraire. However, in [9] it has been pointed out that, in eco-
nomic terms, the existence of a discounted numéraire Sd+1 = 1 is a nontrivial restriction. In the
current paper, we consider a financial market S= {S1, . . . , Sd} with nonnegative semimartin-
gales. Thus, we do not need the widely used assumption that the considered market is already
discounted by some numéraire, avoiding the aforementioned modeling restriction.

In our setting, a savings account does not have to exist in the market, and we demonstrate
how to permit price processes and portfolios that extend the absence of arbitrage from the
set of self-financing portfolios to other price and value processes. This clarifies, e.g., what can
happen when a savings account or other price process is added to a market. When assuming that
a savings account B, i.e., a predictable, strictly positive, finite-variation process with B0 = 1,
may be added to the market, our main results can be verbally summarized as follows:

• The market satisfies NUPBR for its nonnegative, self-financing portfolios if and only
if there exists an equivalent local martingale deflator (ELMD) Z which is a multi-
plicative special semimartingale Z = DB−1; see Theorem 4.2. This is a criterion which
can often be checked for concrete markets; see Theorems 6.1, 6.2 and 7.1, as well as
Corollary 7.1. If such a deflator exists, then its multiplicative decomposition provides us
with the additional savings account B which we can use in the market. This no-arbitrage
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No arbitrage and multiplicative special semimartingales 1035

characterization is also practically relevant because potential arbitrage portfolios are
assumed to be self-financing and nonnegative.

• The market satisfies NFLVR for its admissible, self-financing portfolios if and only if
there exists an ELMD Z which is a multiplicative special semimartingale Z = DB−1 such
that the local martingale part D is a true martingale; see Theorem 4.4. The martingale D
appearing in the multiplicative decomposition Z = DB−1 is just the density process of a
measure change Q≈ P, which provides a connection to the classical FTAP by Delbaen
and Schachermayer (see [18, 20]). It also provides a characterization of the currently
widely practiced risk-neutral pricing approach.

• As a consequence, when considering the discrete-time setting, the market satisfies the
NA (no-arbitrage) condition for all of its self-financing portfolios if and only if there
exists an equivalent martingale deflator (EMD) Z which is a multiplicative special semi-
martingale Z = DB−1 such that the local martingale part D is a true martingale; see
Theorem 12.1. Thus, the general results of this paper also allow us to deduce no-arbitrage
conditions for discrete-time markets.

As we will see later on, an ELMD Z which is a multiplicative special semimartingale does
not need to exist, and if it exists, it does not need to be unique; see Example 7.1. When we try
to find such an ELMD Z, there are two possible approaches:

• We fix a local martingale D> 0 and look for a savings account B such that Z = DB−1

is an ELMD for the market S. If such a savings account exists, then it is unique; see
Proposition 4.2.

• We fix a savings account B and look for a local martingale D> 0 such that Z = DB−1

is an ELMD for the market S. If such a local martingale D exists, it does not need to be
unique.

In general, we do not have a method of constructing the savings account B or the local mar-
tingale D. However, in the particular situation of diffusion models, this can be done by solving
linear equations; see Corollary 7.1.

As already indicated, a crucial ingredient for the proofs of these results is the paper [55],
where we have developed a general theory of no-arbitrage concepts in topological vector
lattices. More precisely, in [55] we have studied the relations between these no-arbitrage con-
cepts, and we have provided abstract versions of the FTAP, including a version on Banach
function spaces. For the proofs of the results from the current paper, we will apply those
results from [55] which concern the relations between the no-arbitrage concepts, in particular
the results from [55, Section 7], which considers the outcomes of trading strategies in a market
model with semimartingales, including the outcomes of nonnegative, self-financing portfolios.
The abstract FTAPs from [55] cannot be used to prove the main results of the current paper.

The paper is organized as follows. In Section 2 we introduce the basic notation and the
no-arbitrage concepts. In Section 3 we review FTAPs in our framework and present exten-
sions. In Section 4 we describe our main results and show some of their consequences. In
Section 5 we discuss consequences for semimartingale term structure models. In Section 6
we clarify when an ELMD exists, and in Section 7 we focus on jump-diffusion models with
fixed times of discontinuities. In Section 8 we provide further examples which are related to
our main results, and in Section 9, where we treat dynamic trading strategies, we present fur-
ther consequences. In Section 10 we discuss the assumption that the primary security accounts
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1036 E. PLATEN AND S. TAPPE

are semimartingales, and prove that under natural conditions this is automatically satisfied. In
Section 11 we show how our results can be transferred to a mathematical setting with filtra-
tion enlargement, allowing for insider information. In Section 12 we deal with discrete-time
markets and present further consequences of our main results. In Appendix A we provide
results about vector stochastic integration, whereas in Appendix B we review a transforma-
tion result for self-financing portfolios. In Appendix C we present results about ELMDs and
related concepts. Finally, in Appendix D we provide some sufficient conditions for the absence
of arbitrage.

2. Basic notation and no-arbitrage concepts

In this section we introduce basic notation and the no-arbitrage concepts which we consider
in this paper; see also [55, Section 7]. Concerning the required theory of stochastic processes,
we adopt the terminology of [39], where further details can be found.

From now on, let T ∈ (0,∞) be a finite time horizon, and let (�,F, (Ft)t∈[0,T], P) be a
stochastic basis satisfying the usual conditions, such that F0 is P-trivial. We consider a market
S= {Si : i ∈ I} consisting of nonnegative semimartingales Si ≥ 0, the primary security accounts,
for some index set I �= ∅. We denote by�(S) the set of all strategies for S; these are the numbers
of units of components of S held. For a strategy δ ∈�(S) we define the portfolio Sδ := δ · S,
where we recall that ‘ · ’ denotes the usual inner product in Euclidean space. Furthermore, we
denote by �sf(S) the set of all self-financing strategies for S, where changes in the portfolio
value result only from changes in the primary security account values. Mathematically, this is
expressed by the condition Sδ = Sδ0 + δ • S, where ‘ • ’ denotes stochastic integration; see [39,
Section I.4.d] for the stochastic integral with respect to a real-valued semimartingale, and [60]
for vector stochastic integration. For α ≥ 0 and a strategy δ ∈�(S) we introduce the integral
process Iα,δ := α+ δ • S. We call a process B = (Bt)t∈[0,T] a savings account (or a locally risk-
free asset) if it is predictable, càdlàg, and of finite variation with B0 = 1 and B, B− > 0. For
another nonnegative semimartingale Y ≥ 0 we agree on the notation

SY := {SiY : i ∈ I}. (2.1)

Later on, we will often consider the discounted market SB−1 for some savings account B. For
each α ≥ 0 we introduce the following sets of potential security processes:

• Iα(S) consists of all integral processes Iα,δ with δ ∈�(S).

• Iadm
α (S) consists of all admissible integral processes from Iα(S). Recall that a process X

is called admissible if X ≥ −a for some constant a ∈R+.

• I+α (S) consists of all nonnegative integral processes from Iα(S).

• Psf,α(S) consists of all self-financing portfolios starting in α.

• Padm
sf,α (S) consists of all admissible self-financing portfolios starting in α.

• P+
sf,α(S) consists of all nonnegative self-financing portfolios starting in α.

In practice, under limited liability, market participants can only exploit forms of arbitrage with
the nonnegative self-financing portfolio of their entire wealth, starting with their initial wealth
α. This makes the set P+

sf,α(S) rather special from a practical perspective, because it captures
natural constraints that exist for exploiting possible forms of arbitrage. Most of the other sets
of security processes introduced above remain arguably of a more purely theoretical nature.
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Now, let (Kα)α≥0 be any of the above families of potential security processes. Denoting by
L0 = L0(�,FT , P) the space of all equivalence classes of real-valued random variables, where
two random variables are identified if they coincide P-almost surely, we define the family
(Kα)α≥0 of subsets of L0 as

Kα := {XT : X ∈Kα}, α ≥ 0.

We may think of outcomes of trading strategies with initial value α. The definition above
provides us with the families

(Iα(S))α≥0, (Iadm
α (S))α≥0, (I+

α (S))α≥0,

(Psf,α(S))α≥0, (Padm
sf,α (S))α≥0, (P+

sf,α(S))α≥0

of outcomes of security processes. Denoting by L0+ the convex cone of all nonnegative random
variables, and by L∞ the space of all bounded random variables, we define the convex cone
C ⊂ L∞ as

C := (K0 − L0+) ∩ L∞.

Moreover, we define the family (Bα)α≥0 of subsets of L0+ as

Bα := (Kα − L0+) ∩ L0+, α ≥ 0.

We may think of all nonnegative elements which are equal to or below the outcome of a trading
strategy with initial value α. Setting B := B1, by [55, Lemma 3.11] we have Bα = αB for
each α > 0, and hence for the upcoming no-arbitrage concepts it suffices to consider K1 rather
than the family (Kα)α>0. The Minkowski functional pB : L0 → [0,∞] is given by

pB(ξ ) = inf{α > 0 : ξ ∈ Bα}, ξ ∈ L0.

Note that pB(ξ ) has the interpretation of the minimal superreplication price of ξ . In the fol-
lowing definition we denote by L∞+ the convex cone of all bounded, nonnegative random
variables.

Definition 2.1. We introduce the following no-arbitrage concepts:

1. K0 satisfies NA (no arbitrage) if K0 ∩ L0+ = {0}, or equivalently C ∩ L∞+ = {0}.
2. K0 satisfies NFL (no free lunch) if C

∗ ∩ L∞+ = {0}, where C
∗

denotes the closure with
respect to the weak-∗ topology σ (L∞, L1).

3. K0 satisfies NFLBR (no free lunch with bounded risk) if C̃
∗ ∩ L∞+ = {0}, where C̃

∗

denotes the sequential closure with respect to the weak-∗ topology σ (L∞, L1).

4. K0 satisfies NFLVR (no free lunch with vanishing risk) if C ∩ L∞+ = {0}, where C
denotes the closure with respect to the norm topology on L∞.

5. K1 satisfies NUPBR (no unbounded profit with bounded risk) if B is topologically
bounded, or equivalently bounded in probability.

6. K1 satisfies NAA1 (no asymptotic arbitrage of the first kind) if B is sequentially
bounded.

7. K1 satisfies NA1 (no arbitrage of the first kind) if pB(ξ )> 0 for all ξ ∈ L0+ \ {0}.
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Remark 2.1. Note that the above list covers several well-known no-arbitrage concepts. Recall
that an arbitrage opportunity is an element X ∈ K0 such that

P(X ≥ 0) = 1 and P(X > 0)> 0.

Therefore, the condition K0 ∩ L0+ = {0} just means that there are no arbitrage opportunities,
which explains the no-arbitrage concept NA. Often it is easy to find mathematical conditions
which are sufficient for NA, but typically they fail to be necessary. There are two approaches
to defining slightly stronger no-arbitrage concepts to overcome this problem:

• Observing that NA can equivalently be expressed as C ∩ L∞+ = {0}, we can impose

stronger conditions of the type C
τ ∩ L∞+ = {0}, where the closure is taken with respect

to some topology τ on L∞. The no-arbitrage concepts NFL, NFLBR, and NFLVR intro-
duced above are specific examples. Note that all these no-arbitrage concepts are related
to K0, which has the interpretation of outcomes of trading strategies with initial value
zero.

• Another approach is to consider no-arbitrage concepts which are related to (Kα)α>0, the
outcomes of trading strategies with strictly positive initial value. Then the idea is that in
a reasonable market it should not be possible to make unbounded profit when investing
money in that market. With our notation, this means that the set B should be bounded
in some sense, which is expressed by the no-arbitrage concepts NUPBR and NAA1. The
no-arbitrage concept NA1 means that a strictly positive payoff ξ ∈ L0+ \ {0} can only be
replicated with strictly positive initial wealth.

The pricing under a given no-arbitrage concept is typically aligned to a so-called deflator.
To introduce this concept, let X be a family of semimartingales. For a semimartingale Z =
(Zt)t∈[0,T] such that Z, Z− > 0, we use the following terminology:

1. Z is an equivalent martingale deflator (EMD) for X if X Z is a martingale for all X ∈X.

2. Z is an equivalent local martingale deflator (ELMD) for X if X Z is a local martingale
for all X ∈X.

3. Z is an equivalent σ -martingale deflator (E	MD) for X if X Z is a σ -martingale for all
X ∈X.

A pricing rule can often also be characterized by a so-called pricing measure. More precisely,
for an equivalent probability measure Q≈ P on (�,FT ), we use the following terminology:

1. Q is an equivalent martingale measure (EMM) for X if X is a Q-martingale for all X ∈X.

2. Q is an equivalent local martingale measure (ELMM) for X if X is a Q-local martingale
for all X ∈X.

3. Q is an equivalent σ -martingale measure (E	MM) for X if X is a Q-σ -martingale for
all X ∈X.

The required results about the concepts just introduced are presented in Appendix C. For
this, the following two results are essential tools; Proposition 2.2 will also be useful for the
study of dynamic trading strategies later on in Section 9. For what follows, we recall that
S denotes the space of all semimartingales (see [39, Section I.4.c]), that Mloc denotes the
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space of all local martingales (see [39, Section I.1.e]), and that Mσ denotes the space of all
σ -martingales (see [39, Section III.6.e]).

Proposition 2.1. Let X ∈ Sd and Y ∈ Mσ be such that XiY ∈ Mσ for each i = 1, . . . , d. Then
for every H ∈ L(X) we have (H • X)Y ∈ Mσ .

Proof. Let i ∈ {1, . . . , d} be arbitrary. Using integration by parts (see [39,
Definition I.4.45]), we have

Xi
0Y0 + Xi− • Y + Y− • Xi + [Xi, Y] = XiY ∈ Mσ .

Since Y ∈ Mσ , we have Xi− • Y ∈ Mσ , and hence

Y− • Xi + [Xi, Y] ∈ Mσ .

By Lemma A.3 we have H ∈ L([X, Y]) and

[H • X, Y] = H • [X, Y].

Since Y− is predictable and locally bounded, by Lemma A.2 we have

Y− ∈ L(H • X), Y−H ∈ L(X), H ∈ L(Y− • X)

and

Y− • (H • X) = (Y−H) • X = H • (Y− • X).

Therefore, using integration by parts (see [39, Definition I.4.45]) again, we obtain

(H • X)Y = (H • X)− • Y + Y− • (H • X) + [H • X, Y]

= (H • X)− • Y + H • (Y− • X) + H • [X, Y]

= (H • X)− • Y + H • (Y− • X + [X, Y]) ∈ Mσ ,

completing the proof. �
Proposition 2.2. Let X ∈ Sd and Z ∈ S be such that XiZ ∈ Mσ for each i = 1, . . . , d. Then
for every H ∈ L(X) and every Y ∈ Mσ with [Y, Z] = 0 and

H · X = H0 · X0 + H • X + Y, (2.2)

the process Y is predictable, and we have (H · X)Z ∈ Mσ .

Proof. By (2.2) we have H · X ∈ S. Using integration by parts (see [39, Definition I.4.45]),
we have

(H · X − Y)Z = (H0 · X0 − Y0)Z0 + (H · X − Y)− • Z

+ Z− • (H · X − Y) + [H · X − Y, Z].
(2.3)

By (2.2) and Lemma A.3 we have H ∈ Lvar([X, Z]) and

[H · X − Y, Z] = [H • X, Z] = H • [X, Z]. (2.4)

Furthermore, we have

(H · X − Y)− = (H · X − Y) −�(H · X − Y) = (H · X − Y) −�(H • X)

= (H · X − Y) − H ·�X = H · X− − Y .
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Therefore, we have

�Y = H · X− − (H · X)−,

showing that the process Y is predictable. By [39, Theorem I.4.52], the assumption [Y, Z] = 0
implies that ∑

s≤t

�Ys�Zs = 0, t ∈R+,

and hence we have �Y ∈ L(Z) with �Y • Z = 0. Therefore, we also have Y ∈ L(Z) with Y •
Z = Y− • Z. Furthermore, by Lemma A.1 and [60, Theorem 4.7] we have HX− ∈ L(Z1Rd ),
H ∈ L(X− • Z), and

(H · X − Y)− • Z = (H · X− − Y) • Z = (HX−) • (Z1Rd ) − Y • Z

= H • (X− • Z) − Y− • Z,
(2.5)

where X− • Z denotes the Rd-valued process with components (X− • Z)i = Xi− • Z for each
i = 1, . . . , d. Furthermore, by Lemma A.2 we have H ∈ L(Z− • X) and

Z− • (H · X − Y) = Z− • (H • X) = H • (Z− • X), (2.6)

where Z− • X denotes the Rd-valued process with components (Z− • X)i = Z− • Xi for each i =
1, . . . , d. Consequently, using (2.3)–(2.6), integration by parts, and the assumption [Y, Z] = 0,
we deduce that

(H · X)Z = (H · X − Y)Z + YZ

= (H0 · X0 − Y0)Z0 + H • (
X− • Z + Z− • X + [X, Z]

) − Y− • Z + YZ

= (H0 · X0)Z0 + H • (XZ) + Z− • Y ∈ Mσ ,

where XZ ∈ Md
σ denotes the Rd-valued σ -martingale with components XiZ for each i =

1, . . . , d. �

3. The fundamental theorems of asset pricing revisited

In this section we review the fundamental theorems of asset pricing in our present frame-
work for the given no-arbitrage concepts, and present some extensions. The mathematical
framework is that of Section 2; however, we now consider a finite market S= {S1, . . . , Sd}
with nonnegative semimartingales for some d ∈N. Let us first formulate a theorem that links
weaker no-arbitrage concepts related to NUPBR, which allow a richer modeling world than
those we link later on to NFLVR.

Theorem 3.1. The following statements are equivalent:

(i) I+
1 (S) satisfies NUPBR.

(ii) I+
1 (S) satisfies NAA1.

(iii) I+
1 (S) satisfies NA1.

(iv) There exists an ELMD Z for S such that Z ∈ Mloc.

If the previous conditions are fulfilled, then I+
0 (S) satisfies NFL, NFLBR, NFLVR, and NA.
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Recall that the securities in the set I+
1 (S) represent the nonnegative sums of the initial secu-

rity value one and integrals of strategies with respect to primary security accounts. Particularly
important in this result is the fact that NUPBR is equivalent to the existence of an ELMD which
is a local martingale.

Proof of Theorem 3.1. (i) ⇔ (ii) ⇔ (iii): See, for example, [55, Theorem 7.25].
(i) ⇔ (iv): Noting that a process Z with Z, Z− > 0 is an ELMD Z for S with Z ∈ Mloc if

and only if it is a strict σ -martingale density in the sense of [64], this equivalence follows from
[64, Theorem 2.6].

The additional statement is a consequence of Proposition D.1 and [55, Proposition 5.7]. �
Let us now link no-arbitrage concepts related to the stronger, widely assumed NFLVR

condition.

Theorem 3.2. The following statements are equivalent:

(i) Iadm
0 (S) satisfies NFL.

(ii) Iadm
0 (S) satisfies NFLBR.

(iii) Iadm
0 (S) satisfies NFLVR.

(iv) There exists an ELMD Z for S such that Z is a martingale.

(v) There exists an ELMM Q≈ P on (�,FT ) for S.

If the previous conditions are fulfilled, then Iadm
0 (S) satisfies NA, and Iadm

1 (S) satisfies
NUPBR, NAA1, and NA1.

Recall that the set Iadm
0 (S) relates to admissible securities that are the integral of strate-

gies with respect to primary security accounts and can get negative down to a certain level.
It is important to note that NFLVR is equivalent to the existence of a deflator that is a true
martingale, which underpins risk-neutral pricing.

Proof of Theorem 3.2. (i) ⇒ (ii) ⇒ (iii): See, for example, [55, Proposition 5.7].
(iv) ⇔ (v): This equivalence is obvious.
(iii) ⇔ (v): Noting that the semimartingales Si, i = 1, . . . , d, are nonnegative, by

Lemma C.1 an equivalent probability measure Q≈ P is an ELMM for S if and only if it is
an E	MM for S. Therefore, the stated equivalence is a consequence of [20, Theorem 1.1].

(v) ⇒ (i): This implication follows from Proposition D.1.
The additional statements follow from [55, Proposition 5.7, Proposition 7.27, and

Theorem 7.25]. �

4. The main results and their consequences

In this section we present our main results and show some of their consequences. We
emphasize that the proofs of the main results presented in this section are straightforward,
and essentially rely on the FTAPs revisited in Section 3. As in Section 3, we consider a finite
market S= {S1, . . . , Sd} with nonnegative semimartingales for some d ∈N. Recall that a semi-
martingale Z with Z, Z− > 0 is called a multiplicative special semimartingale if it admits a
multiplicative decomposition

Z = DC (4.1)
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with a local martingale D> 0 and a predictable càdlàg process C> 0 of finite variation. Then
by [39, Lemma III.3.6] we also have D− > 0, and hence C− > 0.

Theorem 4.1. ([39, Theorem II.8.21].) For a semimartingale Z with Z, Z− > 0, the following
statements are equivalent:

(i) Z is a multiplicative special semimartingale.

(ii) Z is a special semimartingale.

If the previous conditions are fulfilled, then the processes D and C appearing in the
multiplicative decomposition (4.1) are unique up to an evanescent set.

In the situation of Theorem 4.1 we call D the local martingale part and C the finite-variation
part of the multiplicative decomposition (4.1).

Lemma 4.1. Let Z = DB−1 be a multiplicative special semimartingale with a local martingale
part D ∈ Mloc and a savings account B. Then the following statements are equivalent:

(i) Z is an ELMD for S.

(ii) Z is an ELMD for S∪ {B}.
Proof. Since BZ = D ∈ Mloc, the proof is immediate. �
Now we are ready to state our result about the no-arbitrage concept NUPBR under the two

natural constraints of nonnegativity and self-financing, which are important in practice and
give access to a wide range of financial market models.

Theorem 4.2. The following statements are equivalent:

(i) There exists a savings account B such that P+
sf,1(S∪ {B}) satisfies NUPBR.

(ii) There exists a savings account B such that P+
sf,1(S∪ {B}) satisfies NAA1.

(iii) There exists a savings account B such that P+
sf,1(S∪ {B}) satisfies NA1.

(iv) There exist a savings account B and an ELMD D for SB−1 such that D ∈ Mloc.

(v) There exists an ELMD Z for S which is a multiplicative special semimartingale.

If the previous conditions are fulfilled, then the savings accounts B in (i)–(iv) can be chosen
to be equal, and in (v) we can choose an ELMD Z for S with multiplicative decomposition
Z = DB−1 with this savings account B. Furthermore, P+

sf,0(S∪ {B}) satisfies NA.

Proof. Let B be an arbitrary savings account.

(i) ⇔ (ii) ⇔ (iii): See, for example, [55, Theorem 7.25].

(i) ⇒ (iv): By Proposition B.1 the set I+
1 (SB−1) satisfies NUPBR. Hence, by Theorem 3.1,

there exists an ELMD D for SB−1 such that D ∈ Mloc.

(iv) ⇒ (v): It is obvious that Z = DB−1 is an ELMD for S.

(v) ⇒ (i): By Lemma 4.1 the process Z is also an ELMD for S∪ {B}. Hence, by
Proposition D.1, the set P+

sf,1(S∪ {B}) satisfies NUPBR.

The additional statement follows from [55, Proposition 7.28]. �
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Important aspects of the previous result are the fact that NUPBR is equivalent to NAA1 and
NA1, and the existence of a deflator which is a multiplicative special semimartingale.

The result is also in line with the concept of numéraire-independent no-arbitrage (NINA)
from [34], which means (in the mathematical framework of [34]) that the zero strategy is
strongly maximal for the strategy cone of all self-financing, undefaultable strategies; see [34,
Definition 3.21] for the precise definition. Verbally, the definition says that every nonzero
(nonnegative) contingent claim must have a positive (superreplication) price. Moreover, as the
name NINA suggests, it does not assume the existence of a numéraire strategy; see the para-
graphs after [34, Definition 3.21], which discuss the relationships between NINA and other
no-arbitrage concepts. For the proof of the following result we will use [34, Theorem 4.10],
where NINA is characterized for so-called numéraire markets. In (4.2) below, S denotes the
space of all semimartingales.

Theorem 4.3. The following statements are equivalent:

(i) There exists a savings account B such that the market

{(S1Z, . . . , SdZ, BZ) : Z ∈ S with Z, Z− > 0} (4.2)

satisfies NINA.

(ii) There exists an ELMD Z for S which is a multiplicative special semimartingale.

If the previous conditions are fulfilled, then we can choose an ELMD Z for S with multiplicative
decomposition Z = DB−1, where B is a savings account as in (i).

Proof. First of all, note that for every savings account B we have

inf
0≤t≤T

( d∑
i=1

|Si
t| + |Bt|

)
≥ inf

0≤t≤T
Bt > 0 P-almost surely,

showing that (4.2) is a market in the sense of [34, Definition 2.3]. Furthermore, the market
(4.2) is a numéraire market in the sense of [34, Definition 2.10], because ed+1 = (0, . . . , 0, 1)
is a numéraire strategy. This ensures that we may apply [34, Theorem 4.10] in the sequel.

(i) ⇒ (ii): By [34, Theorem 4.10] there exists a semimartingale Z with Z, Z− >
0 such that (S1Z, . . . , SdZ, BZ) is a P-local-martingale representative; that is, we have
S1Z, . . . , SdZ, BZ ∈ Mloc, showing that Z is an ELMD for S. Furthermore, the process Z is
a multiplicative special semimartingale with multiplicative decomposition Z = DB−1, where
D = BZ.

(ii) ⇒ (i): There exist a local martingale D ∈ Mloc with D> 0 and a savings account B such
that Z = DB−1. Since Z is an ELMD for S, we have S1Z, . . . , SdZ, BZ ∈ Mloc; that is, the
process (S1Z, . . . , SdZ, BZ) is P-local-martingale representative in the terminology of [34].
Therefore, by [34, Theorem 4.10], the market (4.2) satisfies NINA. �

Remark 4.1. A semimartingale Z with Z, Z− > 0 as in (4.2) is also called an exchange rate
process; see [34, Definition 2.1].

Next we present our result concerning the no-arbitrage concept NFLVR, which is more
restrictive than NUPBR.
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Theorem 4.4. The following statements are equivalent:

(i) There exists a savings account B such that B and B−1 are bounded, and the set Padm
sf,0 (S∪

{B}) satisfies NFL.

(ii) There exists a savings account B such that B and B−1 are bounded, and the set Padm
sf,0 (S∪

{B}) satisfies NFLBR.

(iii) There exists a savings account B such that B and B−1 are bounded, and the set Padm
sf,0 (S∪

{B}) satisfies NFLVR.

(iv) There exist a savings account B such that B and B−1 are bounded, and an ELMM Q≈ P

for SB−1.

(v) There exists an ELMD Z for S which is a multiplicative special semimartingale such
that the local martingale part is a true martingale, and the finite-variation part and its
inverse are bounded.

If the previous conditions are fulfilled, then the savings accounts B in (i)–(iv) can be chosen to
be equal, and in (v) we can choose an ELMD Z for S with multiplicative decomposition Z =
DB−1 with this savings account B. Furthermore, Padm

sf,0 (S∪ {B}) satisfies NA, and Padm
sf,1 (S∪

{B}) satisfies NA1, NAA1, and NUPBR.

Proof. Let B be a savings account B such that B and B−1 are bounded.
(i) ⇒ (ii) ⇒ (iii): See, for example, [55, Proposition 5.7].
(iii) ⇒ (v): By Proposition B.1, the set Iadm

0 (SB−1) satisfies NFLVR. Hence, by
Theorem 3.2, there exists an ELMD D for SB−1 such that D is a martingale. Therefore, the
process Z = DB−1 is an ELMD for S.

(v) ⇒ (iv): Note that D is an ELMD for SB−1. Let Q≈ P be the equivalent probability
measure on (�,FT ) with Radon–Nikodym derivative dQ

dP = DT/D0. Then Q is an ELMM for
SB−1.

(iv) ⇒ (i): By Proposition D.1, the set Iadm
0 (SB−1) satisfies NFL. Thus, by Proposition B.1,

the set Padm
sf,0 (S∪ {B}) satisfies NFL as well.

The remaining statements follow from [55, Proposition 5.7, Proposition 7.29, and
Theorem 7.25]. �
Remark 4.2. In Theorem 4.4, the boundedness assumption for the savings account is needed
because we use Proposition B.1 concerning market transformations for the proof. We refer to
Remark B.1, where the use of the boundedness assumption is explained.

In the previous result, it is important to note that NFLVR is equivalent to the existence of
an ELMM Q≈ P, which underpins the practice of risk-neutral pricing. Furthermore, when
NFLVR is imposed, NUPBR still holds. However, this is in general not true the other way
around. Indeed, if there exists a deflator as in Theorem 4.2 which is a multiplicative special
semimartingale, then NFLVR only holds true if the local martingale part is a true martin-
gale, which then gives rise to the aforementioned measure change. This means that assuming
NUPBR does not give away anything in modeling freedom, but postulating NFLVR, which
is what most of the literature does, restricts the phenomena one can describe for a market
model.
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Before we proceed with the question of how to extend a market by a savings account, let us
prepare an auxiliary result.

Lemma 4.2. Let M ∈ Mloc be a local martingale with M> 0, and let A be a predictable càdlàg
process of finite variation such that MA ∈ Mloc. Then we have A = A0 up to an evanescent set.

Proof. Using integration by parts (see [39, Definition I.4.45]), we have

MA = M0A0 + M− • A + A− • M + [M, A].

By [39, Proposition I.4.49.c] we have [M, A] ∈ Mloc, and hence M− • A ∈ Mloc ∩ V. Since this
process is also predictable, by [39, Corollary I.3.16] we deduce that M− • A = 0. Since M > 0,
by [39, Lemma III.3.6] we also have M− > 0, and it follows that A = A0 up to an evanescent
set. �

As we have seen, NUPBR represents, in the sense described, the least restrictive no-
arbitrage concept, and we may assume it for our next result. In the previous results, the
savings account B could already be contained in the market S. As the next result shows, an
arbitrage-free market can have at most one savings account.

Proposition 4.1. Suppose that P+
sf,1(S) satisfies NUPBR (or, equivalently, NAA1 or NA1), and

let B, B̂ ∈ S be two savings accounts. Then we have B = B̂ up to an evanescent set.

Proof. By Theorem 4.2 there exists a local martingale D ∈ Mloc with D> 0 such that Z =
DB−1 is an ELMD for S. In particular, setting A := B−1B̂, we have DA = ZB̂ ∈ Mloc. Applying
Lemma 4.2 gives us A = 1 up to an evanescent set, and hence B = B̂ up to an evanescent
set. �

In the situation of the previous results, the savings account B, and hence the ELMD Z =
DB−1, do not need to be unique. However, as the following result shows, for a given local
martingale D> 0 there is at most one suitable savings account fitting into the multiplicative
decomposition Z = DB−1. For this result, we consider a general market S= {Si : i ∈ I} with an
arbitrary index set I �= ∅.

Proposition 4.2. Suppose that Si > 0 for some i ∈ I. Let D> 0 be a local martingale, and let
B, B̂ be two savings accounts such that the multiplicative special semimartingales Z = DB−1

and Ẑ = DB̂−1 are ELMDs for the market S. Then we have B = B̂ up to an evanescent set.

Proof. We have SiDB−1 ∈ Mloc and SiDB̂−1 ∈ Mloc. Note that A := BB̂−1 is another
savings account, and that

(SiDB−1)A ∈ Mloc.

Applying Lemma 4.2 gives us that A = 1 up to an evanescent set, and hence we have B = B̂ up
to an evanescent set. �

Remark 4.3. In this section we have considered a finite market S= {S1, . . . , Sd}. However,
note that for an arbitrary market S= {Si : i ∈ I} with nonnegative semimartingales and an arbi-
trary index set I �= ∅, the existence of an appropriate ELMD which is a multiplicative special
semimartingale is sufficient for the absence of arbitrage. More precisely, in such a more general
market the following implications still hold true:

• (iv) ⇒ (i), (v) ⇒ (i) in Theorem 4.2;

• (iv) ⇒ (i), (v) ⇒ (i) in Theorem 4.4.
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5. Semimartingale term structure models

In this section we discuss the connections with the results of [22] concerning semimartingale
term structure models. We consider a market S= {PS : S ∈ [0, T]} consisting of zero-coupon
bonds. Assume that PS, PS− > 0 and PS

S = 1 for each S ∈ [0, T]. We call the market S a semi-
martingale term structure model, or simply a term structure model. The following concepts
of a generated term structure model and an implied savings account are provided in [22] in
a risk-neutral framework. We recall and extend these notions to the present situation with the
real-world probability measure as follows.

Definition 5.1. We introduce the following concepts:

1. Let Q≈ P be an equivalent probability measure on (�,FT ), and let Y be a semimartin-
gale such that Y, Y− > 0. We say that the term structure model S is generated by (Q, Y)
if Q-almost surely

PS
s =EQ

[
YS

Ys

∣∣∣∣Fs

]
for all 0 ≤ s ≤ S ≤ T .

2. Let Z be a semimartingale such that Z, Z− > 0. We say that the term structure model S
is generated by Z if P-almost surely

PS
s =E

[
ZS

Zs

∣∣∣∣Fs

]
for all 0 ≤ s ≤ S ≤ T .

Definition 5.2. Let B be a savings account.

1. Let R≈ P be an equivalent probability measure on (�,FT ). We say that B is a savings
account implied by the term structure model S relative to the measure R if R-almost
surely

PS
s =ER

[
B−1

S

B−1
s

∣∣∣∣Fs

]
for all 0 ≤ s ≤ S ≤ T .

2. Let D> 0 be a local martingale. We say that B is a savings account implied by the term
structure model S relative to the local martingale D if P-almost surely

PS
s =E

[
DSB−1

S

DsB
−1
s

∣∣∣∣Fs

]
for all 0 ≤ s ≤ S ≤ T .

Remark 5.1. Let B be a savings account.

1. Suppose that B is implied by the term structure model S relative to some local martin-
gale D> 0. Then the multiplicative special semimartingale Z := DB−1 is an ELMD for
the term structure model S, and hence, by Remark 4.3, the set P+

sf,1(S∪ {B}) satisfies
NUPBR.

2. Suppose that B is implied by the term structure model S relative to some equivalent
probability measure R≈ P on (�,FT ). Then the measure R is an ELMM for the dis-
counted term structure model SB−1, and hence, by Remark 4.3, the set Padm

sf,0 (S∪ {B})
satisfies NFL.
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Remark 5.2. Let Z = DB−1 be a multiplicative special semimartingale with a local martingale
D> 0 and a savings account B such that the term structure model S is generated by Z. Then
the following statements are true:

1. B is a savings account implied by S relative to D.

2. If D is a true martingale, then using [39, III.3.9] shows that B is a savings account
implied by S relative to R, where R≈ P denotes the equivalent probability measure on
(�,FT ) with density process D/D0.

Proposition 5.1. Let B be a savings account, let Q≈ P be an equivalent probability measure
on (�,FT ), and let M > 0 be a Q-local martingale. If S is generated by (Q, Y), where Y :=
MB−1, then the following statements are true:

1. B is a savings account implied by S relative to the local martingale MD, where D denotes
the density process of the measure change Q≈ P.

2. If M is a true Q-martingale, then B is a savings account implied by S relative to R, where
R≈Q denotes the equivalent probability measure on (�,FT ) with density process
M/M0.

Proof. By [39, III.3.9] the term structure model S is generated by Z := MDB−1, and by
[39, Proposition III.3.8] the process MD> 0 is a local martingale. Therefore, by Remark 5.2,
the process B is a savings account implied by S relative to MD, proving the first statement.

For the proof of the second statement we assume that M is a true Q-martingale. By [39,
Proposition III.3.8] the process MD is a true martingale. Therefore, by [39, III.3.9], the pro-
cess B is a savings account implied by S relative to R, where R≈ P denotes the equivalent
probability measure on (�,FT ) with density process MD/M0. To complete the proof, note
that R≈Q with density process M/M0. �
Remark 5.3. The second statement of Proposition 5.1 provides the first statement of [22,
Theorem 5]. In the terminology of [22], the pair (Q, Y) is called good.

We close this section with the following result about the uniqueness of an implied savings
account.

Proposition 5.2. Let B and B̂ be two savings accounts. Then the following statements are true:

1. Let D> 0 be a local martingale such that B and B̂ are savings accounts implied by S

relative to D. Then we have B = B̂ up to an evanescent set.

2. Let R≈ P be an equivalent probability measure on (�,FT ) such that B and B̂ are
savings accounts implied by S relative to R. Then we have B = B̂ up to an evanescent
set.

Proof. This is a consequence of Remark 5.1 and Proposition 4.2. �
Remark 5.4. In [22] (see also [23]) it was shown that under suitable conditions for two equiv-
alent probability measures R and R̂ such that B is a savings account implied by S relative to
R, and B̂ is a savings account implied by S relative to R̂, we have B = B̂ up to an evanescent
set.
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6. Equivalent local martingale deflators

In this section we clarify when a deflator which is a multiplicative special semimartingale
exists. Recall from Theorem 4.2 and Remark 4.3 that this ensures that the market satisfies
NUPBR for all its nonnegative, self-financing portfolios.

Let S= {Si : i ∈ I} be a financial market consisting of nonnegative semimartingales Si ≥ 0
with an arbitrary index set I �= ∅. We assume that for each i ∈ I the semimartingale Si cannot
revive from bankruptcy, which means that Si

t = 0 for all t ≥ Ti, where Ti denotes the bankruptcy
time of Si, given by

Ti := inf{t ∈R+ : Si
t− = 0 or Si

t = 0}.
Then we have

Si = Si
0E(Xi), (6.1)

where Xi denotes the semimartingale

Xi := (Si−)−11[[0,Ti]] • Si,

and where E denotes the stochastic exponential; see [39, Section I.4.f]. Note that Xi
0 = 0 and

Xi = (Xi)Ti . Before we proceed, we recall that V denotes the space of all càdlàg, adapted pro-
cesses of locally finite variation starting in zero, and that Aloc denotes the space of all locally
integrable processes from V; see [39, Section I.3.a]. Furthermore, we recall that S denotes the
space of all semimartingales, and that Sp denotes the space of all special semimartingales; see
[39, Section I.4.c]. For each truncation function hi ∈ Ct (see [39, Definition II.2.3]) we have

Xi = Xi(hi) + X̆i(hi),

where X̆i(hi) ∈ V and Xi(hi) ∈ Sp are defined as

X̆i(hi) :=
∑
s≤•

[�Xi
s − hi(�Xi

s)],

Xi(hi) := X − X̆i(hi).

Here for every optional process H we agree that
∑

s≤• Hs denotes the process given by
∑

s≤t Hs

for each t ∈R+, provided the series are convergent. We denote by

Xi(hi) = Mi(hi) + Ai(hi)

the canonical decomposition of the special semimartingale Xi(hi). Then the semimartingale Xi

has the decomposition

Xi = Mi(hi) + Ai(hi) + X̆i(hi). (6.2)

Let Z be a multiplicative special semimartingale with multiplicative decomposition Z = DB−1

for some D ∈ Mloc with D0 = 1 and a savings account B. Then we have D = E(−
) for some

 ∈ Mloc with 
0 = 0 and �
< 1, and B = E(R) for some predictable process R ∈ V with
�R>−1. Indeed, these two processes are given by the stochastic logarithms 
= −D−1− • D
and R = B−1− • B; see [39, Section II.8.a]. We call 
 the market price of risk and R the locally
risk-free return or virtual short rate of the savings account B. In the subsequent results, all
upcoming identities are meant up to an evanescent set. Furthermore, we recall that for each
A ∈ Aloc the process Ap denotes its predictable compensator; see [39, Section I.3.b].
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Theorem 6.1. The following statements are equivalent:

(i) Z is an ELMD for S.

(ii) Z is an ELMD for S∪ {B}.
(iii) For each i ∈ I and each truncation function hi ∈ Ct we have

[Mi(hi) + X̆i(hi), 
] − X̆i(hi) ∈ Aloc, (6.3)

Ai(hi) − R = ([Mi(hi) + X̆i(hi), 
] − X̆i(hi))p. (6.4)

(iv) For each i ∈ I there exists a truncation function hi ∈ Ct such that we have (6.3) and (6.4).

We will provide the proof of Theorem 6.1 below. Now, let us assume that for each i ∈ I the
process Xi is a special semimartingale, and consider its canonical decomposition

Xi = Mi + Ai.

Furthermore, let us agree on the notation 〈M,N〉 := [M,N]p for all M,N ∈ Mloc with
[M,N] ∈ Aloc. By [39, Proposition I.4.50.b], this is consistent with the definition of the
predictable quadratic covariation. The proof of the following result is similar to that of
Theorem 6.1; indeed, the arguments are even simpler.

Theorem 6.2. If Xi ∈ Sp for each i ∈ I, then the following statements are equivalent:

(i) Z is an ELMD for S.

(ii) Z is an ELMD for S∪ {B}.
(iii) For each i ∈ I we have [Mi, 
] ∈ Aloc and

Ai − R = 〈Mi, 
〉. (6.5)

Now we prepare the proof of Theorem 6.1 For this purpose, we provide some auxiliary
results. The predictable process R̃ ∈ V given by

R̃ := 1

1 +�R
• R

satisfies �R̃< 1, and we have R̃c = Rc. Since the inverse of (−1,∞) → (−∞, 1), x �→ x/(1 +
x) is given by (−∞, 1) → (−1,∞), x �→ x/(1 − x), we have

R = 1

1 −�R̃
• R̃.

Therefore, it follows that

�R̃ = �R

1 +�R
, �R = �R̃

1 −�R̃
, (1 +�R)(1 −�R̃) = 1, R = R̃ + [R, R̃], (6.6)

and by Yor’s formula (see [39, II.8.19]) we obtain

B−1 = E(−R̃).
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Next we define the two processes


̃ := 
− [
, R̃] = (1 −�R̃) •
, (6.7)

Y := 
̃+ R̃. (6.8)

Then we have 
̃ ∈ Mloc with 
̃0 = 0 and 
̃c =
c, as well as Y ∈ Sp with Y0 = 0 and�Y < 1.
Furthermore, we have


= 
̃+ [
̃, R] = (1 +�R) • 
̃
and

�Y − 1

1 −�R̃
=�
− 1. (6.9)

By Yor’s formula (see [39, II.8.19]) we obtain

Z = DB−1 = E(−
)E(−R̃) = E(−Y). (6.10)

Lemma 6.1. The following statements are equivalent:

(i) Z is an ELMD for S.

(ii) For each i ∈ I we have Xi − Y − [Xi, Y] ∈ Mloc.

Proof. Taking into account (6.1) and (6.10), this is a consequence of Yor’s formula (see
[39, II.8.19]). �
Proposition 6.1. The following statements are equivalent:

(i) Z is an ELMD for S.

(ii) Z is an ELMD for S∪ {B}.
(iii) For each i ∈ I and each truncation function hi ∈ Ct we have [Xi, Y] − X̆i(hi) ∈ Aloc

and

Ai(hi) − R̃ = ([Xi, Y] − X̆i(hi))p. (6.11)

(iv) For each i ∈ I there exists a truncation function hi ∈ Ct such that we have [Xi, Y] −
X̆i(hi) ∈ Aloc and (6.11).

Proof. (i) ⇒ (ii): This implication follows because BZ = D ∈ Mloc.
(ii) ⇒ (iii): Let i ∈ I and hi ∈ Ct be arbitrary. By Lemma 6.1 we have Xi − Y − [Xi, Y] ∈

Mloc. Taking into account the decompositions (6.2) and (6.8), we obtain

Mi(hi) + Ai(hi) + X̆i(hi) − 
̃− R̃ − [Xi, Y] ∈ Mloc,

which implies

Ai(hi) + X̆i(hi) − R̃ − [Xi, Y] ∈ Mloc ∩ V.

Taking into account [39, Lemmas I.3.10 and I.3.11], we have [Xi, Y] − X̆i(hi) ∈ Aloc and

Ai(hi) − R̃ − ([Xi, Y] − X̆i(hi))p ∈ Mloc ∩ V. (6.12)
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Note that the process on the left-hand side of (6.12) is predictable. Hence, by [39, Corollary
I.3.16], we obtain (6.11) up to an evanescent set.

(iii) ⇒ (iv): This implication is obvious.
(iv) ⇒ (i): Let i ∈ I be arbitrary, and let hi ∈ Ct be a truncation function such that we have

[Xi, Y] − X̆i(hi) ∈ Aloc and (6.11). Then by the decompositions (6.2) and (6.8) we have

Xi − Y − [Xi, Y] = Mi(hi) + Ai(hi) + X̆i(hi) − 
̃− R̃ − [Xi, Y]

= Mi(hi) + ([Xi, Y] − X̆i(hi))p − ([Xi, Y] − X̆i(hi)) − 
̃ ∈ Mloc.

Therefore, by Lemma 6.1 the process Z is an ELMD for S. �
For what follows, we fix an index i ∈ I and a truncation function hi ∈ Ct. We define the two

processes Bi(hi),Ci(hi) ∈ V as

Bi(hi) := [Mi(hi), 
̃] + [X̆i(hi), Y] − X̆i(hi),

Ci(hi) := [Mi(hi) + X̆i(hi), 
] − X̆i(hi).

Proposition 6.2. The following statements are equivalent:

(i) We have [Xi, Y] − X̆i(hi) ∈ Aloc and (6.11).

(ii) We have Bi(hi) ∈ Aloc and

Ai(hi) − R̃ = [Ai(hi), R̃] + Bi(hi)p. (6.13)

Proof. By the decompositions (6.2) and (6.8) and by [39, Proposition I.4.49.a], we have

[Xi, Y] − X̆i(hi) = [Mi(hi), 
̃] + [Mi(hi), R̃] + [Ai(hi), 
̃] + [Ai(hi), R̃]

+ [X̆i(hi), Y] − X̆i(hi)

= Bi(hi) + [Mi(hi), R̃] + [Ai(hi), 
̃] + [Ai(hi), R̃].

Furthermore, by [39, Proposition I.4.49.c] we have [Mi(hi), R̃], [Ai(hi), 
̃] ∈ Mloc. Therefore,
taking into account [39, Lemmas I.3.10 and I.3.11], we have [Xi, Y] − X̆i(hi) ∈ Aloc if and only
if Bi(hi) ∈ Aloc, and in this case we have

([Xi, Y] − X̆i(hi))p = [Ai(hi), R̃] + Bi(hi)p,

completing the proof. �
Before we proceed, recall that each A ∈ V admits a unique decomposition A = Ac + Ad into

a continuous process Ac ∈ V and a purely discontinuous process Ad ∈ V, and that each purely
discontinuous A ∈ V admits a unique decomposition A = Aq + Aa into purely discontinuous
processes Aq, Aa ∈ V such that Aq is quasi-left-continuous and Aa has only accessible jumps;
see [33, Theorem 4.25].

Lemma 6.2. We have Bi(hi)c = Ci(hi)c and Bi(hi)dq = Ci(hi)dq.

Proof. By (6.7) we have

Bi(hi)c = [Mi(hi), 
̃]c = (1 −�R̃) • [Mi(hi), 
]c = [Mi(hi), 
]c = Ci(hi)c.
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Now we define the two purely discontinuous processes I, J ∈ V as

I := [X̆i(hi), Y] − X̆i(hi),

J := [X̆i(hi), 
] − X̆i(hi).

Then by [39, Proposition I.4.49.a] and (6.9) we have

I = (�Y − 1) • X̆i(hi),

J = (�
− 1) • X̆i(hi) = �Y − 1

1 −�R̃
• X̆i(hi).

According to [33, Theorem 4.21], there exist an exhausting sequence (Tn)n∈N of totally inac-
cessible stopping times and an exhausting sequence (Sm)m∈N of predictable stopping times
such that

{�X̆i(hi) �= 0} ⊂
⋃
n∈N

[[Tn]] ∪
⋃
m∈N

[[Sm]].

Since the process R̃ is predictable, by the construction in the proof of [33, Theorem 4.25] and
[39, Proposition I.2.24] we have

Iq =
∑
n∈N

�ITn 1[[Tn,∞[[ =
∑
n∈N

�JTn 1[[Tn,∞[[ = Jq.

Similarly, by (6.7) we obtain

[Mi(hi), 
̃]dq = (
(1 −�R̃) • [Mi(hi), 
]d)q = [Mi(hi), 
]dq.

Consequently, we obtain

Bi(hi)dq = [Mi(hi), 
̃]dq + Iq = [Mi(hi), 
]dq + Jq = Ci(hi)dq,

completing the proof. �
Lemma 6.3. We have

�Ci(hi) = (1 +�R)�Bi(hi), (6.14)

�Bi(hi) = (1 −�R̃)�Ci(hi). (6.15)

Proof. By (6.6), (6.7), and (6.9) we obtain

(1 +�R)�Bi(hi) = 1

1 −�R̃
�([Mi(hi), 
̃] + [X̆i(hi), Y] − X̆i(hi))

= 1

1 −�R̃
((1 −�R̃)�[Mi(hi), 
] + (�Y − 1)�X̆i(hi))

=�Mi(hi)�
+ (�
− 1)�X̆i(hi)

=�([Mi(hi) + X̆i(hi), 
] − X̆i(hi)) =�Ci(hi),

showing (6.14). Now the identity (6.15) follows from (6.6). �
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Lemma 6.4. We have

Ci(hi)d = Bi(hi)d + [R, Bi(hi)]d and Bi(hi)d = Ci(hi)d − [̃R, Bi(hi)]d.

Proof. This is an immediate consequence of Lemma 6.3. �
Proposition 6.3. We have Bi(hi) ∈ Aloc if and only if Ci(hi) ∈ Aloc.

Proof. Suppose that Bi(hi) ∈ Aloc. By [39, Lemma I.3.10] we have

Var[R, Bi(hi)]d =
∑
s≤•

|�Rs�Bi(hi)s| ≤ Var(R)
∑
s≤•

|�Bi(hi)s|

≤ Var(R)Var(Bi(hi)) ∈ Aloc.

Therefore, by Lemma 6.4, we deduce that Ci(hi) ∈ Aloc. The converse implication is proven
analogously. �
Lemma 6.5. Suppose that Bi(hi) ∈ Aloc, or equivalently Ci(hi) ∈ Aloc. Then we have

(Bi(hi)p)c = (Ci(hi)p)c, (6.16)

�Ci(hi)p = (1 +�R)�Bi(hi)p, (6.17)

�Bi(hi)p = (1 −�R̃)�Ci(hi)p. (6.18)

Proof. By [33, Theorem 7.14] and Lemma 6.2 we have

(Bi(hi)p)c = (Bi(hi)c + Bi(hi)dq)p = (Ci(hi)c + Ci(hi)dq)p = (Ci(hi)p)c,

showing (6.16). Furthermore, by [39, I.3.21, I.2.30] and Lemma 6.3 we obtain

�Ci(hi)p = p[�Ci(hi)] = p[(1 +�R)�Bi(hi)] = (1 +�R) p[�Bi(hi)]

= (1 +�R)�Bi(hi)p,

showing (6.17). Now the identity (6.18) is a consequence of (6.6). �
Proposition 6.4. Suppose that Bi(hi) ∈ Aloc, or equivalently Ci(hi) ∈ Aloc. Then we have (6.13)
if and only if

Ai(hi) − R = Ci(hi)p. (6.19)

Proof. We have (6.13) if and only if

Ai(hi)c − Rc = (Bi(hi)p)c and (6.20)

�Ai(hi) −�R̃ =�[Ai(hi), R̃] +�Bi(hi)p. (6.21)

By virtue of (6.6), the condition (6.21) is equivalent to

�Ai(hi) −�R = �Bi(hi)p

1 −�R̃
. (6.22)
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Furthermore, we have (6.19) if and only if

Ai(hi)c − Rc = (Ci(hi)p)c and (6.23)

�Ai(hi) −�R =�Ci(hi)p. (6.24)

Using Lemma 6.5, we obtain the equivalences (6.20) ⇔ (6.23) and (6.22) ⇔ (6.24),
completing the proof. �

Now, the proof of Theorem 6.1 is a consequence of Propositions 6.1, 6.2, 6.3, and 6.4

7. Jump-diffusion models with fixed times of discontinuities

In this section we study the existence of ELMDs for jump-diffusion models with fixed times
of discontinuities. Let λ be the Lebesgue measure on (R+,B(R+)), and let W be an Rm-valued
standard Wiener process for some m ∈N. Furthermore, let μc be a homogeneous Poisson
random measure (see [39, Section II.1.c]) on some mark space (E, E), which we assume to
be a Blackwell space. Then its predictable compensator (see [39, Theorem II.1.8]) is of the
form νc = λ⊗ F for some σ -finite measure F on the mark space (E, E). Let μd be another
Poisson random measure on (E, E), and denote by νd its predictable compensator. We set at :=
νd({t} × E) for each t ∈R+, and define the set J ⊂R+ as J := {t ∈R+ : at > 0}. According to
[39, Proposition II.1.17], the set J is countable, and we may assume that at ≤ 1 for all t ∈R+.
We assume that μd is purely discontinuous in the sense that νd(dt, dx) = νd(dt, dx)1J(t). Let
ζ J be the measure on (R+,B(R+)) given by ζ J(B) = ∑

k∈B∩J 1 for each B ∈B(R+); that is, ζ J

is the counting measure with support J.
Let L1

loc(λ) be the space of all predictable processes α :�×R+ →R such that |α| •
λ ∈ Aloc, let L1

loc(ζ J) be the space of all predictable processes α :�×R+ →R such that
|α| • ζ J ∈ Aloc, and let L2

loc(W) be the space of all predictable processes σ :�×R+ →Rm

such that ‖σ‖2
Rm • λ ∈ Aloc. Furthermore, let L2

loc(μc) be the space of all predictable processes
γ :�×R+ × E →R such that |γ |2 ∗ νc ∈ Aloc, and let L2

loc(μd) be the space of all predictable
processes δ :�×R+ × E →R such that (δ− δ̂)2 ∗ νd + ∑

s≤• (1 − as )̂δ2
s ∈ Aloc, where

δ̂t :=
∫

E
δt(x)νd({t} × dx), t ∈R+.

As in the previous section, we consider a financial market S= {Si : i ∈ I} with an arbitrary index
set I �= ∅. We assume that for each i ∈ I the semimartingale Si is given by

Si = Si
0E

(
αi,c • λ+ αi,d • ζ J + σ i • W + γ i ∗ (μc − νc) + δi ∗ (μd −μd)

)
with αi,c ∈ L1

loc(λ), αi,d ∈ L1
loc(ζ J), σ i ∈ L2

loc(W), γ i ∈ L2
loc(μc) such that γ i >−1, and δi ∈

L2
loc(μd) such that δi − δ̂i >−1. Here ‘∗’ denotes the stochastic integral with respect to a ran-

dom measure; see [39, Section II.1.d]. Let Z be a multiplicative special semimartingale with
multiplicative decomposition Z = DB−1, where

D = E
( − θ • W −ψ ∗ (μc − νc) − φ ∗ (μd − νd)

)
and B = E

(
rc • λ+ rd • ζ J),

with θ ∈ L2
loc(W), ψ ∈ L2

loc(μc) such that ψ < 1, and φ ∈ L2
loc(μd) such that φ − φ̂ < 1, as well

as rc ∈ L1
loc(λ) and rd ∈ L1

loc(ζ J).
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Theorem 7.1. The following statements are equivalent:

(i) Z is an ELMD for S.

(ii) Z is an ELMD for S∪ {B}.
(iii) For each i ∈ I we have

αi,c − rc = 〈σ i, θ〉Rm + 〈γ i, ψ〉L2(F) λ-a.e., P− a.e. (7.1)

α
i,d
t − rd

t =
∫

E
δi

t(x)φt(x)νd({t} × dx) − δ̂i
t φ̂t, t ∈ J, P− a.e. (7.2)

Before we provide the proof of Theorem 7.1, let us prepare an auxiliary result.

Lemma 7.1. Let δ ∈ L2
loc(μd) be arbitrary, and define the purely discontinuous local mar-

tingale M := δ ∗ (μd − νd). Then the predictable quadratic variation 〈M,M〉 is purely
discontinuous, and we have

�〈M,M〉t =
∫

E
δt(x)2νd({t} × dx) − δ̂2

t , t ∈R+.

Proof. According to [39, Theorem II.1.33.a] we have

〈M,M〉 = (δ− δ̂)2 ∗ νd +
∑
s≤•

(1 − as )̂δ
2
s .

For each t ∈R+ we obtain

(δ− δ̂)2 ∗ νd
t =

∫
[0,t]×E

(δs(x) − δ̂s)
2νd(ds, dx) =

∑
s≤t

∫
E

(δs(x) − δ̂s)
2νd({s} × dx)

=
∑
s≤t

∫
E

(
δs(x)2 − 2δs(x)̂δs + δ̂2

s

)
νd({s} × dx)

=
∑
s≤t

( ∫
E
δs(x)2νd({s} × dx) − 2̂δ2

s + δ̂2
s as

)
,

and hence

〈M,M〉 =
∑
s≤•

( ∫
E
δs(x)2νd({s} × dx) − δ̂2

s

)
,

completing the proof. �
For the upcoming proof of Theorem 7.1, we recall that H2

loc denotes the space of all locally
square-integrable martingales.

Proof of Theorem 7.1. We define the processes

Mi := σ i • W + γ i ∗ (μc − νc) + δi ∗ (μd − νd), i ∈ I,

Ai := αi,c • λ+ αi,d • ζ J, i ∈ I,


 := θ • W +ψ ∗ (μc −μc) + φ ∗ (νd − νd),

R := rc • λ+ rd • ζ J .
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According to [39, Theorem II.1.33.a] we have Mi ∈ H2
loc for each i ∈ I, and we have
 ∈ H2

loc.
Let i ∈ I be arbitrary. By [39, Theorem I.4.50.b] we have [Mi, 
] ∈ Aloc. Furthermore, by [39,
Theorem II.1.33.a] we obtain

〈Mi, 
〉c = (〈σ i, θ〉Rm + 〈γ i, ψ〉L2(F)

) • λ,
and by Lemma 7.1 we have

�〈Mi, 
〉t =
∫

E
δi

t(x)φt(x)νd({t} × dx) − δ̂i
t φ̂t, t ∈R+.

Consequently, applying Theorem 6.2 completes the proof. �
We conclude this section by considering the particular situation where the risky assets are

given by finitely many diffusion processes. More precisely, consider a continuous market S=
{S1, . . . , Sd} where

Si = Si
0E(Xi), i = 1, . . . , d,

and where the Rd-valued semimartingale X = (X1, . . . , Xd) is an Itô process of the form

X = α • λ+ σ • W.

Here we may regard σ as an Rd×m-valued process. Let Z be a multiplicative special
semimartingale with multiplicative decomposition Z = DB−1, where

D = E(−θ • W) and B = E(r • λ) = exp (r • λ)

with market price of risk θ ∈ L2
loc(W) and short rate r ∈ L1

loc(λ). As an immediate consequence
of Theorem 7.1 we obtain the following result.

Corollary 7.1. Z is an ELMD for S if and only if

σθ = α − r1Rd λ− a.e., P− a.e., (7.3)

where we agree on the notation 1Rd = (1, . . . , 1) ∈Rd.

Remark 7.1. Concerning the construction of an ELMD Z, there are two possible approaches:

• Let us fix a market price of risk θ . Then an appropriate short rate r satisfying (7.3) exists
if and only if α− σθ ∈ lin{1Rd }. In this case, the short rate is unique and given by

r1Rd = α − σθ .

This confirms the statement about the uniqueness of the savings account; see
Proposition 4.2.

• Let us fix a short rate r. Then an appropriate market price θ is a solution of the Rd-valued
linear equation (7.3). Depending on the structure of the matrix σ , there may be several
solutions.
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Example 7.1. Let us consider some particular situations:

1. Assume d = m = 1 and σ > 0. This example includes the well-known Black–Scholes
model. It highlights the fact that there can be several ELMDs. Indeed, Equation (7.3) is
satisfied if and only if

θ = α− r

σ
⇐⇒ r = α − σθ .

2. Assume d = 2, m = 1 and α1 �= α2, σ 1 = σ 2. This example shows that an ELMD does
not need to exist. Indeed, setting σ := σ 1, we have that Equation (7.3) is satisfied if and
only if

σθ = α1 − r and σθ = α2 − r,

which is impossible because α1 �= α2. Therefore, by Theorem 4.2, a savings account B
such that P+

sf,1({S1, S2, B}) satisfies NUPBR does not exist.

3. Assume d = 1, m = 2 and σ 1, σ 2 > 0. This example shows that the market price of risk
does not need to be unique. Indeed, Equation (7.3) is satisfied if and only if

σ 1θ1 + σ 2θ2 = α− r.

Hence, for a fixed short rate r there are several solutions for the market price of risk
θ = (θ1, θ2).

8. Further examples

In this section we provide further examples which are related to our main results. The first
example deals with the construction of arbitrage-free markets by using the real-world pricing
formula.

Example 8.1. (Real-world pricing) We fix a savings account B and a local martingale
D> 0, and we define the multiplicative special semimartingale Z := DB−1. Let H1, . . . ,Hd

be nonnegative FT -measurable contingent claims for some d ∈N such that

HiZT ∈ L1 for all i = 1, . . . , d. (8.1)

We define the market S= {S1, . . . , Sd} by the real-world pricing formula

Si
t := Z−1

t E[HiZT |Ft], t ∈ [0, T], (8.2)

for all i = 1, . . . , d. Then Z is an ELMD for S, and by Theorem 4.2 the set P+
sf,1(S∪ {B})

satisfies NUPBR. If H1 = 1, then the real-world pricing formula reads

S1
t = Z−1

t E[ZT |Ft], t ∈ [0, T], (8.3)

and the first primary security account is a zero-coupon bond with maturity date T .

We can derive the widely applied risk-neutral pricing formula from the more general real-
world pricing formula as a special case.

Example 8.2. (Risk-neutral pricing) Suppose that in the setting of Example 8.1 the savings
accounts B and B−1 are bounded. By Theorem 4.4 the set Padm

sf,0 (S∪ {B}) satisfies NFLVR if
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and only if D is a true martingale. Suppose that this is the case. Then, also by Theorem 4.4,
there exists an ELMM Q≈ P for SB−1, and its density process is given by D/D0. By (8.1) we
have

HiB−1
T ∈ L1(Q) for all i = 1, . . . , d.

Hence, using Bayes’ rule (see [39, III.3.9]), we obtain the risk-neutral pricing formula

Si
t = Bt EQ[HiB−1

T |Ft], t ∈ [0, T], (8.4)

for all i = 1, . . . , d. If H1 = 1, then the real-world pricing formula reads

S1
t = Bt EQ[B−1

T |Ft], t ∈ [0, T], (8.5)

and the first primary security account is a zero-coupon bond with maturity date T .

The real-world pricing formula (8.2) can also be used for pricing and hedging contingent
claims, as follows.

Example 8.3. (Pricing and hedging of contingent claims) Let S= {S1, . . . , Sd} be a market,
and let Z be an ELMD for S which is a multiplicative special semimartingale of the form
Z = DB−1 with a local martingale D> 0 and a savings account B. By Theorem 4.2 the market is
free of arbitrage in the sense that P+

sf,1(S∪ {B}) satisfies NUPBR. Now, let H be a nonnegative

FT -measurable contingent claim such that HZT ∈ L1.

• We would like to find a consistent price process π for the contingent claim H, which
means that P+

sf,1(S∪ {π} ∪ {B}) should also satisfy NUPBR. This is achieved by using
the real-world pricing formula

πt := Z−1
t E[HZT |Ft], t ∈ [0, T]. (8.6)

Indeed, the process Z is also an ELMD for S∪ {π}, and hence, by Theorem 4.2, the set
P+

sf,1(S∪ {π} ∪ {B}) satisfies NUPBR.

• We assume that a market participant always prefers more for less. In this spirit, the price
process π is the most economical price process because

π ≤ Vν (8.7)

for every self-financing strategy ν = (δ, η) ∈�sf(S∪ {B}) such that Vν ≥ 0 and VνT = H,
where Vν denotes the corresponding self-financing portfolio Vν = ∑d

i=1 δ
iSi + ηB. In

other words, the price process π is a lower bound for the least expensive nonnegative
self-financing portfolio which replicates H, provided such a portfolio exists. In partic-
ular, if π can be realized as a self-financing portfolio, then it is the least expensive
portfolio replicating H. In order to show (8.7), note that by Proposition C.3 the pro-
cess VνZ is a nonnegative local martingale, and hence a supermartingale. Furthermore,
the process πZ is a martingale. Since a martingale is the minimal nonnegative super-
martingale that reaches at time T a given nonnegative integrable value (see [53, Lemma
10.4.1]), we deduce πTZT ≤ VνTZT , and hence the inequality (8.7) follows.

In principle, the real-world prices of contingent claims can also be determined with the risk-
neutral pricing formula, but only if the local martingale D is a true martingale. An example of
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a local martingale which is not a true martingale is the inverse of a squared Bessel process of
dimension 4, which is given by the solution of the stochastic differential equation

dDt = −2D
3
2
t dWt, (8.8)

where W is a real-valued standard Wiener process. This process plays an important role in the
minimal market model; see, for example, [53, Section 13]. The following example shows that
the real-world pricing formula also provides the forward measure pricing formula in a market
with a zero-coupon bond.

Example 8.4. (Forward measure pricing formula) Let S= {PT} be a market consisting of a
zero-coupon bond PT with maturity T . Let Z be an ELMD for S which is a multiplicative
special semimartingale of the form Z = DB−1 with a local martingale D> 0 and a savings
account B. By Theorem 4.2 the set P+

sf,1({PT , B}) satisfies NUPBR. Now, let H be a nonneg-

ative FT -measurable contingent claim such that HZT ∈ L1. By Example 8.3 we know that the
least expensive price process π is given by the real-world pricing formula (8.6). Since Z is an
ELMD for S, the process PTZ is a local martingale. If PTZ is a true martingale, then using
Bayes’ rule (see [39, III.3.9]) the price process π can be expressed by the forward measure
pricing formula

πt = PT
t EQT [H|Ft], t ∈ [0, T], (8.9)

where QT ≈ P denotes the T-forward measure with density process (PTZ)/(PT
0 Z0). For practi-

tioners it may be interesting to note that the convenient forward measure pricing formula (8.9)
can still be applied when D is not a true martingale, which means that a risk-neutral measure
Q≈ P for the discounted bond PT/B might not exist; see also Example 5.3 below. If D is a
true martingale, then the measure change QT ≈ P can be performed in the two steps Q≈ P

and QT ≈Q with respective density processes D/D0 and (PTB−1)/PT
0 , which is usually done

under the risk-neutral approach.

We continue the above example by calculating the least expensive zero-coupon bond price
PT

0 under the minimal market model with D as in (8.8).

Example 8.5. (A free lunch with vanishing risk) As in the previous example, we consider a
market S= {PT} consisting of a zero-coupon bond PT with maturity T . Here we fix a determin-
istic savings account B; for example it could be Bt = ert, t ∈ [0, T], for some constant interest
rate r. Furthermore, we denote by D> 0 the strict local martingale given by the stochastic dif-
ferential equation (8.8) with D0 = 1, and we specify the zero-coupon bond PT by the real-world
pricing formula (8.3) with Z = DB−1, which here becomes

PT
t = (

BtB
−1
T

)
D−1

t E[DT |Ft], t ∈ [0, T].

Then Z is an ELMD for S, and hence, by Theorem 4.2, the set P+
sf,1({PT , B}) satisfies NUPBR.

However, since D is not a true martingale, we cannot apply Theorem 4.4, and, as a conse-
quence, we cannot ensure that the set Padm

sf,0 ({PT , B}) satisfies NFLVR. However, the process
PTZ is a true martingale, which allows us to use the convenient forward measure pricing
formula (8.9) for pricing contingent claims H. In order to investigate our observation about
the possible existence of a free lunch with vanishing risk, let us denote by P̃T the price of a
zero-coupon bond with maturity T computed formally with the risk-neutral pricing formula
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(8.5) under some putative risk-neutral probability measure Q. Since B is deterministic, we
obtain

P̃T = B/BT

for every choice of the measure Q, and hence PT
0 < P̃T

0 , because by the formula (8.7.17) in [53]
we have

PT
0 = 1

BT

[
1 − exp

(
− 1

2T

)]
,

which is less than the risk-neutral zero-coupon bond P̃T
0 = B−1

T . In accordance with our pre-
vious observation, the difference between these two zero-coupon bond prices indicates the
presence of some free lunch with vanishing risk. However, as we have seen, the NUPBR con-
dition is still satisfied. By making 1/Z tradeable as numéraire portfolio (see [44, 53]), one can
hedge the least expensive zero-coupon bond. This allows us to exploit the identified free lunch
with vanishing risk, which is caused by the strict local martingale property of D. From the
practical perspective, this allows us to produce long-term zero-coupon bond-type payouts less
expensively than under the NFLVR condition, which is likely to have significant impact on the
pension and insurance industry (see e.g. [63]) through the realistic modeling of the ELMD Z
for S, which is the inverse of the numéraire portfolio 1/Z. The latter coincides, up to some
subtleties, with the growth-optimal portfolio; see [44].

9. Dynamic trading strategies

For risk management purposes, trading strategies that do not need to be self-financing can be
crucial; see, for example, [24] and [59]. In this section we will construct such strategies which
are in line with our findings from the previous sections. Of course, when looking for trading
strategies which are not self-financing, not all strategies can be allowed. For the construction
of reasonable strategies that do not need to be self-financing, the concept of a locally real-
world mean self-financing dynamic trading strategy (see [24]) turns out to be fruitful. In the
risk-neutral context, an analogous notion has been introduced in [59].

As in the previous sections, we consider a finite market S= {S1, . . . , Sd} with nonnegative
semimartingales. We assume that there exists an ELMD Z for S which is a multiplicative
special semimartingale of the form Z = DB−1 with a local martingale D> 0 and a savings
account B. According to Theorem 4.2, the set P+

sf,1(S∪ {B}) satisfies NUPBR.

Definition 9.1. A dynamic trading strategy ν = (δ, η) consists of a self-financing strategy δ ∈
�sf(S) and a real-valued optional process η, which is integrable with respect to B, such that the
portfolio

Vν := Sδ + Bη,

where we use the common notation Sδ := δ · S and Bη := η · B, satisfies

Vν = Sδ0 + δ • S + Bη.

In this case, we call δ the self-financing part of ν.

Definition 9.2. Let ν = (δ, η) be a dynamic trading strategy. The profit-and-loss (P&L) process
Cν is defined as

Cν := Bη − Bη0 − η • B.
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Remark 9.1. Note that Cν0 = 0 and

Vν = Vν0 + δ • S + η • B + Cν . (9.1)

Thus, the P&L process Cν monitors the cumulative inflow and outflow of extra capital. Note
that Cν = 0 if and only if

Vν = Vν0 + δ • S + η • B. (9.2)

This in particular is satisfied if ν is self-financing in the market S∪ {B}, but the condition
(9.2) is a bit more general, because η may be optional, which allows us to go beyond pre-
dictable processes. More precisely, we have ν ∈�sf(S∪ {B}) if and only if ν ∈ L((S, B)) and
Equation (9.2) is satisfied.

Definition 9.3. A dynamic trading strategy ν and the corresponding portfolio Vν are called
locally real-world mean self-financing if Cν ∈ Mloc.

Note that every self-financing strategy ν is locally real-world mean self-financing. The
following result shows how we can easily construct locally real-world mean self-financing
strategies.

Proposition 9.1. Let ν = (δ, η) be a dynamic trading strategy such that η is a local martingale.
Then the strategy ν is locally real-world mean self-financing, and the P&L process is given by
Cν = B− • η.

Proof. According to [39, Proposition I.4.49.a] we have

Bη = Bη0 + B− • η+ η • B,

and hence Cν = B− • η ∈ Mloc, completing the proof. �
Recall that Z denotes an ELMD for the financial market S. For every self-financing strat-

egy ν, the corresponding self-financing portfolio Vν has the property that VνZ is also a local
martingale, which by virtue of Theorem 4.2 means that P+

sf,1(S∪ {Vν} ∪ {B}) also satisfies
NUPBR. In this spirit, we wish to construct such dynamic trading strategies ν such that VνZ
is also a local martingale. As we will see, this can be achieved by choosing locally real-world
mean self-financing strategies which are orthogonal to the deflator Z. More precisely, we have
the following result.

Theorem 9.1. Let ν = (δ, η) be a dynamic trading strategy with Vν ≥ 0 such that η is a
continuous local martingale with [η, Z] = 0. Then the following statements are true:

1. The strategy ν is locally real-world mean self-financing.

2. The process VνZ is a local martingale.

Proof. By Proposition 9.1 the strategy ν is locally real-world mean self-financing, and the
P&L process is given by Cν = B− • η. Noting that [Cν, Z] = B− • [η, Z] = 0, by the represen-
tation (9.1) and Proposition 2.2 we have VνZ ∈ Mσ . Since Vν ≥ 0, by Lemma C.1 we deduce
that VνZ ∈ Mloc. �

Recall that Z is an ELMD for P+
sf,1(S∪ {B}}). Now, let us denote by P+

msf,1(S∪ {B}) the
set of all outcomes of trading strategies with initial value one which arise from a nonnegative
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self-financing portfolio Vν or from a nonnegative locally real-world mean self-financing port-
folio Vν as in Theorem 9.1 Obviously, the set P+

msf,1(S∪ {B}) is larger than P+
sf,1(S∪ {B}).

However, using Theorem 9.1 we deduce that Z is even an ELMD for P+
msf,1(S∪ {B}).

Example 9.1. (Construction of locally real-world mean self-financing strategies.) Let us sup-
pose we are in the situation of Corollary 7.1, where we consider diffusion models. Then we
have Z = E(Y), where

Y = −θ • W − r • λ
with an Rm-valued standard Wiener process process W, a market price of risk θ ∈ L2

loc(W), and
a short rate r ∈ L1

loc(λ). Let δ ∈�sf(S) be a self-financing strategy, and let ϑ ∈ L2
loc(W) be such

that Vν ≥ 0, where ν = (δ, η) denotes the dynamic trading strategy given by η := ϑ • W. We
assume θ ⊥ ϑ in the sense that θ · ϑ = 0. Since Z = 1 + Z− • Y , we obtain

[η, Z] = [η, Z− • Y] = −〈ϑ • W, Z−θ • W〉 = −Z−(ϑ · θ ) • λ= 0.

Therefore, by Theorem 9.1, the strategy ν is locally real-world mean self-financing, and the
process VνZ is a local martingale.

Example 9.2. (Pricing and hedging of contingent claims.) Consider the framework of
Example 8.3, where we have constructed the least expensive price process π for a nonneg-
ative contingent claim H with maturity T by using the real-world pricing formula (8.6). Note
that the claim H can be non-replicable; that is, it can happen that a self-financing portfo-
lio ν = (δ, η) ∈�sf(S∪ {B}) with π = Vν does not exist. However, allowing dynamic trading
strategies that do not need to be self-financing, it might be possible to find a locally real-
world mean self-financing strategy ν = (δ, η) as in Theorem 9.1 such that π = Vν . Then,
by the decomposition (9.1), the P&L process Cν can also be regarded as the non-hedgeable
part of the claim H. In any case, we can improve the lower bound (8.7) for the least expen-
sive nonnegative portfolio which replicates H. Indeed, using our previous results, we even
have

π ≤ Vν,

where ν is any self-financing strategy or any locally real-world mean self-financing strategy as
in Theorem 9.1 such that Vν ≥ 0 and VνT = H.

10. The semimartingale property of the primary security accounts

So far, we have assumed that the financial market consists of nonnegative semimartingales.
Using the results from [48], we will show in this section that the primary security accounts must
be semimartingales under the mild and natural condition that the market satisfies NUPBR for
all its self-financing portfolios which are simple and without short positions. We also refer to
[9] for similar results.

Let S= {S1, . . . , Sd} be a market consisting of nonnegative, adapted, càdlàg processes
S1, . . . , Sd. Furthermore, let B be a savings account. For what follows, we recall that ‘ • ’
denotes stochastic integration, whereas ‘ · ’ denotes the usual inner product in Euclidean space.
A strategy ν = (δ, η) for S∪ {B} is called simple if the following hold:

https://doi.org/10.1017/apr.2022.62 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.62


No arbitrage and multiplicative special semimartingales 1063

(a) δ is of the form

δ =
n∑

j=1

�j1]]τj−1,τj]] (10.1)

for some n ∈N, where 0 = τ0 < τ1 < . . . < τn are finite stopping times, and �j =
(�i

j)i=1,...,d is Fτj−1 -measurable for each j = 1, . . . , n, and

(b) η is a real-valued optional process, which is integrable with respect to B.

For such a simple strategy we define the portfolio Vν := Sδ + Bη, where we use the common
notation Sδ := δ · S and Bη := η · B. The portfolio Vν is called self-financing if

Vν = Vν0 +
n∑

j=1

�j · (Sτj − Sτj−1 ) + η • B,

where τ0, . . . , τn and �1, . . . , �n stem from the representation (10.1). We denote by
Pν≥0

sf,1,s(S∪ {B}) the set of all outcomes of simple self-financing portfolios with initial value

one such that δ1, . . . , δd ≥ 0 and η≥ 0. The latter condition means that no short selling is
allowed. We say that a nonnegative semimartingale S ≥ 0 cannot revive from bankruptcy if
S = 0 on [[τ,∞[[, where τ := inf{t ∈R+ : Xt− = 0 or Xt = 0}.
Theorem 10.1. Suppose there is a savings account B such that Pν≥0

sf,1,s(S∪ {B}) satisfies

NUPBR. Then the processes S1, . . . , Sd are semimartingales which cannot revive from
bankruptcy.

For the proof of Theorem 10.1 we prepare some auxiliary results. Let B be a savings
account. We consider the discounted market X := SB−1. A strategy θ for X is called simple if
it is of the form

θ =
n∑

j=1

ϑj1[[τj−1,τj[[ (10.2)

for some n ∈N, where 0 = τ0 < τ1 < . . . < τn are finite stopping times, and ϑj = (ϑ i
j )i=1,...,d is

Fτj−1 -measurable for each j = 1, . . . , n. For x ∈R and such a simple strategy θ we define the
integral process

Xx,θ := x +
n∑

j=1

ϑj · (Sτj − Sτj−1 ),

where τ0, . . . , τn and ϑ1, . . . , ϑn stem from the representation (10.2). We denote by Iθ≥0
1,s (X)

the set of all outcomes of integral processes with x = 1 and a simple strategy θ such that θ ≥ 0
and Xx,θ

− − θ · X− ≥ 0. Furthermore, let �s(X) be the set of all simple strategies for X, and let
�sf,s(X̄) be the set of all simple self-financing strategies for X̄ := X∪ {1}. Then we have the
following result, which is similar to Lemma B.1.

Lemma 10.1. Suppose that 1 /∈X. Then there is a bijection between R×�s(X) and �sf,s(X̄),
which is defined as follows:

1. For δ ∈�sf(X̄) we assign

(δ, η) = ν �→ (x, θ ) := (Xδ0, δ) ∈R×�(X). (10.3)
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2. For (x, θ ) ∈R×�(X) we assign

(x, θ ) �→ (δ, η) = ν = (θ, Xx,θ
− − θ · X−) ∈�sf(X̄). (10.4)

Furthermore, for all (x, θ ) ∈R×�s(X) and the corresponding self-financing strategy ν ∈
�sf,s(X̄) we have

X̄ν = Xx,θ . (10.5)

Proposition 10.1. Pν≥0
sf,1,s(S∪ {B}) satisfies NUPBR if and only if Iθ≥0

1,s (SB−1) satisfies
NUPBR.

Proof. The proof is analogous to that of Proposition B.1, where we take into account the
relation (10.4) from Lemma 10.1. �

Now we are ready to provide the proof of Theorem 10.1.

Proof of Theorem 10.1. By Proposition 10.1, the set Iθ≥0
1,s (SB−1) satisfies NUPBR. Hence,

by [48, Proposition 1.1 and Theorem 1.3], the processes S1B−1, . . . , SdB−1 are semimartin-
gales which cannot revive from bankruptcy. Since B is a savings account, it follows that
S1, . . . , Sd are semimartingales which cannot revive from bankruptcy. �

11. Filtration enlargements

It can happen that some additional information arises which is not originally present in the
market. Models with insider information have been widely studied in the literature; see, for
example, [1–4, 28]. Mathematically, such additional information means that we consider an
enlargement of the original filtration. More precisely, we consider a new filtration G= (Gt)t∈R+
such that Ft ⊂ Gt for all t ∈R+, where F= (Ft)t∈R+ denotes the original filtration. Typically,
there is also a G-stopping time τ involved, and the question arises of when the absence of
arbitrage in a financial market S= {S1, . . . , Sd} under the original filtration F implies the
absence of arbitrage in the stopped market Sτ = {S1,τ , . . . , Sd,τ } under the enlarged filtration
G. There exist several results for the case that the financial market is already discounted by
some numéraire; see, for example, the aforementioned articles. By virtue of Proposition B.1,
we can transfer most of these results to the situation which we consider in this paper.

As an illustration, consider the situation with a progressive filtration enlargement, which we
briefly recall; see [1, Section 1.3] for further details. Let τ :�→ [0,∞] be an F-measurable
random time such that P(τ = ∞) = 0. The progressively enlarged filtration G= (Gt)t∈R+ is
defined as

Gt := {B ∈ F : B ∩ {τ > t} = Bt ∩ {τ > t} for some Bt ∈ Ft} for all t ∈R+.

Let Z be the Azéma supermartingale given by Zt = P(τ > t|Ft) for all t ∈R+, and let A be the
dual optional projection of 1[[τ,∞[[. Furthermore, we define

ζ := inf{t ∈R+ : Zt = 0},
the Fζ -measurable event � : = {τ <∞, Zζ− > 0, �Aζ = 0}, and

η := ζ� := ζ1� + ∞1�\�.

The following result applies in the situation of Theorem 4.2.
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Theorem 11.1. Suppose there is a savings account B such that P+
sf,1(S∪ {B}) satisfies NUPBR

under F. If P(η <∞, �Sη �= 0, �Bη �= 0) = 0, where S = (S1, . . . , Sd), then P+
sf,1(Sτ ∪ {Bτ })

satisfies NUPBR under G.

Proof. By Proposition B.1, the set I+
1 (SB−1) satisfies NUPBR under F. Note that the dis-

counted market is given by SB−1 = {S̃1, . . . , S̃d}, where S̃i := SiB−1 for all i = 1, . . . , d. By
assumption we have P(τ <∞, �S̃η �= 0) = 0. Thus, by [1, Theorem 1.4], the set I+

1 ((SB−1)τ )
satisfies NUPBR under G, where (SB−1)τ = {S̃1,τ , . . . , S̃d,τ } denotes the stopped dis-
counted market. Consequently, by Proposition B.1 the set P+

sf,1(Sτ ∪ {Bτ }) satisfies NUPBR
under G. �

12. Financial models in discrete time

Using our previous results for continuous-time models, we can also derive a no-arbitrage
result for discrete-time models. This result is in accordance with the well-known result con-
cerning the absence of arbitrage in discrete-time finance. In this section, we assume that a
discrete filtration (Fk)k=0,...,T for some integer T ∈N with F0 = {�, ∅} is given, and we con-
sider a finite market S= {S1, . . . , Sd} consisting of nonnegative, adapted processes. As shown
in [39, p. 14], this setting can be regarded as a particular case of the continuous-time framework
which we have considered so far. Note that every Rd-valued predictable process δ belongs to
�(S), and that the stochastic integral δ • S = (δ • St)t=0,...,T is given by

δ • S0 = 0,

δ • St =
t∑

k=1

δk · (Sk − Sk−1), t = 1, . . . , T .

Theorem 12.1. The following statements are equivalent:

(i) There exists a savings account B such that Psf,0(S∪ {B}) satisfies NA.

(ii) There exist a savings account B and an EMM Q≈ P for SB−1.

(iii) There exists an EMD Z for S which is a multiplicative special semimartingale such that
the local martingale part is a true martingale.

If the previous conditions are fulfilled, then the savings accounts B in (i)–(ii) can be chosen
to be equal, and in (iii) we can choose an ELMD Z for S with multiplicative decomposition
Z = DB−1 with this savings account B.

Proof. Let B be an arbitrary savings account.
(i) ⇒ (iii): By Proposition B.1, the set I0(SB−1) also satisfies NA, and hence, by [43,

Theorem 1], the set I0(SB−1) − L0+ is closed in L0. Therefore, by [55, Corollary 5.9], the set
I0(SB−1) also satisfies NFLVR. By [55, Proposition 7.27] it follows that I1(SB−1) satisfies
NA1, and hence NUPBR. Of course, the subset I+

1 (SB−1) also satisfies NUPBR. Therefore, by
Proposition B.1 the set P+

sf,1(S∪ {B}) satisfies NUPBR. Hence by Theorem 4.2 there exists a

local martingale D> 0 such that Z = DB−1 is an ELMD for S. By [38, Theorem 1] the process
D is a generalized martingale. Therefore, for each t = 0, . . . , T we have P-almost surely

E[Dt] =E[Dt|F0] = D0 <∞,
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and hence Dt ∈ L1, proving that D is a martingale. Analogously, we show that the processes
S1Z, . . . , SdZ are martingales, proving that Z is an EMD for S.

(iii) ⇒ (ii): Note that D is an EMD for SB−1. Let Q≈ P be the equivalent probability
measure on (�,FT ) with Radon–Nikodym derivative dQ

dP = DT/D0. Then Q is an EMM for
SB−1.

(ii) ⇒ (i): Let ξ ∈ I0(SB−1) ∩ L0+ be arbitrary. Then there exists a strategy δ ∈�(SB−1)
such that (δ • (SB−1))T = ξ . Since Q is an EMM for SB−1, the process M := δ • (SB−1) is a
d-martingale transform under Q. Therefore, by [38, Theorem 1] the process M is a generalized
Q-martingale. Hence, we have Q-almost surely

EQ[ξ ] =EQ[MT ] =EQ[MT |F0] = M0 = 0.

Since ξ ≥ 0 and Q≈ P, we deduce that ξ = 0. Hence I0(SB−1) satisfies NA, and by
Proposition B.1 it follows that Psf,0(S∪ {B}) satisfies NA. �

In the previous result, it is important to note that NA is equivalent to the existence of an
EMM Q≈ P, which connects to the well-known no-arbitrage result in discrete time; see, for
example, [25]. This is due to the fact that, in the present discrete-time setting, for every deflator
as in Theorem 4.2 which is a multiplicative special semimartingale, the local martingale part
is a true martingale, which gives rise to the aforementioned measure change. This finding
indicates that without moving to continuous-time modeling, one would be unable to exploit
less expensive real-world pricing that would work in practice when the existing market had an
ELMD that was a strict local martingale.

Remark 12.1. Concerning the existence of self-financing arbitrage portfolios, we can draw the
following conclusions:

1. In the situation of Theorem 4.2, a nonnegative self-financing arbitrage portfolio does
not exist in the market S∪ {B}. Note that this does not exclude the existence of arbitrage
portfolios which go negative in between, say admissible arbitrage portfolios.

2. In the situation of Theorem 4.4, an admissible self-financing arbitrage portfolio does
not exist in the market S∪ {B}. Note that this does not exclude the existence of arbi-
trage portfolios. However, such an arbitrage portfolio cannot be admissible, and hence
requires an unbounded credit line; i.e., it is not uniformly bounded from below.

3. In the situation of Theorem 12.1, a self-financing arbitrage portfolio does not exist in
the market S∪ {B}.

Appendix A. Vector stochastic integration

In this appendix we provide the required results about vector stochastic integration. A
general reference about this topic is [60], to which we also refer for upcoming notation.

Let (�,F, (Ft)t∈R+ , P) be a stochastic basis satisfying the usual conditions. For a multidi-
mensional semimartingale X ∈ Sd we denote by L(X) the space of all X-integrable processes;
see [60]. The proof of the following result is straightforward and therefore omitted.

Lemma A.1. Let X ∈ S be a semimartingale, and let H,K be two predictable Rd-valued
processes such that H · K ∈ L(X). Then we have HK ∈ L(X1Rd ) and the identity

(H · K) • X = (HK) • (X1Rd ),
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where the Rd-valued process HK has the components (HK)i := HiKi for each i = 1, . . . , d,
and where X1Rd denotes the Rd-valued process (X, . . . , X).

Lemma A.2. Let X ∈ Sd and H ∈ L(X) be arbitrary. Let K be an R-valued predictable, locally
bounded process. Then we have

K ∈ L(H • X), KH ∈ L(X), H ∈ L(K • X)

and the identities

K • (H • X) = (KH) • X = H • (K • X),

where K • X denotes the Rd-valued process with components (K • X)i := K • Xi for each i =
1, . . . , d.

Proof. Since K is predictable and locally bounded, we have K ∈ L(H • X), and by [60,
Theorem 4.6] we obtain KH ∈ L(X) and

K • (H • X) = (KH) • X.

Since K is predictable and locally bounded, we also have K ∈ L(Xi) for each i = 1, . . . , d.
Since KH ∈ L(X), by [60, Theorem 4.7] we obtain H ∈ L(K • X) and

H • (K • X) = (KH) • X,

completing the proof. �
Lemma A.3. Let X ∈ Sd, Y ∈ S, and H ∈ L(X) be arbitrary. Then we have H ∈ Lvar([X, Y])
and the identity

[H • X, Y] = H • [X, Y],

where [X, Y] ∈ Vd denotes the Rd-valued process with components [Xi, Y] for each i =
1, . . . , d.

Proof. Using the notation from [60, Theorem 4.19], we have e = 1 and K = 1. Let F ∈ V+
and an optional Rd-valued process ρ be such that

[Xi, Y] = ρi • F, i = 1, . . . , d.

By [60, Theorem 4.19] we obtain H · ρ ∈ L(F), which means that

|H · ρ| • F ∈ V+,

and hence H ∈ Lvar([X, Y]). Furthermore, by [60, Theorem 4.19] we have

[H • X, Y] = (H · ρ) • F = H • [X, Y],

completing the proof. �
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Appendix B. Market transformations

In this appendix we review a well-known transformation result for self-financing portfolios
and draw some conclusions for no-arbitrage concepts. The mathematical framework is that of
Section 2. We introduce the notation

S̄ := S∪ {1}.

Lemma B.1. Suppose that 1 /∈ S. Then there is a bijection between R×�(S) and �sf(S̄).
Furthermore, for all (x, δ) ∈R×�(S) and the corresponding strategy δ̄ ∈�sf(S̄) we have

S̄δ̄ = x + δ • S.

Proof. This is a consequence of [64, Lemma 5.1]. �
For the next result, recall the notation (2.1).

Lemma B.2. ([64, Proposition 5.2].) Suppose that 1 /∈ S. Let δ ∈�sf(S̄) be a self-financing
strategy, and let Y ≥ be a nonnegative semimartingale. Then we also have δ ∈�sf(S̄Y).

Recall that Iα consists of all integral processes starting in α.

Lemma B.3. Let X ∈ S be such that X, X− > 0, and set S0 := S \ {X}. Then for each α ≥ 0 we
have

Iα(SX−1) = Iα(S0X−1).

Proof. Noting that SX−1 = S0X−1 ∪ {1}, the result follows. �

Lemma B.4. For each savings account B we have SB−1B = S∪ {B}.
Proof. We have

SB−1B = (SB−1 ∪ {1})B = S∪ {B},
completing the proof. �
Proposition B.1. Let B be a savings account. Then the following statements are true:

1. Psf,0(S∪ {B}) satisfies NA if and only if I0(SB−1) satisfies NA.

2. P+
sf,1(S∪ {B}) satisfies NUPBR if and only if I+

1 (SB−1) satisfies NUPBR.

3. Suppose that B is bounded. If the set Padm
sf,0 (S∪ {B}) satisfies NFLVR, then the set

Iadm
0 (SB−1) satisfies NFLVR.

4. Suppose that B−1 is bounded. If the set Iadm
0 (SB−1) satisfies NFL, then the set

Padm
sf,0 (S∪ {B}) satisfies NFL.

Proof. All six implications have similar proofs. As a representative example, we shall prove
the third statement. By Lemma B.3 we may assume that B /∈ S; otherwise we consider S0 :=
S \ {B} rather than S. Let ξ ∈ C ∩ L∞+ be arbitrary, where

C := (Iadm
0 (SB−1) − L0+) ∩ L∞.
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Then there exists a sequence (ξ j)j∈N ⊂ C such that ‖ξ j − ξ‖L∞ → 0. Let j ∈N be arbitrary.
Then there exist a strategy δj ∈�(SB−1) and a constant aj ∈R+ such that

δj • (SB−1) ≥ −aj,(
δj • (SB−1)

)
T ≥ ξ j.

By Lemma B.1 there is a self-financing strategy δ̄j of the form

δ̄j = (δj, ηj) ∈�sf(SB−1)

for some predictable process ηj such that

δj • (SB−1) = (δj, ηj) · (SB−1, 1) = δj · (SB−1) + ηj.

Therefore, we have

δ
j
0 · (S0B−1

0 ) + η
j
0 = 0,

δj · (SB−1) + ηj ≥ −aj,

δ
j
T · (STB−1

T ) + η
j
T ≥ ξ j.

By Lemmas B.2 and B.4 we have

δ̄j ∈�sf(SB−1B) =�sf(S∪ {B}).
Furthermore, we have

δ
j
0 · S0 + η

j
0 · B0 = 0,

δj · S + ηj · B ≥ −ajB,

δ
j
T · ST + η

j
T · BT ≥ ξ jBT .

In other words, we have

(S, B)δ̄
j

0 = 0, (S, B)δ̄
j ≥ −ajB, and (S, B)δ̄

j

T ≥ ξ jBT . (B.1)

Since B is bounded, the portfolio (S, B)δ̄
j

is admissible, and we have ξ jBT ∈ L∞. Therefore we
deduce that ξ jBT ∈ E, where

E := (Padm
sf,0 (S∪ {B}) − L0+) ∩ L∞. (B.2)

Since ‖ξ j − ξ‖L∞ → 0 and BT ∈ L∞, we also have ‖ξ jBT − ξBT‖L∞ → 0. Therefore, we have
ξBT ∈ E ∩ L∞+ . Since Padm

sf,0 (S∪ {B}) satisfies NFLVR, it follows that ξBT = 0, and hence

ξ = 0. This proves that Iadm
0 (SB−1) satisfies NFLVR. �

Remark B.1. In the proof of the third statement, the assumption that the savings account B is
bounded is needed directly after (B.1), in order to show that the portfolio (S, B)δ̄

j
is admissible

and that its terminal value belongs to the set E introduced in (B.2). For similar reasons, we
require that B−1 is bounded in the proof of the fourth statement.
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Appendix C. Equivalent local martingale deflators and related concepts

In this appendix we present the required results about local martingale deflators and related
concepts. The mathematical framework is that of Section 2. In particular, recall the sets of
potential security processes which we introduced there. We now introduce the unions

I(S) :=
⋃
α≥0

Iα(S), Iadm(S) :=
⋃
α≥0

Iadm
α (S), and I+(S) :=

⋃
α≥0

I+α (S).

Lemma C.1. ([5, Corollary 3.5].) For every admissible process X ∈ Mσ we have X ∈ Mloc.

Proposition C.1. For a semimartingale Z with Z, Z− > 0, the following statements are
equivalent:

(i) Z is an ELMD for S, and we have Z ∈ Mloc.

(ii) Z is an ELMD for Iadm(S).

(iii) Z is an E	MD for I(S).

Proof. (i) ⇒ (iii): Let α ∈R+ and δ ∈�(S) be arbitrary. By Proposition 2.1 we have

Iα,δZ = (α+ δ • S)Z = αZ + (δ • S)Z ∈ Mσ .

(iii) ⇒ (ii): Noting that Iadm(S) ⊂ I(S), this implication follows from Lemma C.1.
(ii) ⇒ (i): We have S⊂ Iadm(S). Therefore, the process Z is an ELMD for S. Furthermore,

setting α := 1 and δ := 0 we obtain Iα,δ = 1, and hence

Z = Iα,δZ ∈ Mloc,

completing the proof. �
Proposition C.2. For an equivalent probability measure Q≈ P on (�,FT ), the following
statements are equivalent:

(i) Q is an ELMM for S.

(ii) Q is an ELMM for Iadm(S).

(iii) Q is an E	MM for I(S).

Proof. (ii) ⇒ (i): Since S⊂ Iadm(S), this implication is obvious.
(iii) ⇒ (ii): Noting that Iadm(S) ⊂ I(S), this implication follows from Lemma C.1.
(i) ⇒ (iii): Let α ∈R+ and δ ∈�(S) be arbitrary. Then, by [60, Lemma 5.6], the process

Iα,δ = α + δ • S

is a Q-σ -martingale. �
Now we introduce the unions

Psf(S) :=
⋃
α≥0

Psf,α(S), Padm
sf (S) :=

⋃
α≥0

Padm
sf,α (S), and P+

sf (S) :=
⋃
α≥0

P+
sf,α(S).
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Proposition C.3. The following statements are equivalent:

(i) Z is an ELMD for S.

(ii) Z is an ELMD for Padm
sf (S).

(iii) Z is an E	MD for Psf(S).

Proof. (i) ⇒ (iii): Let δ ∈�sf(S) be arbitrary. By Proposition 2.2 we have

SδZ = (δ · S)Z ∈ Mσ .

(iii) ⇒ (ii): Noting that Padm
sf (S) ⊂ Psf(S), this implication follows from Lemma C.1.

(ii) ⇒ (i): Noting that S⊂ Padm
sf (S), the process Z is an ELMD for S. �

Appendix D. Sufficient conditions for the absence of arbitrage

In this appendix we present a result containing sufficient conditions for the absence of
arbitrage. The mathematical framework is that of Section 2.

Proposition D.1. The following statements are true:

1. Suppose that an ELMM Q≈ P on (�,FT ) for S exists. Then Iadm
0 (S) satisfies NFL.

2. Suppose that an ELMD Z for S with Z ∈ Mloc exists. Then I+
0 (S) satisfies NFL.

3. Suppose that an ELMD Z for S exists. Then P+
sf,1(S) satisfies NUPBR.

Proof. All three statements have similar proofs. As a representative example, we shall prove
the third statement. By Proposition C.3, the process Z is also an ELMD for P+

sf (S). Let

ξ ∈
⋂
α>0

Bα

be arbitrary, where

Bα := (P+
sf,α(S) − L0+) ∩ L0+ for each α > 0.

Let α > 0 be arbitrary. Then there exists a self-financing strategy δα ∈�sf(S) such that

Sδ
α

0 = α, Sδ
α ≥ 0, and Sδ

α

T ≥ ξ .

Since Z is an ELMD for P+
sf (S), the process Sδ

α
Z is a nonnegative local martingale, and hence

a supermartingale. By Doob’s optional stopping theorem for supermartingales, we obtain

E[ξZT ] ≤E[Sδ
α

T ZT ] ≤E[Sδ
α

0 Z0] = αZ0.

Since α > 0 was arbitrary, we deduce that E[ξZT ] = 0. Since ξ ≥ 0 and P(ZT > 0) = 1, this
shows that ξ = 0. Therefore, by [55, Theorem 7.25], the set P+

sf,1(S) satisfies NUPBR. �
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