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Colouring Squares of Claw-free Graphs

Rémi de Joannis de Verclos, Ross J. Kang, and Lucas Pastor

Abstract. Is there some absolute ε > 0 such that for any claw-free graphG, the chromatic number of
the square of G satisûes χ(G2

) ≤ (2− ε)ω(G)2 , where ω(G) is the clique number of G? Erdős and
Nešetřil asked this question for the speciûc case whereG is the line graph of a simple graph, and this
was answered in the aõrmative by Molloy and Reed. We show that the answer to the more general
question is also yes, and, moreover, that it essentially reduces to the original question of Erdős and
Nešetřil.

1 Introduction

LetG be a claw-free graph, that is, a graph that does not contain the complete bipartite
graphK1,3 as an induced subgraph. We consider the squareG2 ofG, which is the graph
formed from G by the addition of edges between those pairs of vertices connected by
some two-edge path in G, and consider proper colourings of G2. In particular, we
relate the chromatic number χ(G2) ofG2 to the clique number ω(G) ofG. Our main
result is the following theorem.

_eorem 1.1 _ere is an absolute constant ε > 0 such that χ(G2) ≤ (2− ε)ω(G)2 for
any claw-free graph G.

_is extends a classic result of Molloy and Reed [20]. _eir work is an acclaimed
combination of structural and probabilistic methodology that established the special
case for _eorem 1.1 of G the line graph L(F) of some (simple) graph F. Note that
ω(G) = ∆(F) here (unless F is a disjoint union of paths, cycles, and at least one
triangle), where ∆(F) denotes the maximum degree of F.
Claw-free graphs constitute an important superclass of the class of line graphs. As

such, there have been sustained eòorts in combinatorial optimisation to extend results
from the smaller to the larger class, especially for stable sets (which are matchings in
an underlying graph of the given line graph), the starting point being the seminal
work of Edmonds [9]; cf. e.g., [10, 13, 19, 21, 22]. Salient to our work, we point out that
signiûcant eòorts have also been made for proper colourings (which are proper edge-
colourings in an underlying graph of the given line graph), the starting point being
the classic Gupta–Vizing theorem [14, 24]; cf. e.g., [4, 6, 15, 17, 18, 23].
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Along similar lines, our starting point is a notorious problem from the 1980s on
strong edge-colourings due to Erdős and Nešetřil; cf. [11]. Having in mind the line
graph of a ûve-cycle each of whose vertices has been substituted with a stable set, they
conjectured the following assertion restricted to G a line graph.

Conjecture 1.2 For any claw-free graph G,

χ(G2) ≤
⎧⎪⎪⎨⎪⎪⎩

5
4ω(G)2 if ω(G) is even,
1
4 (5ω(G)2 − 2ω(G) + 1) otherwise.

_e conjecture of Erdős and Nešetřil remains open in general. _eorem 1.1 pro-
vides evidence towards the stronger conjecture we have cheekily just introduced.

Several sharp claw-free graph results for proper colourings have been estab-
lished; however, while important results on stable sets have extended quite well from
line graphs to claw-free graphs (albeit thanks to serious, continuing work spanning
decades), strictly speaking the same cannot be said for proper colourings. To il-
lustrate, the classic result on edge-colouring due to Vizing [24] and, independently,
Gupta [14], implies that χ(G) ∈ {ω(G),ω(G) + 1} for G a line graph. On the other
hand, by considering large triangle-free graphs without large stable sets [1, 16], one
sees (cf. [6]) that sup{χ(G) ∣ G claw-free, ω(G) = ω} = Ω(ω2/(logω)2) as ω → ∞.
So any overall upper bound on χ(G) in terms of ω(G) must be worse for a claw-free
graph G than for a line graph G. One might argue that this is intuitive from the fact
that proper colourings (proper edge-colourings) are more complicated combinatorial
structures than stable sets (matchings).

To our surprise, for proper colourings of the square (which are yet more compli-
cated combinatorial structures), proceeding from line graphs to claw-free graphs, the
situation does not worsen in the same sense. Rather, within the class of claw-free
graphs the worst cases are likely to be line graphs. _is motivates the direct extrap-
olation of the conjecture of Erdős and Nešetřil to Conjecture 1.2. Let us make these
vague sentiments more precise.

We prove the following three results. Recall that a graph is a quasi-line graph if
every neighbourhood induces a subgraph that can be covered by two cliques.

_eorem 1.3 For any claw-free graph G, either G is a quasi-line graph or there is a
vertex v with square degree degG2(v) ≤ ω(G)2 + (ω(G) + 1)/2 whose neighbourhood
NG(v) induces a clique in (G ∖ v)2.

_eorem 1.4 For any quasi-line graph G, either G is the line graph of a multigraph
or there is a vertex v and a set S ⊆ NG(v) such that every vertex u ∈ S ∪{v} has square
degree degG2(u) ≤ ω(G)2 + ω(G) and NG(v) ∖ S induces a clique in (G ∖ v)2.

_eorem 1.5 _eorem 1.1 holds when G is the line graph of a multigraph.

By a simple greedy procedure that always colours the vertex with least square de-
gree, _eorem 1.1 follows from the above three results. We spell out this procedure in
Section 5. Moreover, by the same greedy approach,_eorems 1.3 and 1.4 together im-
ply that Conjecture 1.2 is established if it can be shown for all claw-free graphs G with
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ω(G) < 6 as well as for all multigraph line graphs G with ω(G) ≥ 6. _e proofs of
_eorems 1.3 and 1.4 rely on a good structural understanding of claw-free and quasi-
line graphs [5–7], while the proof of _eorem 1.5 relies on a probabilistic colouring
result, following [20].
Clearly, our belief is that expanding the scope beyond line graphs will not lead

to claw-free examples having larger square chromatic number compared to clique
number. _is is bolstered by the following result for which the line graphs of (simple)
blown-up ûve-cycles are the unique extremal examples.

_eorem 1.6 For any claw-free graph G = (V , E) with ω(G) ≥ 6, if ω(G2) = ∣V ∣,
then

∣V ∣ ≤
⎧⎪⎪⎨⎪⎪⎩

5
4ω(G)2 if ω(G) even,
1
4 (5ω(G)2 − 2ω(G) + 1) otherwise.

_is extends a result of Chung, Gyárfás, Tuza, and Trotter [8].

Note added In follow-up work, Cames van Batenburg and the second author [3],
using techniques somewhat diòerent from those used here, showed Conjecture 1.2 to
hold in the case ω(G) = 3, and, moreover, showed a result that together with a result
here implies that _eorem 1.6 holds in cases ω(G) ∈ {3, 4}.

1.1 Plan of the Paper

Our paper is organised as follows. In the next subsection, we set some of the notation
and prove two simple results we use. In Section 2, we prove _eorem 1.3. We use
structural results to prove _eorem 1.4 in Section 3. In Section 4, we apply a sparsity
colouring lemma to prove_eorem 1.5. In Section 5, we prove_eorem 1.1. We prove
the extremal result _eorem 1.6 in Section 6.

1.2 Notation and Preliminaries

Let G = (V , E) be a (multi)graph. For any v ∈ V , we denote the neighbourhood of
v by NG(v) (= {w ∈ V ∣ vw ∈ E}) and the degree of v by degG(v) (= ∣NG(v)∣). For
any U ⊆ V , we denote the neighbourhood of U by NG(U) (= ⋃v∈U NG(v) ∖U). _e
second neighbourhood N2

G(v) of v is the set of vertices at distance exactly two from v,
i.e., N2

G(v) = NG2(v) ∖ NG(v). For A, B ⊆ V , let EG(A, B) denote the edges in the
bipartite sub(multi)graph induced between A and B, i.e.,

EG(A, B) = {vw ∈ E ∣ v ∈ A,w ∈ B},

and let EG(A) denote the edges in the sub(multi)graph of G induced by A. Where
there is no possibility of confusion, we usually drop the subscripts. Note that the
square degree degG2(v) of v equals degG(v) + ∣N2

G(v)∣. For A, B ⊆ V , we say that A
is complete (resp. anti-complete) to B if all possible (resp. no) edges between A and B
are present.

We shall use the following observation o�en.
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Lemma 1.7 Let G = (V , E) be a claw-free graph. Let v ∈ V and u ∈ N(v). _en
N(u) ∩ N2(v) is a clique and ∣N(u) ∩ N2(v)∣ ≤ ω(G) − 1.

Proof If x , y ∈ N(u) ∩N2(v) are not adjacent, then the subset {u, v , x , y} is a claw,
a contradiction. It follows that (N(u)∩N2(v))∪{u} is a clique and has atmost ω(G)
vertices.

Let us ûrst show how this observation, together with _eorem 1.3, yields a slightly
weaker version of_eorem 1.1 (weaker when ω(G) is large) by way of a simple greedy
procedure. _is agrees with the “trivial” bound χ(L(F)2) ≤ 2∆(F)2 − 2∆(F) + 1 for
any (multi)graph F.

Proposition 1.8 Let G be a claw-free graph. _en χ(G2) ≤ 2ω(G)2 − 2ω(G) + 1.

Proof _e statement is trivial if ω(G) ≤ 2, so assume that ω(G) ≥ 3. We proceed
by induction on the number of vertices in G. _e base case of G having 3 vertices is
trivially true. So now assume that G has at least 4 vertices and that the result holds
for all graphs with fewer vertices than G has. Note that ω(G)2 + (ω(G) + 1)/2 + 1 ≤
2ω(G)2 − 2ω(G) + 1 if ω(G) ≥ 3.

If G is not a quasi-line graph, then let v be the vertex given by _eorem 1.3. Since
G ∖ v is a claw-free graph and ω(G ∖ v) ≤ ω(G), it follows by induction that there
is a proper colouring of (G ∖ v)2 with 2ω(G)2 − 2ω(G) + 1 colours. In this colour-
ing, necessarily all the vertices in NG(v) have diòerent colours. Since degG2(v) ≤
ω(G)2 + (ω(G) + 1)/2, there is at least one colour available to v that is diòerent from
all the colours appearing on NG2(v). Giving this colour to v yields the desired proper
colouring of G2.

2 Claw-free Graphs to Quasi-line Graphs

In this section, we prove_eorem 1.3.

Proof of_eorem 1.3 Let us write G = (V , E) and ω(G) = ω and let v ∈ V . In this
proof, by N(v) and N2(v) we mean NG(v) and N2

G(v), respectively. We can assume
ω ≥ 3; otherwise, the statement is trivially true. We can also assume without loss of
generality that G is connected.

Our ûrst task is to show that either degG2(v) ≤ ω2 + (ω + 1)/2 or the subgraph
induced by N(v) can be covered by two cliques of G.

IfG has no stable set of size 3, then ∣V ∣ is less than the oò-diagonal Ramsey number
R(3,ω + 1), which satisûes R(3,ω + 1) = 9 if ω = 3 and R(3,ω + 1) ≤ (ω+2

2 ) other-
wise [12]. Since degG2(v) ≤ ∣V ∣ − 1, we have degG2(v) ≤ 7 if ω = 3 and degG2(v) ≤
(ω+2

2 ) − 2 otherwise, which in either case is at most ω2 + (ω + 1)/2.
Now we can assume that G has a stable set of size 3, in which case it follows from

[5, Result 8.2] that deg(v) ≤ 4(ω − 1). Further, we can also assume that N2(v) is
non-empty, because otherwise degG2(v) = deg(v) ≤ 4(ω − 1), which is at most ω2 +
(ω + 1)/2 since ω ≥ 3.

Let k be the largest integer such that every vertex of N2(v) has at least k (parent)
neighbours in N(v) and let u ∈ N2(v) be a vertex attaining this minimum, i.e., such
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that ∣N(u) ∩ N(v)∣ = k. Let w ∈ N(u) ∩ N(v) and consider the partition N(v) =
X ∪C1 ∪C2 deûned by X = N(u)∩N(v)∖{w} and C1 = (N(v)∩N(w)∖X)∪{w}.
(So C2 = N(v) ∖ (N(u) ∪ N(w)).) We claim that both C1 and C2 are cliques of
G. Indeed, if x and y are non-adjacent vertices of C1, then w ∉ {x , y}, and further
{x , y,w , u} induces a claw, while if x and y are non-adjacent vertices of C2, then
{x , y,w , v} induces a claw, contradicting the assumption on G.

We now estimate the number of paths of length two in G from v to N2(v). By
Lemma 1.7, there are at most (ω − 1)deg(v) such paths. By our assumption every
vertex of N2(v) is the endpoint of at least k of these paths, and so ∣N2(v)∣ is at most
1
k (ω − 1)deg(v). Consequently,

degG2(v) = deg(v) + ∣N2(v)∣ ≤ ( 1 + ω − 1
k

) deg(v).(∗)

We distinguish three cases depending on the value of k.

k = 1 : _e set X is empty and it follows that N(v) induces a subgraph that can be
covered by two cliques, namely C1 and C2.

2 ≤ k ≤ 2(ω − 1): For i ∈ {1, 2}, ∣C i ∣ ≤ ω − 1, since C i ∪ {v} is a clique. So

deg(v) = ∣C1∣ + ∣C2∣ + ∣X∣ ≤ 2(ω − 1) + k − 1.

Hence, (∗) gives

degG2(v) ≤ ( 1 + ω − 1
k

)(2(ω − 1) + k − 1) =∶ f (k).

_e above expression f (k) is a convex function of k for 2 ≤ k ≤ 2(ω− 1), so degG2(v)
is at most max{ f (2), f (2(ω − 1))}. It remains to check that

f (2) = ( 1 + ω − 1
2

)(2ω − 1) = ω2 + ω − 1
2

< ω2 + ω + 1
2

,

f (2(ω − 1)) = 6ω − 15
2
< ω2 + ω + 1

2
,

which is true, since ω ≥ 3.

k ≥ 2(ω − 1) + 1 : Together with the fact that deg(v) ≤ 4(ω − 1), (∗) yields

degG2(v) ≤ ( 1 + ω − 1
2(ω − 1) + 1

) ⋅ 4(ω − 1) < 6(ω − 1).

Consequently, degG2(v) ≤ 6ω − 7 ≤ ω2 + (ω + 1)/2, since ω ≥ 3.
Our second task is to prove that, if the neighbourhoodN(v) does not form a clique

in (G∖v)2, then it is covered by two cliques (ofG). Assume to the contrary that v has
two neighbours x and y at distance at least 3 in G ∖ v. Every other neighbour z of v
has to be adjacent to either x or y (otherwise {v , x , y, z} induces a claw), but cannot
be adjacent to both of them (otherwise the distance between x and y is at most 2). It
follows thatN(v) is covered by the union ofN(v)∩N(x) andN(v)∩N(y). It remains
to see that each of these sets is a clique, because any non-edge uw in N(v) ∩ N(x)
(resp. N(v) ∩ N(y)) would give a claw {v , y, u,w} (resp. {v , x , u,w}).
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3 Quasi-line Graphs to Line Graphs of Multigraphs

In this section, we prove_eorem 1.4.
We rely on a known structural description of quasi-line graphs, for which we next

give the necessary deûnitions. For further details and discussion, see [5].
Let G = (V , E) be a graph. A homogeneous set is a set S ⊆ V such that each vertex

in V ∖S is adjacent either to all vertices in S, or to no vertex in S. A homogeneous pair
of cliques is a pair (A, B) of disjoint cliques such that either ∣A∣ ≥ 2 or ∣B∣ ≥ 2, A is a
homogeneous set in G[V ∖ B], and B is a homogeneous set in G[V ∖ A].
A circular interval graph is any graph obtained from the following construction.

Let Σ be a circle and let F1 , . . . , Fk ⊆ Σ be a set of intervals each homeomorphic to the
interval [0, 1]. Let the vertex set be a ûnite set of points of Σ and add an edge between
any two points if and only if they are both contained in Fi for some i ∈ {1, . . . , k}.
A linear interval graph is deûned in the same way, except that Σ is a line instead of a
circle. Observe that circular and linear interval graphs are quasi-line graphs.
A strip (G , a, b) consists of a claw-free graphG and two vertices a and b ofG such

that NG(a) and NG(b) are cliques. _e speciûed vertices a and b are called the ends
of the strip. In the particular case where G is a linear interval graph and admits a
representation in a line Σ such that the vertices of G in order along Σ are v1 , . . . , vn ,
we call (G , v1 , vn) a linear interval strip.

_e following operation combines two strips (G1 , a1 , b1) and (G2 , a2 , b2) to pro-
duce a claw-free graph. Let A1 = NG1∖b1(a1), B1 = NG1∖a1(b1), A2 = NG2∖b2(a2) and
B2 = NG2∖a2(b2). _e graph obtained from the disjoint union of G1 ∖ {a1 , b1} and
G2 ∖ {a2 , b2} by adding all possible edges between A1 and A2 and all possible edges
between B1 and B2 is called the composition of (G1 , a1 , b1) and (G2 , a2 , b2). _is graph
is claw-free.

We combine k ≥ 3 strips in the following way. Let G0 be a disjoint union of
complete graphs on vertex set {a1 , . . . , ak , b1 , . . . , bk}. For each i ∈ {1, . . . , k} let
(G′

i , a
′
i , b

′
i) be a strip and let G i be the graph obtained by composing (G i−1 , a i , b i)

and (G′
i , a

′
i , b

′
i). _e ultimate (claw-free) graphGk is called a composition of the strips

(G′
1 , a

′
1 , b

′
1), . . . , (G′

k , a
′
k , b

′
k).

We apply the following structural result for the class of quasi-line graphs.

_eorem 3.1 (Chudnovsky and Seymour [7]) Suppose G is a connected quasi-line
graph. _en one of the following must hold:
(i) G has a homogeneous pair of cliques;
(ii) G is a circular interval graph;
(iii) G is a composition of linear interval strips.

In fact, we need a small reûnement of _eorem 3.1.

Proposition 3.2 _eorem 3.1 remains true if (i) is replaced by the following:
(i′) G has a homogeneous pair (A, B) of cliques where A is not a homogeneous set.

Proof First note that if C and C′ are maximal among cliques that are homogeneous
sets, then either they are disjoint or they are equal. _us, we can partition the vertex

118

https://doi.org/10.4153/CJM-2017-029-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2017-029-9


Colouring Squares of Claw-free Graphs

set V of G as V = C1 ∪ ⋅ ⋅ ⋅ ∪ Cm , where C1 , . . . ,Cm are maximal among cliques that
are homogeneous sets ofG. (It is allowed for ∣C i ∣ = 1.) Let G̃ = (Ṽ , Ẽ) be the quotient
graph of G with respect to this partition, i.e., the graph on Ṽ = {1, . . . ,m} such that
i j ∈ Ẽ (resp. i j ∉ Ẽ) if and only if C i is complete (resp. anti-complete) to C j in G. It
must be that G̃ is a connected quasi-line graph, or elseG is not a connected quasi-line
graph. Moreover, G̃ has no clique of size two that is a homogeneous set.

Given I ⊆ Ṽ and a graph H on I, we deûneB(I) = ⋃i∈I C i as well as a graphB(H)
on B(I) as follows: let C i induce a clique in B(H) for every i ∈ I, and include uv
as an edge of B(H) for every pair (u, v) ∈ C i × C j if i j is an edge of H. Note that
B(G̃) = G.

_eorem 3.1 applied to G̃ yields three possibilities:
(i) G̃ has a pair (A, B) of homogeneous cliques. _en (B(A),B(B)) is a homo-

geneous pair of cliques of G. We can assume that ∣A∣ ≥ 2, and, since G̃ has no
clique of size two that is a homogeneous set, A by itself is not a homogeneous
set of G̃. _us B(A) is not a homogeneous set of G.

(ii) G̃ is a circular interval graph. _en G is too.
(iii) G̃ is the composition of k linear interval strips (G′

1 , a
′
1 , b

′
1), . . . , (G′

k , a
′
k , b

′
k) over

the vertex set {a1 , . . . , ak , b1 , . . . , bk}. _en G is the composition of the linear
interval strips (G′′

1 , a
′
1 , b

′
1), . . . , (G′′

k , a
′
k , b

′
k) following the same scheme where

G′′
i is deûned as the graphB(G′

i ∖{a′i , b′i}) to which we add the vertices a′i and
b′i with neighbourhoods B(NG′i (a

′
i)) andB(NG′i (b

′
i)), respectively.

To prove _eorem 1.4, we require the following bound on the maximum square
degree of circular interval graphs.

Lemma 3.3 For any vertex v of a circular interval graph G, degG2(v) ≤ 4ω(G) − 4.

Proof Write G = (V , E) and let v ∈ V . Let Σ be a circle and let F1 , . . . , Fk ⊆ Σ be
intervals homeomorphic to [0, 1] that represent G. In other words, V is a subset of Σ
such that uw ∈ E if and only if u andw are both contained in Fi for some i ∈ {1, . . . , k}.

Note then that for every w ∈ NG2(v) there exist iw , jw ∈ {1, . . . , k} such that a
closed interval Iw ⊆ Σ with endpoints v and w is contained in Fiw ∪ F jw . Take wc
and wcc to be those among the elements of NG2(v) having largest intervals Iwc and
Iwcc in, respectively, clockwise and counterclockwise direction from the perspective
of v. _en NG2(v) is contained in Fiwc ∪ F jwc ∪ Fiwcc ∪ F jwcc , which implies that it can
be covered by four cliques of G such that v and two distinct vertices of NG2(v) each
belong to more than one of the cliques. _is implies the required bound.

_e following bound is obtained in a similar way.

Lemma 3.4 Let (G , a, b) be a linear interval strip. For any vertex v ∈ NG(a),
degG2(v) ≤ 3ω(G) − 3.

Proof Write G = (V , E). Let F1 , . . . , Fk ⊆ Σ be closed intervals of R that represent
G. So V is a subset of R with minimum a and maximum b such that uw ∈ E if and
only if u and w are both contained in Fi for some i ∈ {1, . . . , k}.
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Let u be the vertex of NG2(v) with the largest value and w ∈ V such that vw and
wu are edges. Let Fi1 be an interval that contains both a and v. Similarly, let Fi2 and
Fi3 be the intervals containing both v and w and both w and u, respectively. _en
NG2(v) is contained in the union of the cliques Fi1 ∩ V , Fi2 ∩ V and Fi3 ∩ V , since
Fi1 ∪ Fi2 ∪ Fi3 covers the interval [a, u]. Moreover, v and w are both elements of at
least two of these cliques. _is implies the required bound.

We can now proceed to the proof of _eorem 1.4.

Proof of_eorem 1.4 Let us write G = (V , E) and ω(G) = ω. We can assume
ω ≥ 3; otherwise, the statement is trivially true. Since we can consider components
independently, we can assume that G is connected.

Let us call a vertex v degenerate if degG2(v) ≤ ω2 + ω.
By _eorem 3.1 and Proposition 3.2, there are three cases to consider.

Case 1. G contains a homogeneous pair (A, B) of cliques and there exist a1 , a2 ∈ A
and b ∈ B such that a1b ∈ E and a2b ∉ E.

We ûrst prove that every vertex of A ∪ B is degenerate. Let A′ and B′ denote the set
of vertices in V ∖ (A∪ B) that are connected to (all) vertices of A and B, respectively
and set C = V ∖ (A ∪ B ∪ A′ ∪ B′). Notice there is no edge from A′ ∩ B′ to C as
such an edge together with a2 and b would form a claw. It follows that every vertex
c ∈ C in the second neighbourhood of any b0 ∈ B has a neighbour in B′ ∖ A′, i.e.,
NG2(b0) ∩ C ⊆ N(B′ ∖ A′) ∩ C. So

degG2(b0) ≤ ∣N(B′ ∖ A′) ∩ C∣ + ∣B∣ + ∣B′∣ + ∣A∪ (A′ ∖ B′)∣.
It remains to bound the terms of this sum. We claim that B ∪ (B′ ∖ A′) is a clique.
Indeed, if there is a non-adjacent pair x , y ∈ B′ ∖A′, then {x , y, a1 , b} induces a claw.
_is shows that ∣B∣ ≤ ω − ∣B′ ∖ A′∣ and ∣B′ ∖ A′∣ ≤ ω − 1.

Similarly, A∪ (A′ ∖ B′) is a clique because any non-adjacent pair x , y ∈ A′ forms a
claw {x , y, a1 , b}. _is proves that ∣A∪ (A′ ∖ B′)∣ ≤ ω.
By Lemma 1.7, every b′ ∈ B′ has at most ω − 1 neighbours in C, and so ∣N(B′ ∖

A′) ∩ C∣ ≤ ∣B′ ∖ A′∣ ⋅ (ω − 1). Moreover, ∣B′∣ ≤ 2(ω − 1), because B′ is contained
in the neighbourhood of any vertex of B and G is a quasi-line graph. Putting these
inequalities together gives

degG2(b0) ≤ (ω − 2)∣B′ ∖ A′∣ + 4ω − 2 ≤ (ω − 2)(ω − 1) + 4ω − 2 = ω2 + ω.

So we have proved that every vertex in B is degenerate. A similar argument proves
that every vertex in A is degenerate. We deduce the theorem for v = a1 with S =
(A∪ B) ∩ N(a1). Indeed, the vertices of N(v) ∖ S = A′ are all adjacent to a2.
Case 2. G is a circular interval graph.
By Lemma 3.3, the square degree of any v ∈ V satisûes degG2(v) ≤ 4ω− 4, which is at
most ω2 +ω, since ω ≥ 3. So it suõces to take S = N(v) as every vertex is degenerate.
Case 3. G is a composition of k linear interval strips (G′

1 , a
′
1 , b

′
1), . . . , (G′

k , a
′
k , b

′
k)

over G0 a disjoint union of cliques on vertex set {a1 , . . . , ak , b1 , . . . , bk}.
Suppose G0 is the disjoint union of ℓ cliques C1 , . . . ,Cℓ . We have that

V =
k
⋃
i=1

V(G′
i) ∖ {a′i , b′i}
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and that G is the union of G′
i ∖ {a′i , b′i}, i ∈ {1, . . . , k}, “glued” to the cliques on

C′1 , . . . ,C
′
ℓ deûned by

C′j ∶= ( ⋃
a′i∈C j

NG′i (a
′
i) ∖ {b′i}) ⋃( ⋃

b′i∈C j

NG′i (b
′
i) ∖ {a′i}) .

Fix i ∈ {1, . . . , k} and denote by C j1 and C j2 the cliques (of G0) such that a i ∈ C j1
and b i ∈ C j2 . Let H i be the subgraph of G induced by C′j1 ∪ C

′
j2 ∪ (V(G′

i) ∖ {a, b}).
We ûrst observe the following three claims.

Claim 3.5 _ere are a′′i ∈ C′j1 and b
′′
i ∈ C′j2 such that (a′′i , b′′i ,H i) is a linear interval

strip.

Proof Let F1 , . . . , Fk be intervals homeomorphic to [0, 1] and assume that the ele-
ments ofV(G′

i) are real values such that the intervals F1 , . . . , Fk represent (a i , b i ,G′
i)

as a linear interval strip. To construct a representation of H i as a linear interval strip,
it suõces to keep the intervals F1 , . . . , Fk as well as the real values of the elements of
V(G′

i) ∖ {a i , b i} and assign the value of a i to all elements of C′j1 ∖ NG′i (a i) and the
value of b i to all elements of C′j2 ∖ NG′i (b i). It then suõces to deûne a′′i (resp. b′′i ) as
one of the vertices with smallest (resp. greatest) value.

Claim 3.6 If v ∈ V(G′
i) ∖ ({a′i , b′i} ∪ NG′i (a

′
i) ∪ NG′i (b

′
i)) for some i ∈ {1, . . . , k},

then v is degenerate.

Proof Notice that NG2(v) = N(H i)2(v). Moreover, Claim 3.5 ensures that H i is a
linear interval graph and thus a circular interval graph. So Lemma 3.3 yields

degG2(v) = deg(H i)2(v) ≤ 4ω − 4.

_is is at most ω2 + ω, since ω ≥ 3.

Claim 3.7 If v is in V(G′
i)∖({a′i , b′i}∪NG′i (a

′
i)) or in V(G′

i)∖({a′i , b′i}∪NG′i (b
′
i))

for some i ∈ {1, . . . , k}, then v is degenerate.

Proof ByClaim 3.6 and by symmetry of the roles played by a′i and b
′
i , we can assume

that v is a neighbour of a′i but not of b′i in G′
i . Notice that in this case, NG2(v) is

contained in N(H i)2(v) ∪ (N(C′j1) ∩ N2(v)). Claim 3.5 guarantees some a′′i ∈ C′j1
and b′′i ∈ C′j2 such that (a′′i , b′′i ,H i) is a linear interval strip. Notice that v ∈ C′j1
is a neighbour of a′′i in G (and thus in H i). Hence, Lemma 3.4 applies and yields
deg(H i)2(v) ≤ 3ω − 3.
By Lemma 1.7, ∣N(C′j1) ∩ N2(v)∣ ≤ (∣C′j1 ∣ − 1)(ω − 1) ≤ (ω − 1)2. So

degG2(v) ≤ deg(H i)2(v) + ∣N(C′j1) ∩ N2(v)∣
≤ 3ω − 3 + (ω − 1)2 = ω2 + ω − 2

which is less than ω2 + ω.

Case 3 now divides into three subcases.
3(a) _ere exists v ∈ V(G′

i)∖({a′i , b′i}∪NG′i (a
′
i)∪NG′i (b

′
i)) for some i ∈ {1, . . . , k}.
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Claims 3.6 and 3.7 imply that v and every neighbour of v is degenerate. So take
S = N(v).

3(b) For every i ∈ {1, . . . , k}, V(G′
i) = NG′i (a

′
i) ∪ NG′i (b

′
i) ∪ {a′i , b′i} and there

exists i0 and a vertex v either in V(G′
i0) ∖ ({a′i0 , b

′
i0} ∪ NG′i0

(a′i0)) or in

V(G′
i0) ∖ ({a′i0 , b

′
i0} ∪ NG′i0

(b′i0)) .

Claims 3.6 and 3.7 imply that v is degenerate and every neighbour of v is either in
the stripG′

i0 (inwhich case it is degenerate) or in the cliqueC′j1 . So take S = N(v)∖C′j1 .
3(c) For every i ∈ {1, . . . , k}, V(G′

i) ∖ {a′i , b′i} = NG′i (a
′
i) ∩ NG′i (b

′
i).

In this case, the graphG is the (non-disjoint) union of the cliques C′j , j ∈ {1, . . . , ℓ}
because any edge ofG′

i∖{a′i , b′i} is contained in the cliqueC′j such that a i ∈ C j . More-
over, each vertex v ∈ V belongs to exactly two such cliques C′j1v and C

′
j2v
. It follows that

G is a line graph of a multigraph. In particular, G is the line graph of the multigraph
on vertex set C1 , . . . ,Cℓ with an edge between C′j1v and C

′
j2v
for each vertex v ∈ V .

4 Line Graphs of Multigraphs

In this section, we prove_eorem 1.5. Without loss of generality, we can assume here-
a�er that multigraphs are loopless. Since we are now close enough to the original
problem of Erdős and Nešetřil, let us recast _eorem 1.5 in terms of edge-colouring.
A strong edge-colouring of a (multi)graph F is a proper edge-colouring of G such that
any two edges with an edge between them are also required to have distinct colours.
_e strong chromatic index χ′s(F) of F is the smallest integer k such that F admits a
strong edge-colouring using k colours.

_eorem 4.1 _ere are some absolute constants ε > 0 and ∆0 such that χ′s(F) ≤
(2 − ε)∆(F)2 for any multigraph F with ∆(F) ≥ ∆0.

Since χ′s(F) = χ(L(F)2) and ∆(F) ≤ ω(L(F)) for any multigraph F, this implies
_eorem 1.5. Indeed, due to the “trivial” upper bound χ′s(F) ≤ 2∆(F)2 − 2∆(F) + 1,
it suõces to choose min{ε, 3/∆0} for the constant certifying _eorem 1.5.

It seems to us that allowing edges of large multiplicity tends to lead to a smaller
strong chromatic index. For instance, given a multigraph F = (V , E) with ∆(F) ≤ ∆,
if e is in an edge of multiplicity ε∆, then easily we have that degL(F)2(e) ≤ 2(1−ε)∆2+
O(∆). Sowe donot need to consider anymultigraphwith an edge ofmultiplicity 3∆/8
or more. It does, however, seem diõcult in general to eliminate consideration of all
those edges, say, of multiplicity two.

Rather, to prove_eorem 4.1, we take the tack that Molloy and Reed used to aõrm
the original question of Erdős and Nešetřil. We employ a bound on the chromatic
number of graphs whose neighbourhoods are not too dense. _e following can be
shown with the probabilistic method.

Lemma 4.2 (Molloy and Reed [20]) For any ε > 0, there exist δ > 0 and ∆0 such
that the following holds. For all ∆ ≥ ∆0, if G is a graph with ∆(G) ≤ ∆ and with at most
(1 − ε)(∆2) edges in each neighbourhood, then χ(G) ≤ (1 − δ)∆.
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Since ∆(L(F)2) ≤ 2∆(F)(∆(F) − 1), we obtain _eorem 4.1 by an application of
Lemma 4.2 to L(F)2, the validity of which is certiûed as follows.

Lemma 4.3 _ere are absolute constants ε > 0 and ∆0 such that the following holds.
For all ∆ ≥ ∆0, if F = (V , E) is a multigraph with ∆(F) ≤ ∆, then NL(F)2(e) induces a
subgraph of L(F)2 with at most (1 − ε)(2∆(∆−1)

2 ) edges for any e ∈ E.

Molloy and Reed proved this for F simple. We have adapted their proof to ac-
count for edges of multiplicity. _e adaptation is mainly technical but not completely
straightforward, so we include the proof details for completeness. We remark that it
is also possible to adapt a proof of Lemma 4.3 for F simple recently given by Bruhn
and Joos [2] that yields an asymptotically extremal answer. On the other hand, it is
known that this approach, via Lemma 4.2, is insuõcient alone to yield the optimal
constant ε = 3/4 in _eorem 4.1 for F a simple graph. So we have made no eòort to
look for a value better than what we obtained here.

Proof of Lemma 4.3 We specify the constant ε > 0 as well as some other constants
ε1 , ε2 , ε3 > 0 later in the proof. Let F = (V , E) be a multigraph with ∆(F) ≤ ∆.
Without loss of generality, we can assume that F is ∆-regular.

Let e = u1u2 ∈ E. Let A = NF(u1) ∖ {u2}, B = NF(u2) ∖ {u1}, and

C = (NF(A) ∪ NF(B)) ∖ (A∪ B ∪ {u1 , u2}).

Let M be the set of edges between u1 and u2 in parallel with e. For a positive integer
i, let Λ i be the collection of vertices a ∈ A ∪ B such that ∣EF({a}, {u1 , u2})∣ = i. We
treat three cases:
(i) ∣EF(A∪ B)∣ + (2∆ − 1)∣M∣ + ∑∆

i=2(i − 1)∆∣Λ i ∣ > ε1∆2;
(ii) ∑c∈C ∣EF({c},A∪ B)∣ ⋅ (∆ − ∣EF({c},A∪ B)∣) > ε2∆3;
(iii) we are neither in Case (i) nor Case (ii).

Case (i). An exercise in double-counting checks that degL(F)2(e) equals

2∆(∆ − 1) − ( ∣EF(A∪ B)∣ + (2∆ − 1)∣M∣ +
∆

∑
i=2

(i − 1)∆∣Λ i ∣) ,(4.1)

and so degL(F)2(e) < (2 − ε1)∆2 in this case. _us, NL(F)2(e) necessarily induces a
subgraph of L(F)2 with fewer than degL(F)2(e)2/2 edges, which implies

(4.2) ∣EL(F)2(NL(F)2(e))∣ < (2 − 2ε1 + ε12/2)∆4 .

Case (ii). For any e1 ∈ NL(F)2(e), note that ∣NL(F)2(e1) ∩ NL(F)2(e)∣ is at most 2∆2

minus the number of three-edge walks in F with ûrst edge e1 and last edge not in
NL(F)2(e). Every two-edge path ae2ce3x in F, where e2 , e3 ∈ E, a, c, x ∈ V , a ∈ A∪B,
c ∈ C, and x ∉ A∪ B, contributes ∆ such three-edge walks in F. So the total number
of such three-edge walks exceeds ε2∆4 from which we conclude by the handshaking
lemma that

∣EL(F)2(NL(F)2(e))∣ < (2 − ε2/2)∆4 .(4.3)
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Case (iii). We shall bound from above the number of edges of L(F)2 induced by
NL(F)2(e) via a lower bound on the number of closed four-edge walks in F that only
use edges between A ∪ B and C. For any e1 ∈ EF(A ∪ B,C), note that ∣NL(F)2(e1) ∩
NL(F)2(e)∣ is at most 2∆2 minus the number of such closed four-edge walks to which
it belongs. It follows that the number of edges of L(F)2 induced by NL(F)2(e) is at
most 2∆4 minus twice the number of such closed four-edge walks. For c1 , c2 ∈ C, let
w(c1 , c2) denote the number of two-edge walks between c1 and c2 with middle vertex
in A∪ B. To be unambiguous about what this means when c1 = c2, let us in this case
only count (unordered) pairs of distinct edges that both have as endpoints both c1 and
some vertex in A∪ B. Note that the number of such closed four-edge walks is at least

∑
{c1 ,c2}∈(C2)+C

(w(c1 , c2)
2

),

where we have used the unconventional notation (X2) + X to denote the collection
of all unordered pairs of distinct elements from X together with all pairs {x , x} for
x ∈ X.

Let C′ = { c ∈ C ∣ ∣EF({c},A∪B)∣ ≥ ε3∆} . Using the expression in (4.1), it follows
from the fact that we are not in Case (i) that

∣EF(A∪ B,C)∣ ≥ degL(F)2(e) − ∣EF(A∪ B)∣ − 2∆

≥ (2 − 2ε1)∆2 − O(∆).

Moreover, we have that

∣EF(A∪ B,C ∖ C′)∣ = ((1 − ε3)∆)
−1
∑

c∈C∖C′
∣EF({c},A∪ B)∣ ⋅ (∆ − ε3∆)

≤ ((1 − ε3)∆)
−1
∑

c∈C∖C′
∣EF({c},A∪ B)∣ ⋅ (∆ − ∣EF({c},A∪ B)∣)

≤ ((1 − ε3)∆)
−1
ε2∆3 = ε2

1 − ε3
∆2 ,

where the last inequality holds because we are not in Case (ii). _us,

∣EF(A∪ B,C′)∣ ≥ (2 − 2ε1 −
ε2

1 − ε3
)∆2 − O(∆).(4.4)

By applying Jensen’s Inequality with respect to the convex function (x2),

∑
{c1 ,c2}∈(C′2 )+C′

w(c1 , c2) = ∑
a∈A∪B

(∣EF({a},C
′)∣

2
)

≥ ∣A∪ B∣(∣A∪ B∣
−1∑a∈A∪B ∣EF({a},C′)∣

2
)

≥ ∣EF(A∪ B,C′)∣2
2∣A∪ B∣ − O(∆2)

≥ ( 1 − ε1 −
ε2

2(1 − ε3)
)

2
∆3 − O(∆2),
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where we used ∣A∪ B∣ ≤ 2∆ in the last inequality. We have that ∣C′∣ ≤ 2∆/ε3, so again
by Jensen’s Inequality with respect to (x2),

∑
{c1 ,c2}∈(C2)+C

(w(c1 , c2)
2

)

≥ ∑
{c1 ,c2}∈(C′2 )+C′

(w(c1 , c2)
2

)

≥ ((∣C
′∣

2
) + ∣C′∣)(

((∣C
′∣

2 ) + ∣C′∣)
−1
∑{c1 ,c2}∈(C′2 )+C′ w(c1 , c2)

2
)

≥ ε3
2

4
( 1 − ε1 −

ε2
2(1 − ε3)

)
4
∆4 − O(∆3).

We conclude in this case that

∣EL(F)2(NL(F)2(e))∣ ≤ (2 − ε3
2

2
( 1 − ε1 −

ε2
2(1 − ε3)

)
4
)∆4 + O(∆3).(4.5)

Considering (4.2)–(4.5), we obtain a bound on ∣EL(F)2(NL(F)2(e))∣ that is a non-
trivial factor smaller than (2∆(∆−1)

2 ) ∼ 2∆4 in all three cases, provided ∆ is large
enough and provided that we can ûnd ε1 , ε2 , ε3 > 0 such that

−2ε1 +
ε12

2
< 0 and 1 − ε1 −

ε2
2(1 − ε3)

> 0.

Exactly the same choices as made by Molloy and Reed, ε1 = 1/30, ε2 = 1/9, ε3 = 2/3,
suõce here for ε = 1/36, thus completing the proof.

5 Proof of Theorem 1.1

Let ε be the constant given by _eorem 1.5. Possibly by decreasing this choice of ε,
we can assume due to Proposition 1.8 that the result holds for ω(G) < 6. So it only
remains to consider ω(G) ≥ 6. Since ε cannot be greater than 3/4, we know that
ω(G)2 + ω(G) + 1 and ω(G)2 + (ω(G) + 1)/2 are at most ⌊(2 − ε)ω(G)2⌋.

We proceed by induction on the number of vertices inG. _e base case ofG having
6 vertices is trivially true. So nowassumeG hasmore than 6 vertices and that the result
holds for all graphs with fewer vertices than G has. We have three cases to consider
in succession.

If G is the line graph of a multigraph, then the result follows from _eorem 1.5.
If G is not the line graph of a multigraph but is a quasi-line graph, then let v

be the vertex and S the set given by _eorem 1.4. Since G ∖ v is a claw-free graph
and ω(G ∖ v) ≤ ω(G), it follows by induction that there is a proper colouring of
(G ∖ v)2 with colours from K = {1, . . . , ⌊(2 − ε)ω(G)2⌋}. We use this colouring to
obtain a proper colouring of G2. To do so, we ûrst uncolour the vertices of S and
then recolour them with distinct colours from K as follows. For each u ∈ S, we
need to provide a colour in K that is distinct not only from the colours appearing
on the vertices of NG2(u)∖ ({v}∪NG(v)) = N(G∖v)2(u)∖NG(v), but also from the
degG(v) − ∣S∣ colours assigned to NG(v) ∖ S. Since degG2(u) ≤ ω(G)2 + ω(G) and
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{v} ∪ NG(v) ∖ {u} ⊆ NG2(u), the number of colours fromK potentially available to
u in this sense (just a�er recolouring) is at least ∣K∣ − (ω(G)2 + ω(G)) + ∣S∣ ≥ ∣S∣.
By this fact, it follows that we can greedily recolour S with distinct colours fromK to
obtain a proper colouring of (G∖v)2 in which all the vertices in NG(v) have diòerent
colours. Now, since degG2(v) ≤ ω(G)2+ω(G), there is at least one colour available in
K diòerent from all the colours in NG2(v). Giving such a colour to v yields a proper
colouring of G2 from K.

If G is not a quasi-line graph, then let v be the vertex given by _eorem 1.3. Again
by induction, there is a proper colouring of (G ∖ v)2 with ⌊(2 − ε)ω(G)2⌋ colours.
In this colouring, necessarily all the vertices in NG(v) have diòerent colours. Since
degG2(v) ≤ ω(G)2 + (ω(G) + 1)/2, there is at least one colour available to v, which
leads to the desired proper colouring of G2.

6 Multigraphs with Induced Matching Number One

In this section, we outline how to establish _eorem 1.6. For any graph G = (V , E),
if ω(G2) = ∣V ∣, then the minimum square degree of G must be at least ∣V ∣ − 1. So by
_eorems 1.3 and 1.4, it suõces to show _eorem 1.6 in the special case of G being
the line graph of a multigraph. _is is implied by the following theorem (which is
slightly stronger than what we require). Chung, Gyárfás, Tuza, and Trotter [8] proved
this for a simple graph F. We adopt their notation. If ∆ ≥ 2 is even, then C5(∆) is the
graph obtained from the ûve-cycle by substituting each vertex by a stable set of size
∆/2. If ∆ ≥ 3 is odd, thenC5(∆) is the graph obtained by substituting two consecutive
vertices on the ûve-cycle by stable sets of size (∆ + 1)/2 and the remaining three by
stable sets of size (∆ − 1)/2. Let f (∆) denote the number of edges in C5(∆), so it is
5∆2/4 if ∆ is even and (5∆2 − 2∆ + 1)/4 if ∆ is odd.

_eorem 6.1 Let ∆ ≥ 2 and suppose that F = (V , E) is a multigraph with maximum
degree ∆(F) ≤ ∆ and whose underlying simple graph F0 is connected and induces no
2K2.
(i) If F is bipartite, then ∣E∣ ≤ ∆2. Equality holds if and only if F is the complete

bipartite graph K∆,∆ .
(ii) If ω(F) = 2 and F is not bipartite, then ∣E∣ ≤ f (∆). Equality holds if and only if

F is isomorphic to C5(∆).
(iii) If ω(F) ≥ 5, then ∣E∣ < f (∆).
(iv) If ω(F) = 4, then ∣E∣ < f (∆).
(v) If ω(F) = 3, then ∣E∣ < f (∆).

_eoriginal proof in [8] for simple graphs extends tomultigraphswith someminor
modiûcations. For brevity, we have elected to include only an outline formost of these
modiûcations and to refer liberally to [8].

Proof of (i) Let A and B be the color classes of F. By the corollary of [8, _eorem 1]
applied to F0, there is a vertex v adjacent to all vertices of A, so ∣A∣ ≤ ∆. It follows that
∣E∣ ≤ ∣A∣ ⋅ ∆ ≤ ∆2.
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By the above argument, equality is possible only if ∣A∣ = ∣B∣ = ∆ and F is ∆-regular.
Let us prove by induction on ∆ that equality holds only when F is the simple graph
K∆,∆ . _is is clear for ∆ = 1. Assume ∆ ≥ 2 and ∣E(F)∣ = ∆2. _e corollary of [8,
_eorem 1] applied to F0 gives a ∈ A and b ∈ B with neighbourhoods equal to B and
A respectively. Since deg(a) = ∆ = ∣B∣ and similarly deg(b) = ∣A∣, the vertices a and b
have no incidentmultiedges. Consequently, themultigraph F′ = F∖{a, b}has (∆−1)2

edges and no induced 2K2 in its underlying simple graph, and is bipartite, (∆ − 1)-
regular and connected. _e induction hypothesis applied to F′ gives F′ = K∆−1,∆−1,
and so F = K∆,∆ .

Proof of (ii) By [8, _eorem 2] applied to F0, we know that F0 is the blow-up of a
C5 by stable sets A1 , . . . ,A5 of respective sizes a1 , . . . , a5. For each i, the maximum
degree condition on v ∈ A i gives

(6.1) a i−1 + a i+1 = degF0(v) ≤ degF(v) ≤ ∆

where the subscript are taken modulo 5. Summing (6.1) over i ∈ {1, . . . , 5} gives

(6.2) 2
5

∑
i=1
a i ≤ 5∆.

We distinguish two cases depending on the parity of ∆.
If ∆ is even, then ∣E∣ ≤ ∆

2 ⋅ ∑
5
i=1 a i ≤ 5

4∆
2 = f (∆). Inequality (6.1) is an equality if

and only if every v ∈ A i is incident to exactly ∆ simple edges in F and ∆ = a i−1 + a i+1.
Moreover, the only solution of this system is a i = ∆

2 . To see this, compute

2a i =
4

∑
j=0

(−1) j(a i+2 j + a i+2 j+2) =
4

∑
j=0

(−1) j∆ = ∆.

If ∆ is odd, then (6.2) improves to 2∑5
i=1 a i ≤ 5∆ − 1. We may even assume that

2∑5
i=1 a i = 5∆ − 1. Indeed, if 2∑5

i=1 a i ≤ 5∆ − 2, then ∣E∣ ≤ ∆
4 (5∆ − 2) < f (∆). It

follows that (6.1) is an equality for all indices i in {1, . . . , 5} except one. Without loss of
generality, wemay assume a i−1+a i+1 = ∆ for i ∈ {1, 2, 3, 4} and a4+a1 = ∆−1. _eonly
solution to this system is given by a2 = a3 = a5 = (∆ + 1)/2 and a1 = a4 = (∆ − 1)/2,
which happens if and only if F0 = C5(∆). Noticing that doubling any edge of C5(∆)
creates a vertex of degree ∆ + 1, we conclude that F = F0 = C5(∆).

Modulo the fact that we use F instead of G and ∆ instead of D, we use the same
notation and deûnitions as in [8] with the exception that for y1 , y2 ∈ Y , the weight
w(y1 , y2) denotes the number of edges from y1 to K plus the number of edges from
y2 to K in F (instead of the number of neighbours). Claim 0 in [8] is satisûed by this
new deûnition.

Sketch of the proof of (iii) As there are at most p∆ − 2∣E(K)∣ edges from K to Y ,
relation (∗) in [8] becomes

∑
e∈Y

w(e) ≤ ( p∆ − 2∣E(K)∣)(∆ − 1)
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(where multiple edges appear multiple times in the sum). Using [8, Claim 0],

∣E∣ ≤ p∆ − ∣E(K)∣ + ∣E(Y)∣(6.3)

≤ p∆ − ∣E(K)∣ + 1
p − 1

(∆ − 1)(p∆ − 2∣E(K)∣)

= p∆ + p
p − 1

(∆ − 1)∆ − ∣E(K)∣( 1 + 2
∆ − 1
p − 1

) .

Using that ∣E(K)∣ ≥ (p
2),

∣E∣ < p∆ + p
p − 1

∆2 − p(p − 1)
2

− p(∆ − 1) ≤ p
p − 1

∆2 − p(p − 3)
2

.

_is ûnishes the proof for p ≥ 5.

Sketch of the proof of (iv) We proceed as in [8]. Using the same trick with the set
E3 = {e ∈ E ∣ w(e) = 3}, (6.3) can be improved to

∣E∣ ≤ 4∆ − ∣E(K)∣ + 1
4
(∆ − 1)(4∆ − 2∣E(K)∣) + 1

4
∣E3∣

= ∆2 − 3∆ − ∣E(K)∣( 1 + ∆ − 1
2

) + 1
4
∣E3∣

≤ ∆2 − 3∆ − 6( 1 + ∆ − 1
2

) + 1
4
∣E3∣ ≤ ∆2 − 3 + 1

4
∣E3∣.

By the same structural arguments, each e ∈ E3 has an endpoint in A1 (but the other
one can also be in A1), and it follows that ∣E3∣ ≤ (∆ − 1)(∆ − 2).

Sketch of the proof of (v) _e original proof applies just as well to line graphs of
multigraphs. We only need to check the following bounds:
(a) ∣E(Y)∣ ≤ ∣Y ∣(∆ − 1)/2,
(b) the number of edges from K to Y is at most 3∆ − 6,
(c) ∣E∣ ≤ ∣Y ∣(∆ − 1)/2 + 3∆ − 3.
_e inequality in (a) follows from the fact that each v ∈ Y has at least one neighbour
in K. _e number of edges from K to Y is at most 3∆− 2∣E(K)∣. _is ûrst implies (b)
as ∣E(K)∣ ≥ 3. Second, together with (a) it gives ∣E∣ ≤ ∣Y ∣(∆ − 1)/2 + 3∆ − ∣E(K)∣,
which implies (c) using again that ∣E(K)∣ ≥ 3.

_emultigraph analogues of [8, Claims 1 to 7] can be proved using the above three
properties as axioms in addition to some structural considerations that apply exactly
in the same way to multigraphs.

More precisely, we have the following in [8]: Claim 1 relies on (c); Claim 2 only re-
lies onClaim 1; Claim 3 only uses Claims 1 and 2 and (b); Claim4uses (c); Claim 5 uses
Claims 2 and 4; Claim 6 has a purely structural proof; and Claim 7 uses Claims 2, 5,
and 6. _e conclusion only uses these claims.
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