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Summary

We examine an analytical model of selection against the deleterious effects of transposable element

(TE) insertions in Drosophila, focusing attention on the asymptotic and dynamic characteristics.

With strong selection the only asymptotically stable equilibrium point corresponds to extinction of

the TEs. With very weak selection a stable and realistic equilibrium point can be obtained. The

dynamics of the system is fast for strong selection and slow, on the human time scale, for weak

selelction. Hence weak selection acts as a force that contributes to the stabilization of mean TE

copy number. The consequence is that under weak selection, and ‘out-of-equilibrium’ situation can

be maintained for a long time in populations, with mean TE copy number appearing stabilized.

1. Introduction

The way in which transposable elements (TEs) are

maintained in natural populations is a fundamental

question in population genetics. Natural selection

appears to be a major force containing the spread of

TEs that is expected from their transposition ability.

However, the precise mechanisms underlying the

action of selection are still a matter of debate

(Charlesworth et al., 1997; Bie!mont et al., 1997). The

ectopic exchange model (Langley et al., 1998) proposes

that selection acts against the gross chromosomal

rearrangements caused by unequal recombination

between TE copies, whereas other models

(Charlesworth & Charlesworth, 1983; Kaplan &

Brookfield, 1983) invoke slightly deleterious effects of

TE insertions as a cause of reduction of host fitness.

The ectopic exchange model is largely accepted

(Charlesworth & Lipid, 1989; Charlesworth et al.,

1992; Sniegowski & Charlesworth, 1994;

Charlesworth et al., 1994) because it seems to explain

more of the experimental data than does selection

against the insertional effects of TEs, and because this

latter model needs a selection coefficient similar to the
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transposition rate in order for stable equilibrium to be

reached.

New considerations about the value of the selection

coefficient (Charlesworth, 1996; Keightley, 1996) have

made the selection model more plausible as a

mechanism for the maintenance of TEs in natural

populations. However, these analytical models have

been considered mainly in terms of their asymptotic

values, and we have little understanding of the

dynamics of the variation in TE copy number with

time. We have thus re-examined more precisely the

model of selection against the deleterious effects of TE

insertions. We propose a new formulation for this

model. It uses the selection coefficient, s, and the

dominance coefficient, h, against each TE insertion,

rather than fitness functions, w
n

(fitness of individuals

having n copies of TE), and does not assume that the

number of occupiable sites is high (Charlesworth &

Charlesworth, 1983; Charlesworth, 1985). We have

thus searched for situations for which the infinite

population size model leads to a biologically realistic

equilibrium state, i.e. to a steady copy number that is

asymptotically stable, in a range from 1 to 100, as is

usually observed in Drosophila (Bie!mont, 1992). We

determine how fast this equilibrium state can be

achieved. Finally, we explore the validity of the

infinite population approximation using a finite

population model. All numerical applications are

performed with Mathematica 3.0 software (Wolfram

Research, 1996).
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2. Infinite population model

Following the approach of Charlesworth &

Charlesworth (1983), the host population is assumed

to be diploid, sexual and panmictic. TE insertions are

all equivalent, autosomal and active. The TE copy

number can be reduced by excision and increased by

duplicative transposition. It is assumed that an

insertion can be observed only at given places, called

‘ insertion sites ’, and that the number of possible sites

in a haploid genome, m, is supposed to be finite.

Linkage desequilibrium between sites is neglected

(Charlesworth & Charlesworth, 1983), and an in-

sertion at a given site can be either homozygous,

heterozygous or abent. A given insertion site is thus

treated like a diallelic locus i with frequencies, x
i,t

,

corresponding to the presence of a TE insertion at

generation t, and 1®x
i,t

, corresponding to the absence

of TE. The mean TE copy number per individual is

thus

na
t
¯ 2 3

m

i="

x
i,t

.

Transposition and excision occur at constant rates per

generation, and the excision rate � is small compared

with the transposition rate u (the probability that an

element at a given site produces a new copy). The

selection coefficient, s, and dominance coefficient, h,

do not depend on time.

Let us first consider an infinite host population.

Following Charlesworth & Charlesworth (1983), the

expected change in TE frequency due to excision and

transposition at a given site i can be written as

x
i,t+"

®x
i,t

¯ (®�x
i,t

)­0u na
t

2m®na
t

1 (1®x
i,t

). (1)

Following standard selection theory (Wright, 1931 ;

Crow & Kimura, 1970), the part of the change of TE

frequency that is due to natural selection at a given

site i is
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where wa
it

is the mean fitness of the population for the

site i at time t. The total change in frequency at site i

can thus be written as
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Assuming that all sites are equally selected (h and s are

the same for all sites), that frequencies at a given time

do not depend on the site (ci,ct,x
i,t

E na
t
}2m), and

that fitnesses at different insertion sites are multi-

plicative (non-epistatic model), one obtains a simple

recurrent equation for the evolution of the genomic

mean copy number:

na
t+"

®na
t
¯ (u®�) na

t
­sna

t 01®
na
t

2m1

¬

E

F

®h®
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2m
na
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m1 na
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®0s(1®sh)

4m#
1 na #

t

G

H

. (4)

The solutions at equilibrium of (4) are obtained when

the variation in mean copy number between two

generations is null. The equilibrium points of the

system are thus solutions of the recurrent equation:

n*¯ f(n*), where na
t+"

¯ f(na
t
), and asymptotic stability

of an equilibrium point n* is obtained by calculating

λ*¯ 0 df

dna
t

1
n*

.

If rλ*r!1, then n* is asymptotically stable. If rλ*r"1

then n* is unstable. Non-hyperbolic points (rλ*r¯1)

were not studied. The equilibrium points of the system

are zero, that is stable if hs" u®� and unstable if

hs! u®�, and the solutions of the second-degree

equation:

1

4m#

[(1®(u®�)) (1®2h) s] n#

­
1

m 9hs(1®(u®�))®
(1®h) s

2 : n
­(u®�®hs)¯ 0. (5)

Note that under co-dominance, i.e. perfect additivity

of insertion effects (h¯ 0±5), the unique solution of

this equation is :

n*¯ 2m 0 s®2(u®�)

s(1®2(u®�))1 .
If h1 0±5, the two solutions can be analytically

obtained by solving the second-order polynomial

equation (5). We tried to find situations (sets of

parameters) for which a stable and realistic equi-

librium point, i.e. real, non-null and fewer than 100

TE copies, is achieved. Results are shown in Table 1.

We first considered the parameter values s¯ 0±1,

h¯ 0±2, u®�¯10−%, m¯ 50 (‘strong selection’).

These numerical values are classically used in the

literature (Charlesworth & Langley, 1991 ; Nordberg

et al., 1996), except that of m, for which the large

range of values suggested in literature (Charlesworth

& Langley, 1991 ; Bie!mont, 1992) led us to choose

arbitrarily quite a small value (m¯ 50), following
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Table 1. Effect of the parameters s, h, u®v and m

on equilibrium states of the model

s h u®� m Equilibrium

0±1 0±2 0±0001 50 No (0)
0±1 0±2 0±0001 (m) No
0±1 0±2 (u®�) 50 Yes*
0±1 (h) 0±0001 50 Yes*
(s) 0±2 0±0001 50 Yes
0±0004 0±2 0±0001 50 Yes (16±7)
0±0004 0±2 0±0001 (m) Yes
0±0004 0±2 (u®�) 50 Yes
0±0004 (h) 0±0001 50 Yes
0±0004 0±5 0±0001 50 No (0)
0±0004 0±5 0±0001 (m) No
0±0004 0±5 (u®�) 50 No
(s) 0±5 0±0001 50 No

Numerical values of the selection coefficient s, the dominance
coefficient h, the transposition and excision parameter u®�,
and the insertion site number m, used in each situation are
indicated. The parameter under study is in parentheses.
‘No’ means that there is no possible strictly positive stable
equilibrium point in this situation. ‘Yes’ means that a stable
and strictly positive equilibrium point can be found in this
situation. ‘Yes*’ means that there is a stable and strictly
positive equilibrium point in this situation but it is less than
1 or the range of values for the parameter under study is not
realistic biologically. Except for the last four lines of the
table, h is supposed to be different from 0±5. For reference
situations: ‘ strong selection’, ‘weak selection’, ‘weak
selection with a perfect additivity of TE insertions’, the
stable equilibrium point obtained is in parentheses.

Charlesworth & Charlesworth (1983). In this strong

selection situation, the only stable equilibrium point is

zero. We then modified the parameters of the model,

one by one, and studied their effect on the equilibrium

of the system (we first considered h1 0±5; the case

h¯ 0±5 will be discussed later). The asymptotic

stability of equilibrium points did not change with the

total insertion site number m. The numerical values of

the equilibrium points were modified, but the site

occupation rate (n*}2m) was maintained. This is a

scaling effect due to the proportional rise of the power

of selection with m because we suppose non-epistatic

effects between insertion sites, which leaves the

occupation rate unaffected. Only very high values

("10−#) of the parameter u®� led to a stable and

realistic equilibrium point, but such values are not

realistic biologically. By strongly diminishing the

value of h or, more realistically, of s (from 3±75¬10−%

to 5¬10−%), a stable and realistic equilibrium point

could be obtained. For example, with s¯ 4¬10−%,

h¯ 0±2, u®�¯10−% and m¯ 50, a stable equilibrium

point is reached at 16±7 copies (which corresponds to

a site occupation rate of 16±7%). For this weak

selection situation, modifying parameters of the

system one by one, we found that : (i) m has a scaling

effect on the system equilibrium as it does under the

Table 2. Temporal e�olution of the mean copy

number with strong and weak selection

Strong selection Weak selection

Initial copy
Generations Generations

number 100 1000 100 1000

1 0±16 !10−( 1±00 1±02
30 3±41 !10−' 29±98 29±83
90 11±00 !10−' 90±58 96±67

Simulations were performed over 100 and 1000 generations.
Strong selection corresponds to the parameter values s¯ 0±1,
h¯ 0±2, u®�¯10−%, m¯ 50 (stable equilibrium mean copy
number: 0), andweak selection corresponds to the parameter
values s¯ 4¬10−%, h¯ 0±2, u®�¯10−%, m¯ 50 (stable
equilibrium mean copy number: 16±7).

strong selection situation; (ii) there is a narrow, but

realistic, range of values for the parameter u®�, from

8¬10−& to 10−%, leading to a stable and realistic

equilibrium point ; (iii) there is a range of realistic

values for the parameter h, from 0 to 0±25, leading to

a stable and realistic equilibrium point. However, with

perfect additivity of insertions under weak selection

(s¯ 4¬10−%, h¯ 0±5, u®�¯10−%, m¯ 50), zero is

the only stable equilibrium point. When modifying

one parameter, we found that m has a scaling effect as

seen before. There is no value of u®� or s leading to

a stable and realistic equilibrium point. Therefore, in

the case of perfect additivity of insertion effects, there

is no possible stable and realistic equilibrium point.

We then looked for the convergence rate toward the

equilibrium under strong (s¯ 0±1, h¯ 0±2,

u®�¯10−%, m¯ 50) and weak (s¯ 4¬10−%, h¯ 0±2,

u®�¯10−%, m¯ 50) selection. The evolution of the

mean copy numbers over 100 generations (approxi-

mately 5 years) and 1000 generations, with different

initial copy numbers, is presented in Table 2. It is clear

that under strong selection the stable equilibrium

point 0 is quickly reached. Under weak selection, the

stable equilibrium point is 16±7, but an unstable

equilibrium point also exists at 50 copies, which

explains the increase in copy number obtained with

the initial condition of 90 copies. Under weak

selection, the dynamics of the system is thus slow, and

the convergence towards the equilibrium is un-

detectable in most cases. Because of low transposition

rates, copy number will increase slowly even in the

absence of selection; weak selection will thus only

noticeably reinforce such a phenomenon. To have a

more precise representation of the effect of s on the

dynamical process, we represent in Fig. 1 the

evolution, over 1000 generations, of the mean TE

copy number under different strengths of selection:

s¯10−", s¯ 5¬10−#, s¯10−#, s¯10−$ (leading to
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Fig. 1. Effect of selection strength (selection coefficient s)
on rate of convergence towards the equilibrium mean TE
copy number. Other parameter values are h¯ 0±2,
u®�¯10−%, m¯ 50. Initial copy number is 30.
Simulations were performed under 1000 generations.

the stable equilibrium point 0), and s¯ 4¬10−%

(leading to the stable equilibrium point 16±7), with

h¯ 0±2, u®�¯10−%, m¯ 50, and an initial copy

number equal to 30. All the results reflect the

asymptotic characteristics of the system in the different

situations, with slower dynamics when selection is

weak. The dependence of the dynamic towards

equilibrium on the strength of the selective coefficient,

a characteristic of almost all population genetic

models, results from the parameter s being a dimension

of (time in generations)−", as are also � and u.

3. Finite population model

Although considering an infinite population size

makes models simpler, this may not correspond to the

natural situation encountered for most populations.

We thus examine the effect on the model of a reduced

population size. We focus our attention on the

population size necessary for the infinite population

size approximation to be accurate under the weak

selection situation (s¯ 4¬10−%, h¯ 0±2, u®�¯10−%,

m¯ 50). A finite population size model based on

diffusion approximations was derived following

Charlesworth & Charlesworth (1983). In this model, x

corresponds to the allelic frequency of the TEs in the

population distributed over insertion sites, the linkage

disequilibrium between sites being neglected. The

stationary probability density of x follows Wright’s

formula:

φ(x)¯
K

V δx
exp 02&M δx

V δx
dx1 ,

where M δx and V δx are, respectively, the mean and

the variance of the rate of change in x per generation,

and K is a constant which is adjusted so that

&"

!

φ(x) dx¯1.
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Fig. 2. Stationary distribution of the TE frequency per
site in weak selection for different population sizes.
Parameter values are s¯ 4¬10−%, h¯ 0±2, u®�¯10−%,
m¯ 50.

The expression for δx is :

δx¯ (®�x)­0u na
2m®na 1 (1®x)­0x(1®x)

2wa 1dwa
dx

,

where wa ¯1®2hsx®(1®2h) sx# is the mean fitness

associated with one insertion site. Thus:

M δx¯®�x­µ(1®x)­0x(1®x)

2wa 1dwa
dx

,

V δx¯
x(1®x)

2Ne
,

5

6
7

8

(6)

where Ne is the effective population size, and

µ¯E 0u na
2m®na 1

is approximated as in Charlesworth & Charlesworth

(1983). The density function of the steady-state

distribution is thus (Crow & Kimura, 1970)

φ(x)¯Kx%
µNe−"(1®x)%vNe−" (1®2hsx®(1®2h) sx#)#Ne.

(7)

The form of the stationary probability distribution of

the TE frequency in the weak selection situation is

shown in Fig. 2 for population sizes ranging from 10#

to 10'. The U-shaped probability distribution of x

obtained for population sizes ranging from 10# to 10%

reflects the prevailing effect of genetic drift versus

deterministic factors such as selection, transposition

and excision on the equilibrium state of the system.

However, with population size strictly over 10%

individuals there is an ‘optimal frequency’ close to

the stable equilibrium frequency obtained under the

infinite population model, and the peak of the

distribution becomes narrower when population size

increases. The mean and variance of the frequency

distribution per site, E(x) and V(x), largely depend on

the population size (data not shown), as suggested
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Fig. 3. Mean TE copy number (na ) and associated
standard error in weak selection for different population
sizes. The dotted line corresponds to na ¯ n* (the stable
equilibrium value obtained under the infinite population
model). Parameter values are s¯ 4¬10−%, h¯ 0±2,
u®�¯10−%, m¯ 50. Mean copy number na , and standard
error SE, were calculated as na ¯ 2mE(x) and
SE¯1±96¬oV(n), with V(n)¯ 4mV(x).

from Table 2 in the Charlesworth & Charlesworth

(1983) model. As seen in Fig. 3, with small population

size the mean TE copy number (calculated as

na ¯ 2mE(x)) is larger than that obtained with the

infinite population approximation. This could be due

to a reduction in the power of selection in small

populations, resulting from a reduction in the variance

of fitness (Brookfield & Badge, 1997) or a stronger

effect of drift compared with selection (Aquadro,

1992). The associated standard error (calculated as

SE¯1±96¬oV(n), where V(n)¯ 4mV(x)) is high.

With a large population size the mean TE copy

number is close to the 16±7 value obtained under the

infinite population size assumption, and the standard

error is much reduced. The equilibrium predictions of

the finite population size model thus largely depend

on the host population size, with genetic drift being

important even for quite large populations – a puz-

zling point rarely stressed in the literature (Brookfield

& Badge, 1997).

4. Discussion

With weak selection against TE insertions close to

10−%, as recently assumed in Drosophila by

Charlesworth (1996), a stable and realistic equilibrium

in TE copy number can be generated. The equilibrium

depends on the partial recessiveness of TE insertions,

and on the insertion site number. Partial recessiveness

of insertions is assumed because no stable equilibrium

point can be generated with h& 0±5, even with low s.

With s¯ 4¬10−%, u®�¯10−%, m¯ 50, the condition

on h for a stable equilibrium point to be obtained is

0! h! 0±25. This condition seems realistic, since

numerical values for h proposed for Drosophila in

literature range from 0±20 to 0±35 (Mukai &

Yamaguchi, 1974; Crow & Simmons, 1983). The

sensitivity to the insertion site number value has rarely

been evoked in literature because it is generally

assumed that m is large compared with n, and the

model is thus independent of m (Charlesworth, 1985).

On the contrary, with an exact formula it seems that

m must be small for a realistic equilibrium point to be

obtained under selection models, a condition already

suggested by Charlesworth (1991). For example, with

s¯ 4¬10−%, h¯ 0±2, u®�¯10−%, for a copy number

lower than 100 (as is usual in Drosophila) the number

of insertion sites can not be more than 300, because

n*}2m¯16±7% under stable equilibrium. This raises

the adequacy of the number of available sites which

can be estimated by the number of positions that can

be distinguished on the polytene chromosomes by in

situ hybridization (500 to more than 800 according to

the authors). Values of observed total numbers of

labelled sites up to a maximum of 219 have been

reported for various TEs on Drosophila polytene

chromosomes from natural populations (Bie!mont,

1992; Charlesworth et al., 1992; Bie!mont et al., 1994;

Aulard et al., 1995) ; such data, which depend on

sample size, must be considered with caution. Note

that in our selection model an insertion site is defined

not merely in terms of being a chromosomal window

within which individual insertions are indistinguish-

able by in situ hybridization, but rather through

a recessivity effect in which a selective impact of

homozygosity is felt by insertion at the same site. With

this model it is not necessary to introduce synergistic

interactions between TE insertions (Charlesworth &

Charlesworth, 1983) for a realistic equilibrium to be

obtained. Even under a multiplicative model of fitness,

assuming the partial recessiveness of TE insertions,

the total mean fitness can be approximated by:

w
na
E exp 0hsna®

s(1®2h)

4m
na #1 ,

which actually verifies the condition of a ‘more steeply

than linear decreasing of ln (w
n
) with increasing n ’

(Charlesworth & Charlesworth, 1983) necessary for a

stable equilibrium to be obtained. On the contrary,

with h¯ 0±5 this fitness is approximated by

w
na
E exp (0±5sna ),

which does not verify the above condition, and

consequently can not lead to a stable and realistic

equilibrium point.

5. Conclusion

Our goal was to explore more deeply the classical

model of Charlesworth & Charlesworth (1983),

particularly with respect to the effect of selection. The

main result is that, under very weak selection (s close

to 10−%), the equilibrium state takes a long time to be

achieved. Hence, if a population has recently been
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invaded by a TE, either by horizontal transfer or after

a transposition burst, it is out of equilibrium for TE

copy number, and will maintain this state for many

generations. This agrees with the low element

frequencies reported in various works, and suggests

that many families of TEs should evolve, although

very slowly, to much higher frequencies. Selection

thus acts as a force that contributes to the stabilization

of copy number at its initial point, rather than as a

force that makes the system quickly converge towards

equilibrium. This may explain the maintenance in

different populations of various TE copy numbers,

and interactions with environmental factors may allow

TE copy number to diverge between populations

(Vieira et al., 1998). Natural populations, and even

most laboratory lines, may thus be far from being at

equilibrium for their copy number of most of their

TEs, thus making irrelevant the estimation of many

parameters of TE dynamic models and tests of the

validity of these models (Montgomery et al., 1987;

Charlesworth et al., 1997; Bie!mont et al., 1997).
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