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Understanding the effect of intricate surface wettability conditions on microswimmers
is crucial for precisely navigating them across narrow microcirculatory networks. Here,
we adopt the spherical squirmer model and Navier slip condition to delineate the
microswimmer locomotion under a Poiseuille flow in a slit microchannel. Through
a combined analytical–numerical approach utilizing bispherical coordinates and the
superposition technique, we resolve the slip-modulated simultaneous hydrodynamic
interaction with substrate boundaries. Phase portraits reveal that slip significantly alters
propulsion mechanisms, destabilizing centreline stable oscillations of pullers beyond a
threshold slip length. Superhydrophobic surfaces suppress near-wall rheotaxis states but
preserve centreline focusing, facilitating slip-assisted directed transport without surface
accumulation. Under strong background flows, subcritical Hopf bifurcation emerges
for pullers at a critical slip length, transitioning dynamics from coexisting stable and
unstable states to purely unstable behaviour. Contrastingly, for pushers, slip causes a
transition from unstable to either stable or fixed-amplitude oscillations. Increased slip
length reduces hydrodynamic repulsion on pullers from the walls by enhancing rotational
velocity near the walls, whereas it counteracts the torque that causes unstable oscillations
of pushers. Three-dimensional analysis of the trajectories reveals the significant role of
the out-of-plane orientation of the microswimmer in its transitions between different
swimming states. The presented regime maps offer parametric combinations for specific
motion behaviours, guiding the development of smart microfluidic drug delivery systems
and preventing biofilm deposition in biomedical devices.
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1. Introduction

Motile microorganisms often have to swim through confined geometries in their natural
habitats, ranging from navigation of spermatozoa in the female oviduct (Elgeti, Winkler
& Gompper 2015), movement of pathogens in lung mucus (Huffnagle, Dickson &
Lukacs 2017) and deposition of infectious bacteria in the gastrointestinal tract, to
phytoplankton in marine ecosystems (Barry et al. 2015). On the other hand, progress
in microfluidic technology has led to the development of lab-on-a-chip devices to
characterize in-flow microorganism dynamics to prevent urinary tract infection (Zhou et al.
2024) or improve clinically assisted reproduction (Huang et al. 2023). Furthermore, the
artificial counterparts of microorganisms, termed micromotors and nanomotors, are being
developed with an aim to achieve targeted drug delivery to infected sites by navigating
through complex microcirculation networks (Baraban et al. 2013; de Ávila et al. 2017).
Thus an understanding of their propulsive forces and interaction with restricted geometries
is inevitable to ensure effective and precise manipulation within the confined pathways.

Interaction of microswimmers with physical boundaries significantly modifies their
swimming attributes (Lauga et al. 2006; Berke et al. 2008; Di Leonardo et al. 2011; Molaei
et al. 2014; Poddar, Bandopadhyay & Chakraborty 2021; Damor, Ghosh & Poddar 2023).
The study of Berke et al. (2008) found that the bacterium Escherichia coli has a tendency
to accumulate near the closest surface mainly due to the hydrodynamic forces that cause
a wall-parallel reorientation to the swimming bodies. Hydrodynamic interactions with
the boundary also lead to circular trajectories of swimming cells near a solid boundary,
thereby explaining the mechanism of surface attachment responsible for biofouling and
infection (Lauga et al. 2006). Similarly, the motility of sperm cells gets affected by the
nearby boundary, as revealed in laboratory experiments (Cosson, Huitorel & Gagnon
2003). The surface entrapment of sperm cells poses a challenge to successful insemination
in assisted reproductive technologies. Different micro- and nano-structured devices have
been proposed (Guidobaldi et al. 2015; Nath et al. 2023) to prevent surface accumulation.
Simultaneous theoretical models were developed to gain insight into the steady height and
orientation of microswimmers near the wall during locomotion (Spagnolie & Lauga 2012;
Ishimoto & Gaffney 2013; Li & Ardekani 2014), thereby validating the experimentally
observed surface accumulation. Apart from hydrodynamic interaction with the surface, the
motility of microorganisms is dependent on several other effects, such as direct flagellar
contact (Kantsler et al. 2013), pairwise interaction (Drescher et al. 2011), thermal and
intrinsic noise (Li & Tang 2009; Schaar, Zöttl & Stark 2015), complex rheology of the
surrounding medium (Poddar, Bandopadhyay & Chakraborty 2019a), and short-range
repulsive force (Walker et al. 2019).

The existing background flow modulates self-propulsion in quiescent environments,
resulting in fascinating motion behaviours, e.g. navigating against the flow direction
(Kaya & Koser 2012), cross-stream migration (Katuri et al. 2018), jumping or rolling
(Sharan et al. 2022), and trapping in high-shear zones in a microchannel (Rusconi,
Guasto & Stocker 2014). The change in orientation in response to velocity gradients
gives rise to upstream navigation, widely known as ‘rheotaxis’ in relation to a variety
of microswimmers, ranging from spermatozoa (Bretherton & Rothschild 1961; Kantsler
et al. 2014) and bacteria (Hill et al. 2007) to artificial microswimmers (Palacci et al.
2015; Baker et al. 2019). Rheotaxis has different origins. For sperm in the neighbourhood
of liquid–solid interfaces, it is governed by differential drag forces on the head and
tail (Rothschild 1963). Combining microfluidic experiments and a mathematical model,
Marcos et al. (2012) showed that rheotaxis can occur for Bacillus subtilis owing to a
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critical interaction between the shape asymmetry of the flagella and the velocity gradients
in the unbounded domain. Uspal et al. (2015) showed the possibility of rheotaxis near
a single wall even in the absence of fore–aft asymmetry of the swimmer, e.g. spherical
squirmers or Janus particles. The mechanism of shear-induced rotation constrains the
upstream motion in the plane of shear. In subsequent investigations, the variations of
similar rheotaxis phenomena were analysed for two-dimensional squirmers (Ishimoto
2017) and cylindrical-shaped micromotors (Brosseau et al. 2019), and in the presence
of a repulsive wall interaction force (Walker et al. 2019). Similarly, modulations in the
background flow can also take place due to an applied electric (Poddar et al. 2018, 2019b),
thermal (Mantripragada & Poddar 2022; Poddar 2023), chemical or magnetic (Tottori &
Nelson 2018) field.

The motion of microswimmers in confined vessels or channel-like environments brings
a new dimension to the motion attributes compared to a single wall. The hydrodynamic
interaction with the top and bottom walls leads to unique trajectories such as ‘swinging’
and ‘tumbling’ (Zöttl & Stark 2012). During their motion in channels, the existing
pressure-driven flows in these passages compete with self-propulsion behaviour (Hill et al.
2007; Jana, Um & Jung 2012; Kaya & Koser 2012; Mathijssen, Pushkin & Yeomans 2015).
In experiments, Paramecium describe helical trajectories in glass capillaries (Jana et al.
2012). Jana et al. (2012) also found that the travelling speed of the organism decreases
with tighter confinements due to increased viscous resistance. Similarly, Chlamydomonas
sp. cells migrate about the channel axis (Barry et al. 2015). Theoretical studies (Zöttl
& Stark 2012; Zhu, Lauga & Brandt 2013) provided further insights by categorizing the
swimming states for puller- and pusher-type microswimmers. They reported that puller
microswimmers show stable locomotion at the channel centreline, while pushers end up
crashing against the walls due to unstable swimming behaviour. It was also reported that
swimmers with sufficiently strong dipole strength tend to reach stable states near the
walls. In addition, the fluid inertia (Choudhary et al. 2022) and complex fluid rheology of
microbiological flows (Mathijssen et al. 2016) strongly influence the swimming dynamics
inside a channel. Recent experiments on microalgae Chlamydomonas (Omori et al. 2022)
demonstrated the existence of rheotaxis and migration to the channel centreline in the
presence of cyclic variations of the body deformation and swimming velocity. Along
similar lines, oscillatory rheotaxis of self-propelling droplets in microchannels has been
reported (Dey et al. 2022).

Surface properties of the geometric confinements have far-reaching consequences on
microswimming behaviour. The experiments of Di Leonardo et al. (2011) and Lemelle
et al. (2013) revealed that the circular swimming trajectories of E. coli bacteria change
sense of rotation near a liquid–solid interface, categorized as an infinite or perfect slip
interface. The numerical simulations of Pimponi et al. (2016) further predicted that no
stable orbit exists for flagellated microswimmers near a similar interface. Surfaces with
extreme wettability conditions have been created in various experimental scenarios, such
as coating of hydrophobic molecules on surfaces handling a bacterial polymeric solution
(Tretheway & Meinhart 2004; Lauga, Brenner & Stone 2005) or air bubble entrapment in
micro- and nano-structured surfaces (Choi & Kim 2006; Lima & Mano 2015). The Navier
slip model (Navier 1823) had been widely used to model such partial-slip boundaries in
different contexts of microfluidics (Chakraborty 2008; Vega-Sánchez & Neto 2022). The
superhydrophobic boundaries, having high slip lengths, reduce the interfacial friction and
fundamentally alter the hydrodynamics. In natural microcirculatory networks, the Navier
slip condition can mimic the role of the mucus layer that reduces the interfacial friction
(Wang et al. 2020). The studies related to microswimmer dynamics near partial-slip
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boundaries have been limited to either pure self-propulsion (Lopez & Lauga 2014;
Hu et al. 2015; Poddar, Bandopadhyay & Chakraborty 2020) or linear shear flow near
a wall (Ghosh & Poddar 2023). The mesoscopic simulations of Hu et al. (2015) suggested
the potential of slip-patterned surfaces to convert circular bacterial motion to snaking
trajectories. Moreover, contrary to free-slip interfaces, the partial-slip boundaries can
produce stable swimming states only when the slip length crosses a critical strength
(Poddar et al. 2020). Under a linear shear flow, the surface hydrophobicity creates a
host of new rheotactic states (Ghosh & Poddar 2023) adjacent to the wall, indicating an
enhancement in surface entrapment with wall slippage.

It is clear from the above discussion that no attention has been directed in the literature
to answer how slip-induced alterations in the flow field around a microswimmer would
interact with a background Poiseuille flow due to an applied pressure gradient in a
microchannel. Poiseuille flow comes with the additional effects of a quadratic shear flow,
which leads to a flow curvature due to the linearly increasing flow gradient. Depending on
the unique self-propulsion mechanisms of front or rear actuation (for puller and pusher,
respectively), a microswimmer may respond deferentially to the flow gradient in the
presence of channel hydrophobicity, or it may need to overcome the drag induced by the
flow. Again, the implications of two hydrodynamically interacting planar walls in a slit
channel might give rise to non-trivial effects of slip length against the escaping trajectories
observed in our earlier works (Poddar et al. 2020; Ghosh & Poddar 2023).

To address the above unresolved issues in the literature, we present a theoretical model
of microswimmer locomotion under the simultaneous influences of Poiseuille flow and
hydrodynamic slippage at the confining substrates. We obtain an exact solution of the
Stokes flow for a sphere–wall geometry, and apply the superposition method to estimate the
effects of both the confining boundaries simultaneously. We employ the Navier slip model
(Navier 1823) to characterize the substrate wettability. In many earlier studies related to
microswimmers in Poiseuille flow, researchers have focused on the force-dipole swimmer
models (Mathijssen et al. 2016; Choudhary et al. 2022; Choudhary & Stark 2022), which
illustrate the microswimmer as a point particle, thereby neglecting the effects of finite
swimmer size (Spagnolie & Lauga 2012). To resolve this, we provide a semi-analytical
solution to the mentioned problem in a bispherical coordinate system, which is competent
in capturing the hydrodynamics of a spherical squirmer confined between parallel walls.
Furthermore, the force dipole and an image system consisting of point force singularities
can predict only the far-field dynamics. In contrast, the present methodology efficiently
explains the near-field swimming attributes. Notably, a superposition of the background
flow and the flow around a point-like microswimmer can provide important insights
into the dynamics when the walls are no-slip in nature (Zöttl & Stark 2012). However,
a mere inclusion of the Navier slip boundary condition in the background Poiseuille
flow, without considering the hydrodynamic interaction with the channel walls, does not
accurately represent the impact of slip length on the swimmer’s dynamics. This is because
the swimming velocity components that affect the dynamics remain unaltered with the
slip effect in the absence of hydrodynamic interaction. The presently adopted spherical
squirmer model accurately models the slip effects on the active swimming as well as
the passive propulsion by incorporating the hydrodynamic interaction, thus rendering
the outcome of the study far from intuitive. We further perform a detailed analysis
of the dynamic system illustrating microswimmer motion, and categorize the different
swimming behaviours.

Analysis of the dynamical system in the plane of background flow reveals the emergence
of subcritical Hopf bifurcation with increasing slip lengths for puller microswimmers.
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Microswimming in a slippery Poiseuille flow

On the contrary, the unstable oscillations for pusher microswimmers either transition to
damped oscillations or reach a fixed-amplitude oscillatory state. The interaction between
a puller and a slippery surface is known to engender new surface rheotaxis states in linear
shear flow (Ghosh & Poddar 2023). However, this impact does not create a new stable state
at the channel centreline in Poiseuille flow; instead, it causes instability. In this case, it is
the pushers that experience the emergence of new stable oscillatory states at the channel
centreline due to the slip effect. Also, increasing slip length causes an enhanced tendency
to swim downstream in a Poiseuille flow for the same pressure gradient of the imposed
flow.

2. Problem formulation

Figure 1 illustrates the physical system under consideration. It displays a spherical
microswimmer of radius a in a slit channel. The large width of a slit channel in the y
direction lets us consider it as a confined passage between two parallel plates separated by
a distance H̃ in the z direction. Here, the symbol ˜ is used to denote dimensional quantities.
The microswimmer is simultaneously actuated by its intrinsic swimming action and a
background plane Poiseuille flow, which develops due to an imposed pressure gradient in
the channel. The confining boundaries obey the Navier slip boundary condition, quantified
by the slip length l̃s. Here, the slip length (l̃s) defines the imaginary distance below (bottom
wall) and above (top wall) the bounding walls where the projected flow velocity vanishes.
The mathematical form of the Poiseuille flow in the presence of wall slip takes the form

ũ(ex) = − 1
2μ

dp̃
dx̃

((z̃ + l̃s)H̃ − z̃2)ex, (2.1)

where μ is the fluid viscosity, and dp̃/dx̃ is the applied pressure gradient in the longitudinal
direction. The quadratic component in the Poiseuille flow (2.1) gives it a unique feature
of non-vanishing shear stress gradient in comparison to a pure linear shear flow. In three
dimensions, the orientation of the microswimmer is represented by the director vector p̂,
whose orientation can be described by the angles θp and φp, as defined in figure 1. In puller
microswimmers, e.g. bacterium Chlamydomonas, the forward movement is achieved by a
pulling motion generated by the swimming apparatus located in the front part of the cell
body, similar to a breaststroke action. For pusher microswimmers, e.g. sperm cells, the
propulsion comes from a pushing motion generated by the posterior (rear) flagellar action.
Without any background flow, the flow fields around the microswimmer are shown in the
inset using red arrows, while the local forcing directions are marked with blue arrows.

We adopt the squirmer model (Lighthill 1952; Blake 1971) to describe the
self-propelling mechanism of a spherical microswimmer. In this model, stimulation
generated by the appendages of natural microswimmers is captured by small axisymmetric
surface distortions on the sphere surface. These distortions are modelled by applying a
tangential surface velocity (ṽ(sp)

s ) on the microswimmer surface:

ṽ(sp)
s =

(
p̂ · rs

|rs|
rs

|rs| − p̂
) ∞∑

n=1

2
n(n + 1)

BnP′
n

(
p̂ · rs

|rs|
)

, (2.2)

where Bn is the amplitude of the nth squirming mode, P′
n refers to the derivative of

the Legendre polynomial with respect to p̂ · rs/|rs|, and rs denotes the position vector
from the centre of the microswimmer to its surface. Following the previous literature
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Puller

Pusher

Swimming

direction

z

y
xp̂xy

p̂xz

p̂ h̃

H̃

l̃s

l̃s

z̃ = –l̃s

z̃ = H̃ + l̃s

φp

θpO

Figure 1. Schematics of a spherical microswimmer confined between two parallel slippery walls separated by
distance H̃ in a background Poiseuille flow taking place in the x–z plane. The centre (O) of the sphere is located
at height h̃ from the bottom wall, and the orientation vector is denoted p̂. The projection of p̂ on the plane of
flow (p̂xz) is inclined at an angle θp with respect to the x axis. Similarly, the projection of p̂ on the x–y plane, i.e.
p̂xy, makes an angle φp with the x axis. The inset portrays the swimming mechanisms of puller- and pusher-type
microswimmers.

(Uspal et al. 2015; Shaik & Ardekani 2017), we truncate the infinite series in (2.2) up
to the first two squirming modes to capture the essential physics of microswimming.
The ratio between the second and first squirmer modes is defined as the squirmer parameter
β = B2/B1, which categorizes the squirmers into pullers (β > 0), pushers (β < 0) and
neutral microswimmers (β = 0).

In the following subsections, we develop a mathematical model to identify unique
propulsive features due to the interaction between the microswimmer and the Poiseuille
flow bounded by slippery confinements.

2.1. Governing equations and boundary conditions

For microorganisms having typical swimming velocity Ũref ranging from tens to hundreds
of μm s−1, and characteristic length a up to a few hundred μm, the Reynolds number,
defined as Re = ρŨref a/μ, remains mostly of the order of 10−1 or even less (Lauga &
Powers 2009). Thus we can neglect the inertial effects of the flow. It can also be shown
that a similar size of microorganisms leads to a very small Péclet number, Pe = Ũref a/D,
where D is the diffusion coefficient (Stark 2016). Accordingly, we neglect the Brownian
dynamics (Ishikawa, Simmonds & Pedley 2006). In order to describe the locomotion of
microswimmers in the creeping flow regime, we consider the Stokes equation (Lauga &
Powers 2009). Further considerations of incompressible flow and a Newtonian fluid of
viscosity μ reduce the governing equations to

∇ · ṽ = 0 and −∇p̃ + μ ∇2ṽ = 0. (2.3)

Considering the linearity property of the Stokes flow and boundary conditions, we can
address the physics of self-propulsion due to squirming action (sp) and external Poiseuille
flow (ex) as two separate Stokes flow contributions. Subsequently, the two effects are

997 A59-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.582


Microswimming in a slippery Poiseuille flow

combined using the relation

γ = γ (sp) + γ (ex), (2.4)

where γ represents velocity components attained by the microswimmer dictated by
different flow triggering mechanisms, i.e. γ ∈ {ṽ, Ṽ , Ω̃}.

We non-dimensionalize time by a/Ũref and pressure by μŨref /a. Here, we have
considered the swimmer radius a as the length scale, and the velocity scale is set as
Ũref = 2B1/3 for non-dimensionalization. Finally, in a quiescent medium, the boundary
condition on the microswimmer surface due to this squirming action becomes (Lee & Leal
1980)

v(sp) = V (sp) + Ω(sp) × rs + v(sp)
s , (2.5)

where V and Ω are the dimensionless translational and rotational velocities, respectively,
and v

(sp)
s is the tangential squirming velocity.

The ambient flow can be considered to be a combination of linear (S) and quadratic (Q)
shear components, defined as v

(ex)
S,∞ = Vf (z + ls)ex and v

(ex)
Q,∞ = Vqz2ex, respectively. Here,

Vf = ũc/Ũref and Vq = −Vf /H are the dimensional coefficients for linear and quadratic
components, respectively, and ũc = −(H̃2/8μ)(dp̃/dx̃) denotes the centreline velocity in
the plane Poiseuille flow in the absence of wall slip. This is the maximum velocity in
the Poiseuille flow, and thus serves as a convenient scale for the external flow profile.
Due to the presence of this external flow field, the sphere exhibits rigid body motion
having its translational (V (ex)) and rotational (Ω(ex)) velocity components. The existence
of the sphere within the flow domain engenders a perturbation velocity field (v(ex)). Finally,
the no-slip condition on the particle surface yields the following boundary condition for
the perturbation velocity field (v(ex)):

v(ex) = V (ex) + Ω(ex) × rs − v(ex)
∞ . (2.6)

The Navier slip boundary condition (Navier 1823) at the confinement boundaries relates
the tangential components of the surface velocity at the confinement boundaries (ṽ‖) to
the local shear rate by the relation

at z = 0, H, v‖ = lsnw · (∇v + (∇v)T)(I − nwnw), (2.7)

where I is the identity tensor, and nw represents the unit normal to the planar confinements
towards the channel axis.

We consider the squirmer to be neutrally buoyant, and disregard any non-hydrodynamic
forces that may arise due to surface interactions close to the walls. Hence we can compute
the unknown microswimmer velocities V and Ω , generated due to the combined effect
of squirming action and external Poiseuille flow, by employing the following force- and
torque-free conditions:

F =
∫∫

Sp

σ · np dS = 0 and L =
∫∫

Sp

rs × (σ · np) dS = 0, (2.8a,b)

respectively. The microswimmer attains the thrust force and torque required for its
propulsion from both the squirming action (F (sp)

T , L(sp)
T ) and the Poiseuille flow

(F (ex)
T , L(ex)

T ). These forces and torques are balanced by the hydrodynamic drag force (F D)
and torque (LD) experienced by the microswimmer.
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2.2. Solution methodology
We employ a combined analytical–numerical solution strategy for the Stokes flow (2.3)
in a single-wall–squirmer configuration. The method is premised on the general solution
of the Stokes equation using the eigenfunction expansion in the bispherical coordinate
system (ξ, η, φ) (Lee & Leal 1980; Behera, Poddar & Chakraborty 2023; Poddar 2023).
Our previous works contain a detailed description of the solution methodology for a
single-wall system in the cases where a squirmer is in a linear shear flow (Ghosh &
Poddar 2023) and in a quiescent medium (Poddar et al. 2020). The part of the boundary
condition on the particle surface (2.6) that exists for a fixed particle in the ambient flow,
i.e. v(ex)(at r = 1) = −v

(ex)
∞ , is expressed in terms of the coefficients Xm

n , Ym
n and Zm

n (Lee
& Leal 1980) to obtain the solution of the corresponding Stokes problem in terms of
bispherical eigenfunctions. These constants, derived here for the case of a parabolic shear
flow, are given as

X1
n = 0, Z1

n = 0 (2.9a,b)

and

Y1
n = −4

√
2 sinh(ξ0) (n + 1

2 ) e−(n+1/2)ξ [Vf + Vq(sinh(ξ0) (n + 1
2 ) + cosh(ξ0))], (2.9c)

where ξ0 corresponds to the location of the sphere surface in bispherical coordinates. The
corresponding thrust force and torque components on the particle are given by

F(ex)
(T,x) = −

√
2 π((ls + cosh(ξ0)Vf + Vq(cosh(ξ0))

2) sinh(ξ0)

×
∞∑

n=0

[G1
n − H1

n + n(n + 1)(A1
n − B1

n)], (2.10a)

L(ex)
(T,y) =

√
2 π(2Vf + Vq cosh(ξ0)) sinh2(ξ0)

×
∞∑

n=0

[coth(ξ0) {n(n + 1)(A1
n − B1

n) + (G1
n − H1

n)}

− 2n(n + 1)C1
n − (2n + 1)(G1

n − H1
n)]. (2.10b)

2.2.1. Simultaneous influence of the two boundaries
The bispherical method cannot be applied directly to calculate the hydrodynamic
resistance offered by the two interacting parallel walls. To resolve this issue, we adopt
the superposition method proposed in the literature (Ho & Leal 1974; Pasol et al. 2011;
Ghalya et al. 2020). It was reported that the superposition of particle velocities obtained
from the individual effects of the two walls could precisely capture the particle velocity in
the presence of an external flow. The detailed numerical investigations (Jones 2004; Pasol
et al. 2011) brought out that the superposition method is reasonably accurate in the range
H > 4, i.e. when the channel width is broad relative to the particle radius. Along similar
lines, in Appendix A, we compare our superposition method results against the detailed
boundary-integral results of Staben, Zinchenko & Davis (2003) for the movement of a
passive spherical particle placed between two infinite parallel walls in a plane Poiseuille
flow. Good agreement between present calculations and the earlier results can be observed
in figure 18. On the other hand, a similar superposition approach for two walls has also
been used for the force dipole model of microswimmers (Zöttl & Stark 2012; Choudhary
& Stark 2022). In the present method, the effective translational and rotational velocities
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Figure 2. Schematics of the microswimmer configuration: (a) in the actual two-wall scenario; (b) relative to
the lower wall only; and (c) relative to an equivalent lower wall for the upper wall.

are calculated by superposing the individual wall effects and subtracting the velocities in
the unbounded domain to compensate for the repeated account of the same effect. Thus
the velocity components can be obtained as

V = V (1) + V (2) − V (0) and Ω = Ω(1) − Ω(2) − Ω(0), (2.11a,b)

where V (1) (Ω(1)) and V (2) (Ω(2)) are the translational (rotational) velocities of the
microswimmer due to the sole presence of the bottom and top wall, respectively. In
addition, V (0) and Ω(0) are the translation and rotation velocities of the microswimmer in
Poiseuille flow in the absence of the bounding walls. Even though this approach remains
intuitive for a passive particle, the asymmetry of a squirming sphere prohibits results from
a single-wall scenario from being extrapolated to a corresponding two-wall situation owing
to the different orientations of the director (p̂) relative to each wall, which is portrayed in
figure 2. In figure 2(c), we show how the actual upper-wall–sphere configuration can be
replaced by a conceptually equivalent lower-wall–sphere configuration. In the case of a
passive particle, it would have been sufficient to consider the complementary distance
H − h from the top wall. However, in the case of microswimmer, one has to additionally
account for the changed orientation of the director relative to the upper wall, i.e. 180◦ + θp
instead of θp if the effect of the upper wall has to be calculated just by considering
a single wall. Consequently, the velocity components V (2) and Ω(2) of the upper wall
have been calculated for the equivalent lower wall instead of the upper wall, as shown in
figure 2(c). This orientational asymmetry about the centreline creates asymmetry in the
microswimmer velocity components about the centreline, as shown in figure 3.

The velocity components of the microswimmer due to the self-propulsion in an
unbounded domain are given by

V(sp,0)
x = cos(θp), Ω(sp,0)

y = 0 and V(sp,0)
z = − sin(θp). (2.12a–c)

The velocity components of a passive particle in a general ambient flow field v
(ex)
∞ in an

unbounded domain can be calculated by invoking the Faxén law (Kim & Karrila 2013):

V (ex,0) =
(

v(ex)
∞ + ∇2v

(ex)
∞

6

)
at z=h

and Ω(ex,0) = 1
2

(∇ × v(ex)
∞ )at z=h. (2.13a,b)

Using the present form of external flow (2.1), we get

V (ex,0) = (Vf (ls + h) + Vq(h2 + 1
3 ))ex and Ω(ex,0) = 1

2 (Vf + 2Vqh)ey. (2.14a,b)

The term Vq/3 in the expression for V (ex,0) signifies the effect of flow curvature on the
particle motion in the unbounded domain.
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Figure 3. Variation of Ωy of a puller microswimmer (β = 3) for varying gaps from the lower wall (h) and
different slip lengths (ls) in the absence of any external flow. The angular orientation is fixed at θp = 45◦ when
measured relative to the lower wall. The inset shows the case θp = 225◦.

The mathematical model presented above brings out the following key dimensionless
parameters influencing the flow physics: the slip length ls, squirmer parameter β, channel
height relative to the microswimmer radius H, and external flow strength relative to the
intrinsic swimming speed Vf .

2.3. Three-dimensional dynamics
The microswimmer axis may deviate from the x–z plane due to perturbations in actual
experiments. Thus we perform a three-dimensional (3-D) analysis of the microswimmer
dynamics to check the validity of the attractor fixed points and attractive limit cycles
discovered in the above subsections against perturbation of the microswimmer axis in the
vorticity direction.

Without hydrodynamic interaction of the microswimmer with the bounding walls, the
two-dimensional phase-space remains similar to the 3-D problem (Zöttl 2014). However,
the inclusion of hydrodynamic interaction in the model non-trivially alters the stability
behaviour of near-wall fixed points. As reported in Uspal et al. (2015), for an external
linear shear flow, some of the near-wall stable attractors may become unstable in three
dimensions. To understand whether the slip length has any effect on our results, we
calculate the out-of-plane dynamics as follows. Different components of the director vector
can be expressed in a general 3-D space as

px = cos θp cos φp, py = cos θp sin φp and pz = − sin θp. (2.15a–c)

Thus the quasi-steady dynamics (3.1) can be obtained by solving the following coupled
ordinary differential equations (ODEs):

dx
dt

= Vf V(ex)
x + V(sp)

x cos(φp),
dy
dt

= V(sp)
x sin(φp),

dz
dt

= V(sp)
z , (2.16a–c)
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dpx

dt
= Ωypz − Ωzpy,

dpy

dt
= −Ωxpz + Ωzpx,

dpz

dt
= Ωxpy − Ωypx, (2.16d–f )

where

Ωx = −Ω(sp)
y sin(φp), Ωy = Vf Ω

(ex)
y + Ω(sp)

y cos(φp) and Ωz = 0. (2.16g–i)

3. Results and discussion

This section demonstrates the locomotion behaviour of a microswimmer navigating
through a confined Poiseuille flow in the presence of slippery walls. The estimation of
the dimensionless parameters is based on various practical considerations, as mentioned
below. In the microfluidic experiments of Junot et al. (2019), the flow rate of the external
pressure driven flow was varied in the range Q = 1–6 nl s−1, giving the maximum external
flow velocity as ũc = 28–168 μms−1, whereas the intrinsic bacteria velocity was found
to be Ũref = 20–30 μm s−1. On the other hand, the experiments of Dey et al. (2022)
reported an intrinsic swimming speed Ũref ≈ 30 μm s−1 for self-propelling droplets.
The external flow rate used by them was comparatively lower, i.e. Q̃ = 0.04–0.094 nls−1,
resulting in a maximum external flow velocity ũc = 11.55–27.15 μm s−1. These available
studies suggest the practical range of the dimensionless parameter Vf as 0.385–8.4. In
view of these reported ranges of Vf and the values used in earlier theoretical studies
(Zöttl & Stark 2012; Choudhary & Stark 2022), we have used Vf in the range 0–25.
Unless mentioned otherwise, the results have been demonstrated for H = 6. We take
into account two constraints imposed by the flow physics and the mathematical model
for determining the distance H between the parallel plates. First, a very narrow channel
violating the limit H > 4 may not provide accurate numerical results due to the breakdown
of the superposition method (§ 2.2.1). Second, for a broad channel height, it is sufficient
to consider the linear part of the external flow only near a wall (Katuri et al. 2018),
thus obscuring the new physics of flow curvature associated with the parabolic shear
flow. Further, motivated by the experimental evidence of varied slip lengths for diverse
nano-engineered surface properties, such as hydrophobicity (Choi & Kim 2006) and
‘intrinsic slippage’ (Gentili et al. 2014), the results are demonstrated for a wide range
of dimensionless slip lengths, i.e. ls = 0–10.

The quasi-steady dynamics of the microswimmer can be described by solving the
coupled ODEs

dr(t)
dt

= V (r(t), p̂(t)) and
d ˆp(t)

dt
= Ω(r(t), p̂(t)) × p̂(t), (3.1a,b)

where the initial conditions required to solve these ODEs in the plane of external flow
are specified as r(t = 0) = (0, 0, h0) and p̂(t = 0) = (cos(θ0), 0, − sin(θ0)), where h0
and θ0 denote the initial height of the microswimmer centre from the bottom wall and
its orientation angle, respectively. We have calculated the microswimmer trajectories by
integrating (3.1a,b) using the fourth-order Runge–Kutta scheme (Chapra 2010). Here, we
consider only the impacts of deterministic hydrodynamic forces, and ignore the stochastic
forces (Shum, Gaffney & Smith 2010; Spagnolie & Lauga 2012). In addition, to avoid
the effect of non-hydrodynamic forces due to surface interactions, we limit the lateral
range of the computational domain to 1.01 ≤ h ≤ H − 1.01. The microswimmer dynamics
in the plane of external flow (i.e. x–z plane) can be captured by solving the plane
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autonomous system

dz
dt

= Vz(z, t) and
dθp

dt
= Ωy(z, t). (3.2a,b)

We make use of the dynamic system theory to understand the microswimmer dynamics.
Due to the non-existence of explicit analytical expressions for the eigenvalues of the
linearized system at fixed points, we employ a graphical approach to identify the stability
criterion and observe instances of bifurcation. To this end, we generate phase portraits for
the planar dynamics for a broad range parameters ls and Vf chosen at fine intervals. Given
the invariance of the dynamic system along x, we distinguish the motion behaviours in the
upstream or downstream directions by computing the long-term trajectories for the critical
cases observed in the phase portraits. It is noteworthy that in the absence of slip, combining
the background flow and the flow around a point-like microswimmer provides crucial
information on the dynamics even without hydrodynamic interaction (Zöttl & Stark 2012).
However, mere inclusion of the Navier slip boundary condition (2.7) in the background
Poiseuille flow, without incorporating the hydrodynamic interaction with the channel
walls, cannot track the effect of slip length on the swimmer dynamics. This is because
the microswimmer velocity components Vz and Ωy remain unchanged with ls when no
hydrodynamic interaction is considered in the model. The hydrodynamic interaction is
influenced by the slip effect, as described in figure 3. The figure shows that adjacent to
the confining substrates, the rotational velocity of the microswimmer Ωy significantly
increases or even changes its sign in comparison to the no-slip scenario. Moreover, the
inset with θp = 225◦ in figure 3 displays a mirror symmetry of Ωy variation relative to
the θp = 45◦ case, confirming an expected symmetry for self-propulsion between parallel
walls in the absence of any external flow.

3.1. Transition of swimming states for pullers
We analyse the diverse swimming features of the pullers by categorizing the results into
two broad ranges of Vf , i.e. weak background flow (0 ≤ Vf ≤ 1) and strong background
flow (1 < Vf ≤ 25).

3.1.1. Weak background flow regime
The phase portraits for in-plane dynamics and corresponding sample trajectories in
this regime are presented in figure 4. To shed light on the diverse physical processes
represented by the phase portraits, we illustrate the effects of self-propulsion (‘sp’)
and external flow (‘ex’) on various velocity components in figure 5. Moreover, we
present regime maps highlighting different swimming states in figure 6 to summarize the
impacts of various combinations of the governing factors on microswimming. Finally,
the out-of-plane stability of the microswimmer and its long-time dynamics in three
dimensions are described in figures 7 and 8.

Phase portraits with a low strength of the squirmer parameter, i.e. β = 3, are shown in
figures 4(a–c). There exists an attractive spiral at the core of the phase space when a puller
is confined between no-slip walls in a plane Poiseuille flow (figure 4a). This indicates
damped amplitude oscillations of the microswimmer about the channel centreline. Similar
motion features have been termed ‘swinging’ in the literature (Zöttl & Stark 2012).
The corresponding trajectory in figure 4(g) demonstrates that these stable oscillations
occur upstream to the flow direction (blue trajectory). At a sufficiently enhanced slip
length (ls = 1.35), the attractive spiral shows a slower decay (figure 4b). In addition,

997 A59-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.582


Microswimming in a slippery Poiseuille flow

–20
1 1

2 2

3
3

4

4

5

1.0

θp (deg.) θp (deg.) θp (deg.)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

–50 0

h0 = 3

θp = 154.7°

θp = 23°

θp = 170°

ls = 0, Vf = 0.6

ls = 1.35, Vf = 0.6

ls = 5, Vf = 0.6

ls = 5, Vf = 0.2

h0 = 3,

θ0 = 175°

h0 = 2

h0 = 1.3

5020 40

x

z

z

1.0

0 90 270 0 90 270 0 90 270

0 90 180 270 360 0 90 180 270 360 0 90 180 270 360

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

z

x
60 800

(e)

(b)(a) (c)

(d ) ( f )

(g) (h)

Figure 4. Phase portraits for in-plane dynamics and corresponding trajectories for a puller microswimmer.
Different slip lengths in (a–c) are ls = 0, 1.35 and 5, respectively, while other parameters are chosen as β = 3
and Vf = 0.6. Squirmer parameter β = 7 is used in (d) Vf = 0.1, ls = 0.05, (e) Vf = 0.4, ls = 0.05, and
( f ) Vf = 0.4, ls = 1.35. The stable and unstable spiral states are indicated with filled and unfilled black stars,
respectively, whereas the green crosses indicate the saddle points. The red lines in the phase portraits denote
the corresponding selected trajectories in (g,h), with the red dots indicating the initial locations. (g) Different
contrasting stable and unstable trajectories corresponding to the phase portraits in (a–c). (h) The contrasting
feature of the coexistence of a near-wall stable and a centreline stable state corresponding to the phase portrait
in (e). Trajectories at different combinations of ls and Vf are presented for (g) β = 3 and (h) β = 7.

the axial motion switches to the downstream direction, as shown by the green curve
in figure 4(g). This outcome carries substantial consequences in pressure-driven flow
through a microchannel. They indicate the feasibility of reversing the motion direction of
a microswimmer using the same pressure gradient in a slippery channel. This observation
can be justified by the effects of hydrodynamic slip on the Poiseuille flow. Slip reduces the
viscous friction offered to the flow by the walls. It can be shown that the effective flow
rate is consequently increased by the factor Qslip/Qno-slip = 1 + 6 ls/H. As a result, the
microswimmer experiences a greater force pushing it forwards in the direction of the flow,
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Variations of Ωy for ls = 0, 1.35 and 5, respectively. Other parameters are Vf = 0.6 and β = 3.
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Figure 6. Regime maps for pullers with (a) β = 3 and (b) β = 7, for Vf < 1. The different zones in the regime
maps are designated as: (I) blue triangular markers for stable oscillation states about the channel centreline;
(II) green triangular markers for unstable oscillation states about the channel centreline only; (III) black square
markers for coexistence of near-wall (downstream) and centreline (upstream) steady states; (IV) red circular
markers for coexistence of near-wall (upstream) and centreline (upstream) steady states; (V) yellow square
markers for near-wall steady states (both upstream and downstream) only. In addition, the black cross markers
denote the collision of the microswimmer with the walls. The downstream (upstream) oscillations are encoded
in the triangular markers by pointing them towards the right (left).
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Figure 7. Comparison of trajectories of pullers for a small perturbation of the initial condition from the plane
of external flow (φ0 = 1◦) and those released in the plane of flow (φ0 = 0◦). (a) Downstream centreline
oscillations of a puller (β = 3) at ls = 1.35 and Vf = 0.6. (b–d) Highlighting the stability of (b) centreline
and (c,d) near-wall trajectories of a puller (β = 7) with ls = 0.05 and Vf = 0.4. The centreline trajectories are
captured at h0 = 3 and θp = 165◦ in (a) and (b). Near-wall states are plotted for (c) h0 = 2 and (d) h0 = 1.3.

resulting in a greater tendency to swim in that direction. The effect of slip is not limited
to the change in effective bulk flow rate. It has more significant consequences on the flow
distribution, resulting in altered hydrodynamic interaction with the boundaries. This is
reflected in the disruption of the stability condition at a high slip length, as observed in
figure 4(c) for ls = 5. The black curve in figure 4(g) shows that an unstable oscillation
state is created in the downstream direction. Due to increasing amplitudes of oscillations,
the swimmer finally crashes against one of the walls. It is to be noted that we have not
included any repulsive interaction at the channel walls in order to focus exclusively on the
hydrodynamic interaction behaviour (Zöttl & Stark 2012; Uspal et al. 2015). In figure 4(g),
we have shown a case where an unstable upstream swimming state has been created at a
lower strength of external flow (Vf = 0.2) and high slip length (ls = 5). Such differential
motion behaviour indicates the competitive effects of slip length and flow strength on
microswimmer locomotion.

The capacity of slip length to alter the swimming state along the centreline underlines
the fact that slip effects on the dynamics are not restricted to the near-wall zones only,
although the slip-induced perturbation for a fixed orientation of the swimmer vanishes at
the centreline (figure 3). This apparent anomaly can be explained by the change in the
near-wall velocities that alter the instantaneous configuration (h, θp) in such a manner that
the swimmer still carries the signature of slip length when it moves far from the walls
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Figure 8. Out-of-plane dynamics of pullers in the weak background flow regime. (a–c) Regime maps
for a puller (β = 3) summarizing the 3-D dynamics at different slip lengths ls = 0, 1.35 and 5, and
(d–h) corresponding trajectories. (i) Regime map to summarize the near-wall states for β = 7 and h0 = 1.3, and
(j,k) corresponding sample trajectories. Zones I (green), II (blue), III (red) and IV (yellow) represent centreline
stable upstream, centreline stable downstream, collision, and stable near-wall state, respectively.

in subsequent time steps. Pullers experience repulsion from the confining walls during
their oscillating motion due to wall-induced vorticity (Zöttl & Stark 2012). Hence the
damped oscillations about the centreline are prominently observed for pullers in a plane
Poiseuille flow with no-slip walls. However, slip length (ls) reduces this repulsion by
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enhancing the magnitude of the rotational velocity (Ωy) near the confining walls (figure 3).
Figures 5(b–d) illustrate the enhancement in the amplitude of Ωy with time as the slip
length is enhanced. In this scenario, the torque produced due to ls alters the dynamics
by suppressing the wall-induced vorticity. Simultaneously, the magnitude of the normal
velocity (Vz) also gets enhanced abruptly, resulting in a collision state. Figure 5(a) shows
that the slip length contribution to the translational velocity (Vx) is dominated by the
external flow component. The flow-directed motion in the downstream direction gradually
surpasses the upstream movement tendency due to intrinsic swimming.

Figure 6(a) provides a summary of different swimming zones that are attained by the
microswimmer under varying levels of wall slippage (ls) and flow strength (Vf ). The
diverse dynamic traits can be categorized into five parametric zones: (I) blue triangular
markers for stable oscillation states about the channel centreline; (II) green triangular
markers for unstable oscillation states about the channel centreline; (III) black square
markers for coexistence of near-wall (downstream) and centreline (upstream) steady
states; (IV) red circular markers for coexistence of near-wall (upstream) and centreline
(upstream) steady states; (V) yellow square markers for only near-wall steady states (both
upstream and downstream). In addition, the black cross markers denote the collision of the
microswimmer with the walls. The downstream (upstream) oscillations are encoded in the
triangular markers by pointing them towards the right (left).

The phase portraits in figures 4(d–f ) describe the dynamics for a high value of
the squirmer parameter, i.e. β = 7. We observe near-wall stable states for β = 7. The
regime map in figure 6(b) illustrates that a puller with a higher squirmer parameter
(β = 7) exhibits near-wall steady motion (zone V), even in the presence of no-slip walls.
A high value of the squirmer parameter signifies strengthened vorticity generation by
the squirming action, thus providing the additional torque required to sustain stable
oscillations in the wall proximity (see figure 4d). However, in the presence of a strong
external flow, the mechanism of an enhanced flow vorticity due to the background flow sets
in. For a stronger background flow (Vf > 0.2), these competitive mechanisms of vorticity
generation destroy the saddle point at the centre of the phase space, and convert it to a
stable spiral and two pairs of near-wall stable spirals – saddle point doublets.

The near-wall stable fixed points located in the zone 90◦ < θp < 180◦ were termed as
‘rheotactic attractors’ in the case of a pure linear shear flow adjacent to a single wall by
Uspal et al. (2015) and Ghosh & Poddar (2023). These attractors signify an upstream
swimming state at a fixed height and orientation (blue trajectory in figure 4h), indicating
the tendency for boundary accumulation of microswimmers. Contrary to the findings in
those studies, we observed near-wall rheotaxis at a much higher strength of the external
flow, i.e. Vf ≥ 0.225. The additional hydrodynamic interaction with the upper wall in the
presence of dual confinement, and the flow curvature associated with the quadratic shear
component of the external flow, are responsible for this quantitative shift in behaviours.
We further find that the near-wall attractors cease to exist for Vf > 0.55 in the case of
no-slip confinements (shown in figure 6b). The qualitative impact of the slippery wall on
the stable states can be determined by studying the phase portraits in figures 4(e, f ). For
Vf , an intermediate range of slip length 0.2 ≤ ls ≤ 2 causes destruction of the near-wall
stable states, but sustains the centreline stable swimming. This opens up the scope of
suppressing wall accumulation and achieving directed transport of microswimmers along
the centreline of a microchannel. The competitive mechanisms are further influenced by
the slip effects on both the intrinsic swimming and external flow. As a result, the near-wall
stable states are converted to crashing states at elevated slip lengths.
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We further identify the parametric regimes of coexisting stable states near the wall and
at the channel centreline in zones III and IV in figures 6(a,b). Notably, the higher squirmer
parameter case has prominence in these coexisting states.

In figure 7, we examine the out-of-plane stability of pullers corresponding to the phase
portraits shown in figure 4(b) (for β = 3) and figure 4(e) (for β = 7). Figure 7(a) reveals
that the centreline stable state in the downstream direction for β = 3 at ls = 1.35 remains
stable for a small out-of-plane perturbation (φ0 = 1◦). On the other hand, a puller with
a stronger squirmer parameter, β = 7, displays a similar out-of-plane stability in the
upstream direction (figure 7b). The attractor near the bottom wall (for 90◦ ≤ θp ≤ 180◦) in
figure 4(e) leaves the x–z plane for a small perturbation of φ0 = 1◦ but maintains its stable
upstream swimming state, as shown in figure 7(c). In stark contrast, the in-plane near-wall
attractor for 0◦ ≤ θp ≤ 90◦ (figure 4e) loses its stability and the puller reorients from the
downstream to upstream direction for a small out-of-plane perturbation (φ0), as shown in
figure 7(d). A similar phenomenon was reported previously for a squirmer in a linear shear
flow over a no-slip planar wall (Uspal et al. 2015).

Taking cues from the instances of changed stability characteristics for small out-of-plane
perturbations, we further provide an extensive 3-D analysis of the microswimmer
dynamics based on long-time trajectory simulations for different governing parameters.
The puller is considered to be released from an initial height h0 = 3 for different initial
orientations (θ0, φ0), and the motion characteristics are summarized in regime maps.
The regime maps are plotted for ranges 7.5◦ ≤ θ0 ≤ 172.5◦ and 0◦ ≤ φ0 ≤ 360◦ with
increments 
θ0 = 7.5◦ and 
φ0 = 15◦, whereas other parameters are similar to those
in figures 4(a–c). The symmetry of the present problem about the channel axis allows us
to limit the analysis for an in-plane angle to θ0 = 180◦ in the regime maps. At θ0 = 0◦
and 180◦, the puller does not deviate from the channel axis during its motion due to the
absence of any flow asymmetry.

Figure 8(a) describes that a puller (β = 3) exhibits stable oscillations towards
downstream for θ0 < 45◦ at φ0 = 0◦. Further enhancement in θ0 leads to a collision,
followed by upstream stable states for θ0 > 127.5◦. Keeping θ0 constant, if we increase
φ0, then the microswimmer can switch from a stable upstream to downstream direction, or
the other way around. The stable upstream trajectory of a puller at θ0 = 165◦ and φ0 = 0◦
near a no-slip wall (blue curve in figure 4g) remains upstream at φ0 = 15◦ (figure 8d),
but orients to downstream at an enhanced φ0 = 165◦ (blue curve in figure 8g). The
downstream trajectory in figure 8(g) also remains stable about the centreline but displays
some near-wall oscillations before the swimmer eventually reaches the channel axis.
In the weak flow regime (Vf < 1), the self-propulsion component remains competitive
with the external flow. Hence the alternation in the direction of the navigation is due
to the alternation of the self-propulsion component in (2.16a). At φ0 = 90◦, the cosine
component of V (sp)

x changes its sign, thereby making the resultant V x positive. As a
consequence, the microswimmer reorients towards downstream.

In agreement with the previous discussion corresponding to figure 4(g), the regime
maps for 3-D analysis highlight the destruction of the upstream stable states (zone I in
figure 8a) and their conversion to either downstream stable states or collision (figure 8b) at
an enhanced slip length (ls = 1.35). Nevertheless, a very high slip length (ls = 5) results in
a collision state regardless of the initial orientations (θ0 and φ0), as shown in figures 8(c, f ).
The out-of-plane angle (φ0) also influences the Ω

(sp)
y component, and the resultant Ωy

(2.16h) remains insufficient to rotate the puller towards channel axis. Consequently, a
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Microswimming in a slippery Poiseuille flow

puller with a stable downstream trajectory shows a greater tendency to collide against
the walls (figure 8b).

In order to capture the 3-D dynamics of the near-wall states observed at a higher
squirmer parameter (β = 7), we plot another regime map in figure 8(i) for the parameters
ls = 0.05, Vf = 0.4, and an initial launching height h0 = 1.3. The regime map describes
the existence of the downstream and upstream states near the bottom confinement
for the ranges 15◦ ≤ θ0 ≤ 35◦ and 145◦ ≤ θ0 ≤ 160◦, respectively, at φ0 = 0◦. Beyond
θ0 = 160◦, the puller exhibits large-amplitude oscillations about the channel axis and
attains stability about the centreline. An increment of φ0 changes the near-wall collisions
to stable upstream motion, followed by centreline stable trajectories. Conversely, the stable
centreline states beyond θ0 = 160◦ switch to near-wall stable states, followed by collision
upon enhancement of φ0. Comparing trajectories in figures 8( j,k) indicates a transition
from a centreline stable state at φ0 = 15◦ to a near-wall stable state at φ0 = 120◦.

3.1.2. Strong background flow regime
For a strengthened background flow, the flow curvature effect becomes dominant, and the
competition between the self-propulsion and Poiseuille flow takes a new turn, resulting
in additional exciting features of the microswimmer dynamics. At flow strengths beyond
a critical value Vf ≥ 1.1 (not shown), the stable and unstable oscillations about the
channel axis coexist in accordance with the initial orientation of the squirmer, whereas
the near-wall stable states vanish.

The enhanced strength of the Poiseuille flow (Vf ≥ 5) overpowers the axial velocity
component due to squirming action, and the puller propels downstream irrespective of ls.
To represent the impact of slippery confinements, we provide a summary of swimming
states in figure 9(a) for β = 3, and figure 9(b) for β = 7. These figures highlight a
transition of dynamics due to enhanced slip length from simultaneous stable and unstable
states (blue zone) to unstable states (red zone) only. The phase portrait in figure 9(c)
provides insights into these swimming states. It shows that there exists a stable focus at
the origin. The region of attraction is surrounded by an unstable limit cycle (green closed
curve). The two trajectories shown in figure 9(e) illustrate the simultaneous existence of
stable (θ0 = 145◦) and unstable (θ0 = 120◦) centreline oscillations at a very low value of
slip length (ls = 0.01).

For a high slip length ls = 3.6, figure 9(d) shows the disappearance of the stable states.
Figure 9( f ) portrays an example of increasing-amplitude oscillations for a corresponding
case. The regime maps (figures 9a,b) reveal that the disappearance of the stable states
is observed at a critical value of slip length ls > 1.6 for β = 3, and ls > 2.6 for β = 7,
when Vf = 5. At the critical value of the parameter ls, the unstable limit cycle shrinks
down to the equilibrium point, and a sudden change from stable to unstable focus occurs.
Thus we observe a subcritical Hopf bifurcation (Kuznetsov 1998). The varying boundaries
between the blue and red zones in figures 9(a,b) demonstrate that the critical value of ls for
bifurcation reduces with either an enhancement in Vf or a weakened β. This observation
emphasizes the significant interplay between the self-propulsion and external flow patterns
facilitated by the substrate’s wettability.

A puller experiences higher torque near the confinements due to a wall-induced flow
vortex. Consequently, the director gains an enhanced rotational tendency away from the
wall, and the puller crosses the channel centreline. However, the slip-mediated torque
reduces the dominant external component of Ωy, i.e. Ω

(ex)
y , near the walls, as illustrated

in figure 10. This observation is opposite to what happens in a weak flow regime where

997 A59-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.582


S. Ghosh, S. Ghoshal and A. Poddar

25

20

15

10

10–2 10–1 100

ls ls
101

5

25

20

15

10

10–2 10–1 100 101
5

5

4

3

2

1

0 90 180 270 360

z

5

4

3

2

1

z

θp (deg.) 

5

4

3

2

1

0 90 180 270 360

θp (deg.) 

(a) (b)

(c) (d)

(e) ( f )

0 100 200 300

x x
400 500

5

4

3

2

1
0 500 1000 1500 2000

θ0 = 120° θ0 = 145°

θ0 = 145°

Vf

S
ta

bl
e 

fo
cu

s
U

n
st

ab
le

 l
im

it
 c

y
cl

e

U
n
st

ab
le

 f
o
cu

s

S
u
b
critical H

o
p
f b

ifu
rcatio

n

S
u
b
critical H

o
p
f b

ifu
rcatio

n

U
n
st

ab
le

 f
o
cu

s

+ Sta
bl

e 
fo

cu
s

U
ns

ta
bl

e 
lim

it 
cy

cl
e

+

Figure 9. Regime maps for (a) β = 3 and (b) β = 7 in the strong background flow regime. Phase portraits
(c) ls = 0.01 and (d) ls = 3.6 are for Vf = 7. Trajectories are plotted for (e) ls = 0.01, Vf = 7), and
( f ) ls = 3.6, Vf = 7. All the phase portraits and trajectories are plotted for β = 3. Filled and unfilled stars
show the fixed points corresponding to the stable and unstable spirals, respectively. The solid green curve in
(c) shows the location of an unstable limit cycle, while the red dots indicate the launching state (h0, θ0).

the overall Ωy is increased by slip (figure 3). Gradually, the external component of Ωy is
reduced to such an extent that the wall-induced dampening effect vanishes, only to result
in unstable oscillations.
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Microswimming in a slippery Poiseuille flow
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We summarize the out-of-plane swimming dynamics of pullers in the regime map of
figure 11(a). Similar to the observations related to the in-plane dynamics, the strength
of the flow overcomes the self-propulsion component and drives the puller downstream
irrespective of the other parameters, β and ls. Hence zone I is absent in this regime map.
Figure 11(b) shows that at a smaller slip length (ls = 0.01) and θ0 = 165◦, a puller exhibits
damped oscillations when initially launched at φ0 = 90◦. However, it shows collision for
an initial launching angle φ0 = 165◦, as shown in figure 11(d). On the other hand, for
a smaller θ0 = 45◦, a comparison of figures 11(c,e) reveals a transition from unstable to
stable oscillations, caused solely due to an increase in φ0 from 90◦ to 172.5◦.

3.1.3. Alterations in focusing time
The wall slip drastically modulates the strength of attracting spirals, indicating the
influence on the time taken by the microswimmer to reach a steady state at the channel
centreline. Following the work of Choudhary & Stark (2022), we quantify a focusing
time parameter tf as the time taken by the microswimmer to be trapped within ±5 % of
the channel half-height H/2. In agreement with §§ 3.1.1 and 3.1.2, the results reveal that
the wall-induced dampening of the oscillations is opposed by increasing ls, resulting in
delayed focusing. Additionally, the puller exhibits both upstream and downstream focusing
at Vf = 0.6 (yellow markers) until the slip reaches its critical value for bifurcation.
However, the puller focuses only in the downstream direction for a sufficiently strong
external flow (Vf = 5) (red markers in the inset of figure 12). Surprisingly, the swimmer
takes a longer time to focus downstream with Vf = 5 when compared to the Vf = 0.6 case
while keeping the slip length (ls) constant. This phenomenon occurs because when the
external flow (Vf ) is relatively weak, the intrinsic swimming can significantly contribute
to the forward axial velocity Vx. However, in the presence of a strong external flow, the

997 A59-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.582


S. Ghosh, S. Ghoshal and A. Poddar

180

135

90

45

0 90 180 270 360

3

5

4

3

2

1
0

0

10

20

100 200 300

2

0

0
1000

2000
–200

–400

3

2

1

–0.5

–1.0
–1.5 0

5
10

4

3

2
0

1000

2000 0
2

4

ls = 0.01

ls = 0.01

θ0 = 165°

φ0 = 90°

θ 0
 (

d
eg

.)

φ0 (deg.)

ls = 0.01

θ0 = 165°

φ0 = 165°

ls = 0.01

θ0 = 45°

φ0 = 172.5°

θ0 = 45°

φ0 = 90°

(×10–14)

y x

z

y
x

z

y yx
x

z z

III

II

(a)

(b) (c)

(d) (e)

Figure 11. Out-of-plane dynamics of a puller (β = 3) in the strong background flow regime (Vf = 7).
(a) Regime map for ls = 0.01, summarizing the out-of-plane dynamics for fixed initial height h0 = 3.
(b–e) Sample trajectory characteristics for different initial orientations θ0 and φ0.

self-propulsion has a much smaller effect on the overall Vx, and the axial motion is dictated
mainly by the slip-affected background flow.

3.2. Transition of swimming states for pushers
In this subsection, we illustrate the interplay between slip length and relative flow strength
on the locomotion strategy of a pusher. Figure 13(a) summarizes the trajectory attributes
of a pusher (β = −3) for 0 ≤ Vf ≤ 3.5 and 0 ≤ ls ≤ 10. In a quiescent medium, the
pusher collides (black cross markers) with the wall until a sufficiently large slip length
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Microswimming in a slippery Poiseuille flow
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stabilizes them near the wall (black square markers). In addition, the oscillations about
the channel centreline are absent when there is no external flow. However, a minor
enhancement in Vf alters these collision states to upstream unstable oscillations about the
channel axis (blue filled triangles). We investigate the slip-affected dynamics in further
detail by presenting phase portraits for Vf = 0.5, ls = 0.02 (figure 13b), Vf = 0.5, ls = 5,
(figure 13c), Vf = 2, ls = 0 (figure 13d), and Vf = 2, ls = 1.9 (figure 13e), while their
corresponding trajectories are presented in figures 13( f ,g).

For a low range of slip length, the oscillations remain unstable, as reported in
figures 13(a) (blue zone) and 13(b). The unstable spiral in the phase portrait in figure 13(b)
indicates that only oscillations with increasing amplitude exist at ls = 0.02 for Vf = 0.5.
Below a critical strength of external flow Vcr = 1.1 (dashed red line in figure 13),
a sufficiently strong slip length (ls > 4) diminishes the amplitudes of these unstable
oscillations, and an asymptotically stable spiral emerges at the core of the phase portrait,
as presented in figures 13(a) (green square markers) and 13(c).

A comparison of phase portraits in figures 13(d,e) for the same high flow strength
above the critical value (Vf = 2) suggests the emergence of a stable limit cycle due
to an enhanced slip length (ls = 1.9). In figure 13(e), the stable limit cycle (black
curve) surrounds the unstable spiral at the origin. Corresponding long-time trajectories
in figure 13(g) illustrate that both stable (dashed red) and unstable (blue) oscillations
saturate to a fixed amplitude, indicating the emergence of a limit cycle (black closed
curve in figure 13e). Additionally, the limit cycle appears at lesser ls, as portrayed in
figure 13(a) with raising flow strength Vf . Surprisingly, the birth of a stable limit cycle
is not accompanied by a change of stability of the equilibrium point. It is important
to note that the undamped oscillations appear even for non-slippery confinements, but
only for a high flow strength Vf ≥ 3.3. This observation for no-slip walls being coherent
(qualitatively) with the earlier observations of Zöttl & Stark (2012), the novelty of the
present work is to uncover the transition of swimming states triggered exclusively by ls
for intermediate (1.1–3.3) and low (<1.1) values of Vf . This result opens up the scope
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Microswimming in a slippery Poiseuille flow

for centreline focusing of microswimmers even with a moderate strength of the pressure
gradient of the external flow.

The unstable oscillations about the centreline between two no-slip walls can be
attributed to the wall-induced torque (Zöttl & Stark 2012). The inclusion of slippery
confinements provides the counter-torque to dampen those oscillations, and at a
sufficiently large slip length, a pusher becomes asymptotically stable (figure 13c). We
further analyse the modulations in Ωy to gain insight into the underlying physics that
leads to the formation of a stable limit cycle beyond Vcr. The self-propulsion and
background flow components of Ωy increase in intensity with each oscillation (figure 14c).
Nevertheless, the slip effect causes a decrease in the magnitudes of the Ωy components (as
shown in figure 14d). This result demonstrates the reduction in the thrust torque on the
microswimmer near the walls with the augmentation in slip length. In this scenario, the
slip-modulated flow vortex generates a greater torque in the anticlockwise (clockwise)
direction near the bottom (top) wall, as compared to the cases where there is no slip.
Consequently, the swimmer experiences the effective repulsion from both the walls
required to attain a focused state. The effect of wall slip weakens when the launching
orientations are close to the upstream configuration or the swimmer is far away from any
of the walls. Consequently, as the slip-induced torque decreases, it eventually reaches a
point where the oscillations can no longer be reduced, leading to a stable limit cycle (see
figure 13e).

The out-of-plane stability of a pusher (β = −3) is examined in figure 15 for initial
conditions (h0, θ0) = (3, 120◦). Other parameters (Vf = 2, ls = 1.9) correspond to those
in figure 13(e), where the existence of a stable in-plane limit cycle has been reported.
Comparison of the two curves in figure 15 indicates that the pusher remains stable for a
small out-of-plane perturbation φ0 = 1◦.

To critically investigate the robustness of the above observation for any φ0, we
summarize the results of 3-D long-time simulations in figures 16(a,b), by choosing
parameters similar to those in figures 13(d,e), respectively. It is evident from figure 16(a)
that at a no-slip condition, pushers collide (denoted by red square markers) against
the confinements irrespective of θ0 and φ0. This behaviour is further described by the
trajectory in figure 16(c), which shows collision against the bottom wall under initial
conditions θ0 = 60◦ and φ0 = 180◦. However, we can observe the existence of both stable
(green circular markers) and unstable limit cycles (yellow circular markers) at an enhanced
slip length, as shown in the regime map (figure 16b). At φ0 = 0◦, the stable (figure 16d)
and unstable (figure 16f ) limit cycles are found within the range 108◦ < θ0 < 145◦ and
145◦ ≤ θ0 ≤ 179◦, respectively. Limit cycles at φ0 = 180◦ are unstable (figure 16e) within
the range 1◦ < θ0 ≤ 35◦, and stable (figure 16g) within the range 35◦ < θ0 ≤ 72◦. Further
exploration reveals that these oscillating states for pushers are highly sensitive to φ0. These
stable and unstable oscillations exist near the x–z plane for a deviation of the azimuthal
angle (φ0) of ±4◦ from the plane. The existence of these stable and unstable oscillating
states near φ0 = 0◦ or 180◦ is governed by the cosine component of Ω

(sp)
y in (2.16h),

which becomes competitive with Ω
(ex)
y . Hence the pusher orients towards the channel

axis. Similar to the pullers, pushers also navigate along the channel axis at θ0 = 0◦ and
180◦ for all φ0.

3.3. Effect of channel height
The degree of confinement is dictated by the distance between the two slippery walls (H).
An increase in H signifies a decrement in the flow curvature, thus the quadratic component
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Figure 14. Plots of (a) Vx and (c) Ωy displaying different velocity components of a pusher (β = −3) at ls = 0.
(b,(d)) The effects of slip length ls = 1.9on the velocity components for the similar squirmer parameter. Other
parameters are Vf = 2, h0 = 3 and θ0 = 120◦.

of the background flow weakens. Again, the expression for the enhancement factor for the
effective flow rate Qslip/Qno-slip = 1 + 6 ls/H suggests that to retain the same slip-induced
effect for walls at a further distance, a corresponding increment in slip length is also
required. Qualitative changes in swimmer dynamics have evolved due to these quantitative
changes in flow physics. For example, the unstable states are found for H = 6 and H = 8
in figures 4(c) and 17(a), respectively. However, the phase portrait in figure 17(b) for
the same slip length but with a much higher channel height (H = 14) highlights a stable
swimming state, suggesting that the critical slip length for the bifurcation has not yet been
reached. Following such qualitative changes, it can be determined that the different regime
boundaries shown in the regime maps of figures 6 and 9(a,b) would shift towards higher
ls if the channel walls are located at farther distances.

4. Conclusions and remarks

In summary, we have investigated theoretically how the hydrodynamic slip at the walls
affects the movement of a microswimmer in a narrow channel under a background
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Figure 15. Comparison of the trajectory of a pusher (β = −3) at ls = 1.9, h0 = 3 and θ0 = 120◦ for a small
perturbation of the initial condition from the plane of external flow (φ0 = 1◦) with that released in the plane of
flow (φ0 = 0◦).

pressure-driven flow. The microswimmer has been modelled as a spherical squirmer,
which can be a puller or pusher based on the variation in the micro-propulsion mechanism.
The hydrodynamics in the Stokes flow regime has been solved using a combined
analytical–numerical technique in bispherical coordinates. The superposition method
has been employed to capture the simultaneous hydrodynamic interaction with the top
and bottom walls. The dynamical system comprising two coupled ordinary differential
equations (3.4) provides deep insight into the microswimming. By combining the findings
of phase space analyses of the dynamical system and computed long-time trajectories,
we have uncovered a host of novel dynamic behaviours influenced by the key parameters
– dimensionless slip length (ls), squirmer parameter (β) and flow strength relative to
the reference self-propulsion velocity (Vf ). We have further provided physical insights
into the changes in swimming behaviour by examining the slip-induced modulations on
various flow-governing mechanisms and their influence on the microswimmer’s velocity
components. A three-dimensional (3-D) analysis of the microswimmer dynamics has been
performed to check the robustness of the in-plane attractor fixed points and attractive limit
cycles against perturbation of the microswimmer axis in the vorticity direction.

Diverse motion behaviours of pullers emerge for low (Vf < 1) and high (Vf > 1) flow
strengths. In the weak flow regime, the centreline stable swimming states are observed for
no-slip walls when the microswimmers are launched anywhere in the channel, excluding
the states that lead to crashing against walls. Augmenting slip length beyond a critical
point brings in a qualitative change in the swimming behaviour, and the stable spiral at
the phase space origin is converted to an unstable spiral, signifying increasing-amplitude
oscillations. In addition, a high value of the squirmer parameter β gives rise to additional
stable states in the wall proximity due to the greater strength of vorticity generation by
the squirming action. An increase in slip length annihilates the near-wall steady states by
shifting them further downwards. We further report the existence of different swimming
states, triggered at different combinations of ls and Vf , in the phase maps of figure 6.
Centreline focusing without wall accumulation results for high flow strengths beyond
a critical value Vf ≥ 1.1. Depending on the initial launching orientation, the swimmer
shows either stable or unstable oscillations about the channel axis (figure 9c). However, a
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Figure 16. Out-of-plane dynamics of a pusher (β = −3) for h0 = 3. The summary of the 3-D motility
characteristics are in the regime maps for (a) ls = 0, and (b) ls = 1.9. (c–g) Different 3-D trajectories of a
pusher for different initial orientations θ0 and φ0. In the regime maps, the stable and unstable limit cycles are
highlighted with green and yellow markers, respectively.

high slip length destabilizes the motion. The transition of dynamics from coexisting stable
and unstable states to pure unstable dynamics marks the existence of subcritical Hopf
bifurcation with ls as the bifurcation parameter. It has also been found that enhancing Vf
or weakening β causes an early onset of bifurcation (figure 9), but only when the channel
walls are significantly hydrophobic.

The wall slip has a dissimilar impact on the dynamics of a pusher. Here, the slippery
transition occurs from only unstable to either only stable oscillations or fixed-amplitude
oscillations about the channel axis (figure 13). It has also been observed that the state
transition due to increasing slip occurs for lower values of Vf as compared to the no-slip
case.

An observable trend of the slip effect is the shift from upstream swimming states to
downstream states, both stable and unstable, under the same pressure gradient of the
external flow. The hydrodynamic slip acts to reduce the viscous friction at the substrate
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Figure 17. Phase portraits for pullers for varying channel heights: (a) H = 8 and (b) H = 14. Other parameters
are Vf = 0.6, ls = 5 and β = 3. Filled and unfilled stars show the fixed points corresponding to the stable and
unstable spirals, respectively. Also, red and green lines describe sample phase space trajectories to confirm the
nature of spirals.

interface, leading to an increase in the effective flow rate by a factor Qslip/Qno-slip =
1 + 6 ls/H, which results in enhanced thrust in the forward direction.

The changes in the strength of attractive spirals at the phase space origin caused by
slip indicate its impact on the focusing time, which is the time taken by the swimmer
to be trapped at the channel centreline. However, the contest between the external and
intrinsic components of the axial velocity (Vx) leads to the counter-intuitive result of
longer focusing time with an increase in flow strength (figure 12). Moreover, increasing
the channel height calls for an increased slip length to observe the same qualitative
modulations in swimming states as reported in this study.

The outcomes of our study reveal the complex interaction between the motion
induced by the background flow and the inherent swimming ability in the presence of
hydrodynamic slippage. Moreover, the wall slip exerts opposing effects on the dynamics
of the puller- and pusher-type microswimmers. In the case of pullers, the wall-induced
vorticity induces effective repulsion from both the walls, and the oscillations about the
centreline are dampened as a consequence. An increase in slip length (ls) reduces this
repulsive action by increasing the magnitude of the rotational velocity (Ωy) near the
confining walls (figure 3). As a consequence, instability appears in the microswimmer
motion. On the other hand, unstable oscillations about the centreline between two no-slip
walls occur in the case of pushers due to the contrasting mechanism of self-propulsion.
Here, a hike in slip length supplies the counter-torque to dampen those oscillations, and as
the slip length crosses a critical value, the pusher reaches an asymptotically stable state at
the channel centreline.

The extensive 3-D analysis of the microswimmer trajectories brings out the significance
of the out-of-plane angle (φ0) on the transition between different states. The transition from
a stable upstream to a stable downstream state, and from stable downstream to collision
states, can be observed in the regime maps shown in figures 8(a–c) during the weak
background flow regime of puller microswimmers. When the pullers experience a strong
background flow, increasing the initial orientation (φ0) can cause the motion to transition
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from stable downstream movement to collision states, and vice versa (see figure 11a).
The out-of-plane angle (φ0) modulates the squirming component of V x and Ωy, which
in turn alter the resultant translational and rotational velocity components to determine
the motility characteristics. Contrastingly, for pushers, the stable and unstable limit cycles
at high slip length sustain only up to a slight deviation of initial orientation (φ0 ≈ ±4◦)
from the plane of the external flow (figure 16b). In this scenario, the inadequate squirming
component of Ωy cannot rotate the pusher towards the channel axis, and a direct collision
results beyond the mentioned range of φ0.

Thus the present study is a precursor in delineating the complicated flow physics
associated with the hydrodynamic slip in microchannel carrying microswimmers under a
pressure-driven flow. The theoretical insights presented could inspire novel experiments to
harness the hydrophobicity of surfaces as a means of achieving desired transport properties
for microswimmers, ranging from on-demand switching of motion direction for the same
pumping power of the background flow, and better mixing of solutes in microchannels due
to oscillatory microswimmer motion between different fluid layers, to suppressing wall
accumulation and achieving focused transport along the channel centreline. Moreover, the
regime maps in figures 6, 9 and 13 may turn out to be crucial in choosing an optimal
set of parameters while designing smart actuation systems (Fischer 2018) for controlled
guidance of microswimmers.

Future investigations focusing on the modulations of the reported results in scenarios
where the channel height is comparable to the size of the microswimmer may complement
our understanding of the physical problem discussed here. Moreover, the effect of the
elongated shape of certain microorganisms (Shum et al. 2010; Kumar & Ardekani 2019)
may interact with the shear-induced rotation, and create new stable states along the
channel centreline in the presence of wall slip. However, a major challenge in extending
the present analysis using the boundary element method (Staben et al. 2003; Zhu et al.
2013) or the multipole extension method (Pasol et al. 2011), adopted earlier for a similar
configurations, is the Navier slip boundary condition at the substrate–fluid interface,
which adds to the complexity of theoretical calculations. On the other hand, a possible
difficulty in implementing the present results in laboratory experiments might arise when
the texture of the hydrophobic surfaces is not smooth enough due to asperities of the order
of the slip length (Choi & Kim 2006). However, the limitation of the present work in
accurately predicting the hydrodynamic interaction for narrow channels (H < 4) or near
rough surfaces may be surpassed by performing a full-scale computational fluid dynamics
analysis in the future. Additionally, considering non-hydrodynamic interaction with the
confinements (Jones et al. 2021), thermal fluctuation (Qian et al. 2013; Bregulla, Yang &
Cichos 2014) and complex rheology of several biofluid media (Li & Xuan 2018; Zaferani,
Suarez & Abbaspourrad 2021), researchers can develop more realistic models that better
reflect the challenges that microswimmers might encounter in practical environments.
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Figure 18. Variation of the translational and rotational velocities under the sole influence of the external
plane Poiseuille flow.

Appendix A. Validity of superposition method

Figure 18 compares the translational and rotational velocity components obtained from
the superposition method with the results obtained from Staben et al. (2003) for H = 5,
10 and 20. Hence, the selected channel height (H = 6) is within the valid range of the
superposition approximation.
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