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It is well known [1] that the variational problem of
minimizing

(1) A= [F{x,%x}at i=1,...,n,

where F is positive homogeneous of degree one in X

(henceforth abbreviated to "plus-one' in 5:1) leads to a

Hamiltonian H{ xl, p.} and corresponding Hamilton-Jacobi
i

equation

i o\
(2) H{ xl,p,} =1 where p, =9 A =—
i i i Byt

Here H is also plus-one in Pi' The geodesic equations of (1)

are characteristic equations for (2) and the Monge cones
associated with (2) are given by the integrand in (1); the cone at

(xl, N\ ) being given by -\ =F{x1, xl-xl}. The purpose
0’ "0 E8 0 0 0

of this note is simply to point out that the more general equation

(3) H{x, P.» A} =1 where P, =d\,
1 1

subject to the condition that H be plus-one in P, and that

2_2
8°H 2
4 det (—5—) = ’
(4) et (go55-) = det (Hpp) #0

j i
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is always associated with a variational problem which can be
put in either of the forms: minimize

t

! i i
[ F{x, x,\}adt

‘o

(5) subject to the restraint

A= F(x, £,2) =0, () =0

or: minimize
t
1 i i
(5%) Me) = [ F{x, %, 2}at

*o

z) and xli.
The form (5%) is easily obtained from (5) by integrating the
restraining equation. In the form (5) the problem is clearly
analogous to a problem of Lagrange.

i
relative to curves x (t) joining two given points x

LEMMA. A necessary condition for an extremal curve

for the problem (5) is that the xl(t) satisfy

(6) -— F_ -F,=F _ F
Proof. Considering p =p(t) as a Lagrange multiplier,
set G=F + p(h-F). Then the Euler equations

d d
FTI A i G U
X P-4

become

. d .
pE, = (1-p) (dt F. - F o, p={-w)Fy
X X X
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and eliminating: p will yield the lemma.

The Hamiltonian and Hamilton-Jacobi equation were
originally derived directly from (5%) by a geometric construction,
but the following development is considerably shorter and
derives (5%) from the generalized Hamilton-Jacobi equation (3).
(The author is indebted to Prof. H. Rund for pointing out this
reversed process. )

The partial differential equation (3) has as characteristic
equations [2]

(7.1) x = H
P
(7.2) Pi = -H i " piH)\
x
. N
(7. 3) A= Z

pHp = H by homogeneity.

The development consists in constructing a Lagrangian F and
showing that (7. 3) for H implies (E%) for F while equations
(7.1) and (7.2) for H imply (6) for F.

To this end consider the equation

H

»
"
N

(8) ( )

2 ——cn
"29
P, P,

which by (4) may always be solved for pi, obtaining say

(9) p, = ¥ (¥, %, N).

Define

(10) Fe, #, 0 = H{x, b, 2,000,000
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It follows that for a set {5:1} satisfying F{ X, %, A} =1 the
corresponding P given by (9) satisfy H{ xl, p.s N} =1;
. 1

expanding (8) in the form %X =H Hp , these %' and p. also
. 1
i
satisfy (7.1). Finally, since H 2 is plus-one in p,, equations
. 1
i
(8) and (9) imply that ¢i, and hence also F, are plus-one in

51
X .

THEOREM. Let H(xl, pi, \) be plus-one in pi, assume
2

det(H )# 0, where the second derivatives are continuous,
i

and consider the partial differential equation (3). With H is

associated a Lagrangian F defined by (10) satisfying

(11) F .= “H . F = -H ’

and such that the curves satisfying the characteristic equations
(7.1) are also extremals of (5%) in that they also satisfy (6).
. 2 . .

Proof By (8), since H has continuous second deriva-
tives, the matrix (ax /0 p ) is symmetric, and by (4) has a

symmetric inverse matrix clearly given by (0 P, /0 XJ) Hence

by (8), (10) and the homogeneity of ¢ , (using the summation
i

convention for j=14,...,N)
oy 9y
1 _2 j j i
(12) SE =t Ao oy -p .
% Pigx' 3% oo

It follows from the plus-one homogeneity of F and F , that

a¢ .
HH __; xJ—-(FF_ =3(F . F . +FF, )=2FF
Pjax Bx 3 P x x 3 X

from which, using a similar argument for A\, one obtains
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9y, 9y,
j

—— = =2 .
B, —4=2F, H, & Fy
jox x j

But differentiating (10) yields

and a similar argument for \ proves (11). Substituting from
(11) and (12) into (7. 2) yields

d
-a-{(F.F.i) = F i+ (F F,i)FX .
x x x

Using a parameter consistent with (7.1) so that H=F =1,
this reduces to (6), proving the theorem.
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