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Electrohydrodynamic flow about a colloidal
particle suspended in a non-polar fluid
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Nonlinear electrokinetic phenomena, where electrically driven fluid flows depend
nonlinearly on the applied voltage, are commonly encountered in aqueous suspensions
of colloidal particles. A prime example is the induced-charge electro-osmosis, driven by
an electric field acting on diffuse charge induced near a polarizable surface. Nonlinear
electrohydrodynamic flows also occur in non-polar fluids, driven by the electric field
acting on space charge induced by conductivity gradients. Here, we analyse the flows
about a charge-neutral spherical solid particle in an applied uniform electric field that
arise from conductivity dependence on local field intensity. The flow pattern varies with
particle conductivity: while the flow about a conducting particle has a quadrupolar pattern
similar to induced-charge electro-osmosis, albeit with opposite direction, the flow about
an insulating particle has a more complex structure. We find that this flow induces a
force on a particle near an electrode that varies non-trivially with particle conductivity:
while it is repulsive for perfectly insulating particles and particles more conductive than
the suspending medium, there exists a range of particle conductivities where the force is
attractive. The force decays as the inverse square of the distance to the electrode and thus
can dominate the dielectrophoretic attraction due to the image dipole, which falls off with
the fourth power with the distance. This electrohydrodynamic lift opens new possibilities
for colloidal manipulation and driven assembly by electric fields.

Key words: electrohydrodynamic effects, colloids

1. Introduction

The interaction of colloids and electric fields is widely used for directed assembly
and particle manipulation (Velev & Bhatt 2006; Prieve, Sides & Wirth 2010;
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van Blaaderen et al. 2013; Edwards & Bevan 2014; Bharti & Velev 2015; Al Harraq,
Choudhury & Bharti 2022). In recent years, motile colloids energized by an applied
electric field have become a popular model for self-propelled ‘active’ particles (Yan
et al. 2016; Han, Shields & Velev 2018; Driscoll & Delmotte 2019; Diwakar et al.
2022; Boymelgreen et al. 2022). One propulsion mechanism exploits the induced-charge
electrophoresis of colloids suspended in aqueous electrolyte solutions (Squires & Bazant
2004, 2006; Gangwal et al. 2008; Nishiguchi & Sano 2015; Ma et al. 2015). Another
propulsion strategy is particle rolling on an electrode surface due to the Quincke rotation –
a symmetry-breaking instability that gives rise to a torque on the particle in an applied
uniform electric field (Bricard et al. 2013, 2015; Snezhko 2016; Karani, Pradillo &
Vlahovska 2019; Pradillo, Karani & Vlahovska 2019; Zhang et al. 2021a). The threshold
for the Quincke rotation is very sensitive to the solvent conductivity and is accessible
experimentally only in non-polar solvents, still at electric fields with magnitude of the
order of MV m−1. At such strong electric fields, electric conduction may no longer
be in the Ohmic regime due to fluid conductivity becoming dependent on electric field
intensity (Onsager 1934; Castellanos 1998). Field-enhanced conductivity arises from the
electric field effect on the dissociation–recombination equilibrium between ion pairs
and free ions (termed the Onsager effect). In a non-polar fluid, the electrolyte added to
control conduction exists mostly in the form of neutral ion pairs (Prieve et al. 2017). The
application of a strong electric field increases the rate of the ion pair dissociation, thereby
increasing the number of charge carriers and accordingly the electrical conductivity
(Castellanos 1998). This effect is suggested to underlie the flow observed about colloids
suspended in oil (Ryu et al. 2010), whose pattern resembles the induced-charge osmotic
flow about an ideally polarizable particle in aqueous solutions, and the oscillatory
motion of Quincke rollers (Zhang et al. 2021b). Recent experiments have also reported
that a charge-free, dielectric particle lifts off from the electrode (Pradillo et al. 2019)
despite the attraction by the image dipole, which may involve electrohydrodynamic flow.
Motivated by the potential impact of electrohydrodynamic flows on Quincke colloid
‘activity’ and collective dynamics, here we examine the possibility of a flow driven by
conductivity gradients set by non-uniformities in the applied electric field. While the
electric-field-driven flows about colloids near electrodes in aqueous electrolyte solutions
have been subject to great interest (Ristenpart, Aksay & Saville 2004, 2007; Bazant et al.
2009; Prieve et al. 2010; Hashemi et al. 2018; Fernández-Mateo et al. 2022; Khair 2022;
Katzmeier et al. 2022), colloidal electrohydrodynamics in non-polar fluids is far less
explored.

In this paper, we predict that an electrohydrodynamic flow driven by the Onsager effect
arises about a spherical particle in an applied uniform electric field. We develop an
asymptotic solution in the case of fluid conductivity varying linearly with the electric field
intensity. We analyse the flow effect on the particle interaction with the electrode. The
force on the particle due to the electrohydrodynamic flow is calculated using the Lorentz
reciprocal theorem and found to be repulsive for insulating particles.

2. Problem formulation

Let us consider a non-polar liquid, e.g. hydrocarbon oil, containing an electrolyte,
e.g. tetrabutylammonium bromide. In such solutions, the electrolyte exists mostly in the
form of neutral ion pairs resulting in very low electric conductivity. (In contrast, in aqueous
solutions ‘strong’ electrolytes are completely ionized.) The leaky dielectric model was
developed to describe the flows is such weakly conducting fluids (Melcher & Taylor 1969;
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Saville 1997; Vlahovska 2019) adopting Ohm’s law for the electric current, whose
conservation at steady state results in

∇ · (σmE) = 0. (2.1)

If the fluid conductivity is constant, then (2.1) implies that the bulk fluid is electroneutral.
Charge accumulates only at interfaces separating media with different electric properties.
A field-dependent conductivity σ(E) due to field-enhanced electrolyte ionization (Onsager
1934) gives rise to space charge in a spatially inhomogeneous electric field as seen from
the conservation of current (2.1) and Gauss’ law, εm ∇ · E = ρf :

ρf = − εm

σm
E · ∇σm. (2.2)

The induced charge in the bulk would then drive flow, which in the creeping flow limit is
described by the Stokes equation

−∇p + μ ∇2u = −ρf E, ∇ · u = 0, (2.3a,b)

where u and p are the fluid velocity and pressure, and μ is the fluid viscosity.
In this study, we ask the following questions. If a particle is introduced in a uniform

electric field, would the resulting field inhomogeneities give rise to conductivity gradients
and space-charge-driven flow? What is the correction due to the Onsager effect to the
behaviour predicted by the leaky dielectric model, which is no flow about a solid particle?

2.1. The Onsager effect
If charge injection is negligible (Denat, Gosse & Gosse 1982; Sainis, Merrill & Dufresne
2008; Park et al. 2009), then conduction is due to ions produced from the dissociation
of the ion pairs (Castellanos 1998; Prieve et al. 2017). In strong fields, the dissociation
rate increases with field intensity (Onsager 1934). The activation energy for the ionization
includes the Born self-energy of the two charged ions, the Coulomb energy of interaction
between them, and the energy of separating the charged pair in the external electric
field. The latter contribution leads to the fluid conductivity increasing as (Onsager 1934;
Castellanos 1998)

σm = σ0 F(b)1/2, (2.4)

where σ0 is the zero-field conductivity, and F(b) is the Onsager function

F(b) = I1(2b)

b
, b =

(
e3E

4πεm(kBT)2

)1/2

. (2.5a,b)

Here, I1 is the modified Bessel function, e is the electron charge, kBT is the thermal
energy, εm is the fluid permittivity, and E is the field intensity. Equation (2.4) shows
that conductivity is modified by the presence of an external electric field only if
the field intensity is high, typically exceeding MV m−1. If b � 1, then σm = σ0 is
field-independent and the electrohydrodynamic flow is described by the leaky dielectric
model (Melcher & Taylor 1969).

2.2. Governing equations
We consider a spherical particle with radius a, permittivity εp and field-independent
conductivity σp placed in a uniform electric field E = E0êz. The particle centre is located

1000 A15-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.997


Z. Wang, M.J. Miksis and P.M. Vlahovska

W: plane wall (electrode)

P: particle surface

r

E0

d

a

z z

η = const.

Particle surface

η = η0

ξ = const.

rParticle: Ωp
εp, σp

Medium: Ωm
εm, σm = σ0F(b)1/2

êη
êξ

(a) (b)

Figure 1. (a) Sketch of the problem in cylindrical coordinates: a spherical particle of radius a centred at
(r, z) = (0, d). (b) In bispherical coordinates, the particle surface is given by η = η0 = cosh−1(d/a), and the
electrode surface is specified by η = 0.

at a distance d above a planar electrode at z = 0; see figure 1(a) for a sketch of the problem.
We rescale all variables with particle radius a, applied electric field magnitude E0, and the
electrohydrodynamic time scale tehd = μ/(εmE2

0). The dimensionless equations for the
electric potential, fluid flow and charge conservation in the bulk are (Saville 1997)

∇ · (σ̃E) = 0, E = −∇Φ, (2.6a,b)

−∇p + ∇2u = −E ∇ · E, ∇ · u = 0, (2.7a,b)

where the Coulomb force on the fluid is obtained from the Maxwell stress tensor T =
EE − 1

2 E2I as ∇ · T = E ∇ · E, and σ̃ = σ/σ0 denotes the dimensionless conductivity.
The dimensionless boundary conditions are summarized as

Φm = Φp (continuous potential on the particle surface P), (2.8)

σ̃mn · Em = σ̃pn · Ep (continuous normal current on P), (2.9)

Φm = 0 (grounded electrode on W), (2.10)

u = 0 (no-slip on W & P). (2.11)

Another dimensionless parameter, the conductivity mismatch β = (σ̃p − 1)/(σ̃p + 1), is
used in this paper. The extreme cases of perfectly insulating (σp = 0) and perfectly
conducting (σp → ∞) particles correspond to β = −1 and β = 1, respectively. Far from
the particle, the electric field is undisturbed and uniform, and the electrohydrodynamic
flow vanishes.

To solve the problem, we find it convenient to use bispherical coordinates (ξ, η, ϕ) (see
figure 1b), which are related to the cylindrical coordinates (r, ϕ, z) as follows:

r = c
h

sin ξ, z = c
h

sinh η, h ≡ cosh η − cos ξ, (2.12a–c)

where c is a geometric constant related to the gap between the spherical particle and
the electrode, c = √

(2 + δ)δ, with δ = (d − a)/a. In bispherical coordinates, the particle
surface and the electrode are iso-surfaces of the coordinate η:

P : η = η0 = cosh−1(1 + δ), W : η = 0. (2.13a,b)
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3. Solution

In general, (2.5a,b)–(2.5a,b) can be solved only numerically. Analytical progress can be
made by assuming small changes in the fluid conductivity with local field intensity. In this
case, we develop an asymptotic analysis based on the linearization of (2.4) for b � 1:

σm = σ0(1 + γ E), γ = e3

16πεm(kBT)2 . (3.1a,b)

The dimensionless medium conductivity as a function of dimensionless electric field
strength becomes σ̃m = 1 + εE, where ε = γ E0 is a dimensionless parameter quantifying
the magnitude of the conductivity change by the electric field. The small conductivity
variation assumption implies ε � 1. Estimating γ shows that its order of magnitude is
∼10−6 m V−1, hence the linear approximation is valid for applied electric field less than
1 MV m−1, which is typical for the experiments (Pradillo et al. 2019; Zhang et al. 2021b).
Having ε � 1 allows for an analytical solution in terms of a regular perturbation series

Φ = Φ(0) + εΦ(1), (3.2)

E = −∇Φ = E(0) + εE(1), (3.3)

p = εp(1), u = εu(1). (3.4a,b)

The leading-order problem (with superscripts (0)) corresponds to a spherical particle
suspended in a charge-free fluid with constant, field-independent conductivity given by
σ0, which is exactly the leaky dielectric model. The solution predicts no flow about a solid
particle, and attraction to a nearby electrode (Wang, Miksis & Vlahovska 2022), with a
force decaying in the far field as 1/d4, where d is the distance between the colloid centre
and the electrode. The solution is summarized in Appendix A.

3.1. The electrohydrodynamic flow
Here, we analyse the correction due to field-dependent conductivity to the leading-order
solution obtained from the leaky dielectric model. Substituting the linearized relation
(3.1a,b) and expansions (3.2)–(3.4a,b) into (2.5a,b)–(2.11), and collecting terms at O(ε),
we find that the flow in the suspending fluid satisfies the equations

−∇p(1) + ∇2u(1) = −f ,

∇ · u(1) = 0

}
in Ωm, (3.5)

u(1) = 0 on W & P, (3.6)

where f = (∇ · E(1))E(0) is the Coulomb force on the fluid. Note that by (2.2), f can
be related directly to the leading-order (O(ε)) solution, ∇ · E(1) = −E(0) · ∇E(0). We
find the solution of (3.5)–(3.6) as a superposition of a particular solution ( pP, uP) and
a homogeneous solution ( pH, uH):

p(1) = pP + pH, u(1) = uP + uH . (3.7a,b)

The particular solution solves the non-homogeneous Stokes equation in a particle-free
space Ωp ∪ Ωm, which is the upper half-space z > 0, with no-slip boundary condition on
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the electrode W :

−∇pP + ∇2uP = −f̃ ,

∇ · uP = 0

}
in Ωp ∪ Ωm, (3.8)

uP = 0 on W . (3.9)

Here, f̃ is the extended force that is equal to the Coulomb force f in the medium phase
Ωm, and zero in the particle phase Ωp:

f̃ =
{

f in Ωm,

0 in Ωp.
(3.10)

To compensate for the non-zero velocity at the particle surface from the particular solution,
the homogeneous solution is added, which solves the Stokes equations with velocity −uP

at the particle surface and no-slip condition on the electrode:

−∇pH + ∇2uH = 0,

∇ · uH = 0

}
in Ωm, (3.11)

uH = −uP on P, (3.12)

uH = 0 on W . (3.13)

3.1.1. Particular solution
The particular solution solves the incompressible Stokes equation with extended force f̃
in the upper half-space z > 0. In cylindrical coordinates (r, ϕ, z), (3.8) and (3.9) read

−∂pP

∂r
+
(

L−1 + ∂2

∂z2

)
uP

r = −f̃r, (3.14)

−∂pP

∂z
+
(

L0 + ∂2

∂z2

)
uP

z = −f̃z, (3.15)

1
r

∂

∂r

(
ruP

r
)+ ∂uP

z

∂z
= 0, (3.16)

uP
r |z=0 = uP

z |z=0 = 0, (3.17)

where the operator L−n is

L−n = ∂2

∂r2 + 1
r

∂

∂r
− n2

r2 . (3.18)

The problem is solved by applying a Hankel–Fourier transform. The details of the
calculation are in Appendix B. The obtained velocity components are

uP
r (r, z) = − 2

π

∫ ∞

0

∫ ∞

0

ω R̂(k, ω)

(k2 + ω2)2

[
cos(ωz) − (1 − kz) e−kz

]
J1(kr) dω dk, (3.19)

uP
z (r, z) = 2

π

∫ ∞

0

∫ ∞

0

k R̂(k, ω)

(k2 + ω2)2

[
sin(ωz) − ωz e−kz

]
J0(kr) dω dk, (3.20)
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where J0 and J1 are the Bessel functions of the first kind, and R̂(k, ω) is the transform of
the extended Coulomb force f̃ :

R̂(k, ω) =
∫ ∞

0

∫ ∞

0

(
k2 f̃z J0(kr) sin(ωz) − kωf̃r J1(kr) cos(ωz)

)
r dr dz. (3.21)

3.1.2. Homogeneous solution
The homogeneous problem is found in bispherical coordinates using the general solution
developed by Lee & Leal (1980). The detailed calculation is presented in Appendix C. The
obtained velocity components in the cylindrical coordinate system, uH

r and uH
z , are in the

form

uH
r = sin ξ

2
√

h

∞∑
n=0

[An sinh(λnη) + Bn cosh(λnη)] Pn(cos ξ)

+
√

h
∞∑

n=1

[En sinh(λnη) + Fn cosh(λnη)] P1
n(cos ξ), (3.22)

uH
z = sinh η

2
√

h

∞∑
n=0

[An sinh(λnη) + Bn cosh(λnη)] Pn(cos ξ)

+
√

h
∞∑

n=0

[Cn sinh(λnη) + Dn cosh(λnη)] Pn(cos ξ), (3.23)

where λn = n + 1/2, Pn are the Legendre polynomials, and P1
n are the associated Legendre

polynomials. The procedure to obtain the coefficients An, Bn, Cn, Dn, En, Fn is given in
Appendix C.

3.2. Electrohydrodynamic force on the particle near the electrode
The electrohydrodynamic force on the particle is conveniently calculated using the Lorentz
reciprocal theorem:∮

∂Ωm

u(1) · (σ ′ · n) dS −
∫

Ωm

u(1) · (∇ · σ ′) dV =
∮

∂Ωm

u′ · (σ (1) · n) dS

−
∫

Ωm

u′ · (∇ · σ (1)) dV. (3.24)

The boundary of the medium phase is ∂Ωm = P ∪ W ∪ S∞, where S∞ is a surface far
from the particle. Due to the axial symmetry, the force has only a z-component. Note that
in (3.24), the normal n on the particle surface P points into the particle phase.

The velocity and stress fields u′ and σ ′ are the solution to the problem for a translating
sphere near a planar wall:

−∇p′ + ∇2u′ = 0,

∇ · u′ = 0

}
in Ωm,

u′ = 0 on W,

u′ = êz on P,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.25)
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where êz is the unit vector in the z-direction. The equations are solved in bispherical
coordinates; see Appendix C.

The particle has zero net charge. The leading-order electric field strength has the
far-field behaviour E(0) = 1 + O(ρ−3), where ρ = √

r2 + z2. Consequently, we have
‖ f ‖ ∼ O(ρ−4) as ρ → ∞. Therefore, in the far field, the velocity u(1) and stress σ (1)

decay as O(ρ−2) and O(ρ−3), respectively. From Blake & Chwang (1974), the velocity
u′ and stress σ ′ decay as O(ρ−3) and O(ρ−4). Consequently, integrals over the infinite
surface S∞ on both sides of the reciprocal identity (3.24) vanish:∫

S∞
u(1) · (σ ′ · n) dS =

∫
S∞

u′ · (σ (1) · n) dS = 0. (3.26)

Thus the dimensionless electrohydrodynamic force on the particle, Cf , is calculated from
a volume integral:

Cf = −
∫
P

êz · (σ (1) · n) dS =
∫

Ωm

u′ · f dV, (3.27)

The dimensional form of the hydrodynamics force is F = γ εma2 |E3
0| Cf , where the

absolute value indicates that the direction of the force is independent of the direction of
the applied electric field.

The volume integral (3.27) is computed in bispherical coordinates, which conveniently
map the medium phase Ωm onto a bounded rectangle region:

Cf = 2πc3
∫ π

0
dξ

∫ η0

0
dη u′ · f

sin ξ

h3 . (3.28)

This double integral is evaluated numerically with Gauss quadratures. Using the volume
integral to find the force coefficient has the following advantages. First, it does not require
the solution of the tractions due to flow field u(1), which involves numerical evaluation of
the integral transforms (3.19)–(3.21). Second, the velocity field u′ in the volume integral
has an analytical solution in bispherical coordinates. The Coulomb force is evaluated by
differentiating the leading-order electric field, which also has an analytical solution in
bispherical coordinates.

4. Results and discussion

The leading-order electric field, the induced bulk charge, and the resulting O(ε) flow about
conducting and insulating particles are shown in the unbounded domain in figures 2(a,c)
and 3(a,c), and for a particle close to the electrode in figures 2(b,d) and 3(b,d). The
unbounded problem with the particle centred at the origin is solved numerically in
spherical coordinates with the Chebyshev collocation method (see Appendix D); it agrees
with the bounded solution in the limit where the distance to the electrode is large. In
all cases, the bulk charge is localized near the particle surface, where the electric field
non-uniformities and resulting conductivity gradients are the largest. However, the charge
distribution and fluid flow depend strongly on the particle conductivity.

In the case of the insulating particle, the charge distribution resembles an octupole.
The positive bulk charge above the equator and below the pole facing the electrode drives
upward flows, while the negative charge drives flow in the opposite direction. The flows
converge and lead to a total of five dividing streamlines (axisymmetric surfaces in 3D):
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Figure 2. Electric field lines and flow streamlines about an insulating sphere (β = −1): (a,c) in the unbounded
domain, and (b,d) near the electrode δ = 0.1. The colour map in the plots for the electric field shows the
magnitude of the induced charge. The colour map in the plots for the flow shows the magnitude of the velocity
field.

fluid is drawn towards the particle at the equator and the poles, and pushed out in between.
The bulk charges are mostly localized above and below the equator. Correspondingly, the
velocity magnitude peaks near the equator.

In the case of a conducting particle, the bulk charge distribution presents a dipole
pattern, i.e. opposite-sign charges localize near the poles. The flow is driven away from
the poles, leading to inflow towards the equator.

The electrohydrodynamic flows about the conducting and insulating particles differ
quantitatively and qualitatively. Quantitatively, the bulk charge density and velocity
magnitude are greater for the conducting particle than for the insulating particle by an
order of magnitude. Qualitatively, the recirculation and dividing streamlines near the two
poles found in the insulating particle disappear for the conducting particle. Intriguingly,
the flow pattern in the conducting particle case resembles the quadrupolar induced-charge
electro-osmosis, but the direction is reversed.

The presence of a planar boundary (the electrode) does not significantly change the
electrostatics or the hydrodynamics above the particle. The flow pattern in both insulating
and conducting cases is similar to the unbounded results. However, the flows below the
particle are geometrically frustrated, and vortices arise near the particle–wall gap. The
vortices in both cases are in the anticlockwise direction.

The electrohydrodynamic force calculated from (3.27) is shown in figure 4. Figure 4(a)
illustrates the effect of particle–electrode separation. The force magnitude decreases as the
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Figure 3. Electric field lines and flow streamlines about a conducting (β = 1) particle: (a,c) in the unbounded
domain, and (b,d) near the electrode δ = 0.5. The colour map in the plots for the electric field shows the
magnitude of the induced charge. The colour map in the plots for the flow shows the magnitude of the velocity
field.

particle moves away from the electrode. Figure 4(b) shows that the force is also weakened
as the difference in the conductivity between the two phases decreases. In general, the force
is repulsive (positive). However, the force can be attractive (negative) when β is close to
0 and 1. The change of sign can be seen from dips in figure 4(a) in the cases β = −0.2
and 1. The electrostatic field and flow streamlines in these two attracting cases are shown
in figure 5. In the first case, the particle is less conducting, and the charge distribution in
figures 5(a,c) shows an octupole pattern. However, the bulk charge density peaks near the
pole far from the electrode, and the corresponding downward flow is dominating, leading
to the negative electrohydrodynamic force on the particle (attractive to the electrode). For
a conducting particle, the charge distribution, and consequently the Coulomb force, in the
thin gap is singularly large. The velocity magnitude in the gap is small. From the balance
between the pressure gradient and the Coulomb force, ∇p(1) ∼ f , we find that the pressure
drop across the thin gap between the electrode and the particle surface is enormous. The
low pressure in the gap region leads to the downward electrohydrodynamic force on the
conducting particle. This effect disappears when the gap is large since large gaps allow the
fluid to recirculate (see figures 3b,d) and reduce the singularity of the pressure. However,
the high bulk charge density in the thin gap may indicate the violation of our assumption
of the small change of conductivity. A more detailed analysis is required in this case.

It is observed in figure 4(a) that the electrohydrodynamic force on the particle decays
as 1/d2 when the particle is far from the electrode. The flow around a force-free and
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Figure 4. (a) The absolute value of force coefficient |Cf | as a function of the dimensionless separation from the
electrode, δ, for various conductivity mismatches β. (b). The force coefficient Cf as a function of conductivity
mismatch β for various δ.
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Figure 5. Electric field lines and flow streamlines in the case of attractive electrohydrodynamic force: (a,c) δ =
0.1, β = −0.2 (particle less conducting than the suspending fluid); (b,d) δ = 0.1, β = 1 (perfectly conducting
particle).

torque-free particle behaves like a stresslet in the far field. Accordingly, it is expected that
the particle migration at large distances from the wall is driven by the flow due to image
stresslet, which decays as the inverse square of the distance.
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5. Conclusions

Nonlinear electrohydrodynamic flows driven by an electric field acting on its own
induced space charge about colloidal particles in aqueous electrolyte solutions are
well-documented and extensively studied topics. The prime example is the induced-charge
electro-osmosis due to the electric field acting on charge accumulated near polarizable
surfaces (Ristenpart et al. 2004, 2007; Squires & Bazant 2004)

Here, we show that nonlinear electrohydrodynamic flows can arise about particles
suspended in non-polar, leaky dielectric fluids. The flows are driven by space charge
generated by spatially varying conductivity due to the Onsager effect. For a spherical
particle in an applied uniform electric field, the resulting flow pattern strongly depends
on the particle conductivity. Intriguingly, for a conducting particle, the flow pattern
is quadrupolar, resembling induced-charge electro-osmosis; however, the direction is
reversed. The electrohydrodynamic flow gives rise to a force on the particle, which is
in general repulsive. It decays more slowly with the distance to the electrode than the
dielectrophoretic attractive force: quadratic versus fourth-power.

The leading-order problem in our analysis corresponds to the leaky dielectric model of
Melcher & Taylor (1969). For a solid particle, there is no flow within the leaky dielectric
model framework, hence the Onsager-effect flow becomes important. However, in the case
of a drop, the leaky dielectric model flow due to the interfacial charge at the fluid/fluid
interface would dominate over the Onsager-effect flow correction.

Our results have direct relevance to particle manipulation and assembly in non-polar
fluids. The existence of a repulsive electrohydrodynamic force may explain the reported
levitation above the electrode of colloids suspended in hexadecane (Pradillo et al. 2019).
The electrohydrodynamic flows may also have strong effects on the collective dynamics of
the Quincke rollers, a popular model of active matter systems (Bricard et al. 2013; Driscoll
& Delmotte 2019). The present analysis considers only a DC electric field. In AC fields,
the large disparity in ions mobility may give rise to a steady component (Hashemi et al.
2018) and much richer electrohydrodynamic flows and colloidal dynamics.
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Appendix A. Leading-order solution: electric field about a particle near an electrode

The leading-order problem is formulated below and solved in bispherical coordinates
defined in (2.12a–c) (Wang et al. 2022). (The more general case of a spherical particle
between two electrodes is solved in Wang, Miksis & Vlahovska 2023.) The governing
equations are

∇2Φ(0) = 0 in Ωm ∪ Ωp, (A1)

Φ(0)
m = Φ(0)

p on P, (A2)

êη · E(0)
m = σ̃pêη · E(0)

p on P, (A3)

Φ(0)
m ∼ −z as

√
r2 + z2 → ∞, (A4)
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where êη is the unit vector in the η-direction and the inward normal on the particle surface.
In bispherical coordinates, the electric potential is written as

Φ(0)
p = −z +

√
h

∞∑
n=0

X̃n e−λnη Pn(cos ξ),

Φ(0)
m = −z + 2

√
h

∞∑
n=0

Xn sinh(λnη) Pn(cos ξ),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A5)

where λn = n + 1/2, X̃n = Xn(exp(2λnη0) − 1), and Pn are the Legendre polynomials.
Coefficients Xn are solved from the tridiagonal system

Le
n,1Xn−1 + Le

n,2Xn + Le
n,3Xn+1 = Re

n (n � 0), (A6)

where Le
n,1, Le

n,2, Le
n,3 and Re

n are

Le
n,1 = n (exp(λn−1η0) − β exp(−λn−1η0)) ,

Le
n,2 = (β sinh η0 − 2λn cosh η0) exp(λnη0) − β (sinh η0 − 2λn cosh η0) exp(−λnη0),

Le
n,3 = (n + 1) (exp(λn+1η0) − β exp(−λn+1η0)) ,

Re
n = 2

√
2β
[
2λn exp(−λnη0) − cosh η0 (n exp(−λn−1η0) + (n + 1) exp(−λn+1η0))

]
,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A7)

with β the conductivity mismatch, β = (σ̃p − 1)/(σ̃p + 1). The equation for n = 0 in
the system (A6) has only two terms with X0 and X1 since Le

0,1 = 0. The cylindrical
components of electric field strength, E(0) = −∇Φ(0), are

E(0)
p,r = −

√
h

2c

∞∑
n=1

(
X̃n−1 − 2X̃n + X̃n+1

)
e−λnη P1

n(cos ξ),

E(0)
p,z = 1 −

√
h

2c

∞∑
n=0

[
nX̃n−1 − (2n + 1)X̃n + (n + 1)X̃n+1

]
e−λnη Pn(cos ξ),

E(0)
m,r = −

√
h

c

∞∑
n=1

(Xn−1 − 2Xn + Xn+1) sinh(λnη) P1
n(cos ξ),

E(0)
m,z = 1 +

√
h

c

∞∑
n=0

[nXn−1 − (2n + 1)Xn + (n + 1)Xn+1] cosh(λnη) Pn(cos ξ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A8)

Appendix B. Particular solution in cylindrical coordinates

In this appendix, we solve (3.14)–(3.17) using integral transforms. The Hankel transform
and its inverse are defined as

G(k) = Hn[g(r)] =
∫ ∞

0
r g(r) Jn(kr) dr, (B1)

g(r) = H−1
n [G(k)] =

∫ ∞

0
k G(k) Jn(kr) dk, (B2)
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where Jn is the Bessel function of the first kind. Hankel transforming the partial differential
equations (3.14)–(3.16) to ordinary differential equations in z gives

kP +
(

d2

dz2 − k2

)
Vr = −Fr, (B3)

− d
dz

P +
(

d2

dz2 − k2

)
Vz = −Fz, (B4)

kVr + d
dz

Vz = 0. (B5)

The Hankel transform variables are defined as

P(z, k), Vz(z, k), Fz(z, k) = H0[pP(r, z), vP
z (r, z), f̃z(r, z)], (B6)

Vr(z, k), Fr(z, k) = H1[vP
r (r, z), f̃r(r, z)]. (B7)

Note that Fr(z, k) and Fz(z, k) are continuous even though the extended force f̃ has a finite
jump on the particle surface P . These ordinary differential equations are simplified to a
single equation in terms of Vz,

V ′′′′
z − 2k2V ′′

z + k4Vz = R, R = k2Fz + kF′
r, (B8a,b)

where the prime stands for the derivative with respect to z. From the no-slip boundary
condition on the plane electrode, we find that the boundary conditions at z = 0 are
Vz|z=0 = Vr|z=0 = 0, which is equivalent to Vz|z=0 = V ′

z|z=0 = 0. The far-field boundary
conditions are Vz, V ′

z → 0 as z → +∞.
We write the solution as the superposition of the particular solution U(z, k) and the

homogeneous solution W(z, k), i.e. Vz(z, k) = U(z, k) + W(z, k). The particular solution
is solved from the following equation and boundary conditions:

U′′′′ − 2k2U′′ + k4U = R, U|z=0 = U′′|z=0 = 0. (B9a,b)

The physical interpretation of the boundary condition U′′|z=0 = 0 is that the shear stress
on the plane wall is zero. Inverse Hankel transforming the particular solution U yields
the flow driven by force f̃ with zero shear stress and permeability on W . We prescribe
the second-order derivative to be zero so that U could be constructed by Fourier sine
transform:

Ĝ(ω) = Fs[G(z)] =
∫ ∞

0
G(z) sin(ωz) dz, (B10)

G(z) = F −1
s [Ĝ(ω)] = 2

π

∫ ∞

0
Ĝ(ω) sin(ωz) dω. (B11)

Fourier sine transforming (B8a,b) yields

Û(k, ω) = R̂(k, ω)

(ω2 + k2)2 , (B12)
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where Û(k, ω) = Fs[U(z, k)], and R̂(k, ω) is given in (3.21). Inverse transforming Û(k, ω)

gives

U(z, k) = 2
π

∫ ∞

0

R̂(k, ω)

(ω2 + k2)2 sin(ωz) dω. (B13)

The homogeneous solution W(z, k) is solved from the following equation and boundary
conditions:

W ′′′′ − 2k2W ′′ + k4W = 0, W|z=0 = 0, W ′|z=0 = −U′|z=0. (B14a–c)

For convenience, we note

U′|z=0 = U0(k) = 2
π

∫ ∞

0

R̂(k, ω)

(ω2 + k2)2 ω dω. (B15)

Solving the homogeneous equation and keeping terms that vanish as z → ∞ and at z = 0
gives

W(z, k) = −U0(k) z e−kz. (B16)

Adding U(z, k) and W(z, k) gives the expression for Vz(z, k):

Vz(z, k) = 2
π

∫ ∞

0

R̂(k, ω)

(ω2 + k2)2

[
sin(ωz) − ωz e−kz

]
dω. (B17)

Substituting into (B5) gives the expression for Vr(z, k):

Vr(z, k) = − 2
kπ

∫ ∞

0

ω R̂(k, ω)

(ω2 + k2)2

[
cos(ωz) − (1 − kz) e−kz

]
dω. (B18)

Inverse Hankel transforming Vr(z, k) and Vz(z, k) gives the solution (3.19) and (3.20).

Appendix C. Homogeneous solution in bispherical coordinates

In this appendix, we summarize the solution of the homogeneous Stokes equation

−∇p + ∇2u = 0, ∇ · u = 0, (C1a,b)

for arbitrary velocity distribution on the particle surface P , and zero velocity on the
electrode W :

ur|W = uz|W = 0, (C2)

ur|P = v1, uz|P = v2. (C3a,b)
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For a particle translating in the z-direction, v2 = 1 and v1 = 0. In bispherical coordinates,
the asymmetric velocity field could be written as (Lee & Leal 1980)

p = p0, ur = rp
2

+ u0, uz = zp
2

+ w0, (C4a–c)

p0 =
√

h
c

∞∑
n=0

[An sinh(λnη) + Bn cosh(λnη)] Pn(cos ξ), (C5)

u0 =
√

h
∞∑

n=1

[En sinh(λnη) + Fn cosh(λnη)] P1
n(cos ξ), (C6)

w0 =
√

h
∞∑

n=0

[Cn sinh(λnη) + Dn cosh(λnη)] Pn(cos ξ), (C7)

where λn = n + 1/2, Pn are the Legendre polynomials, and P1
n are the associated Legendre

polynomials. In the axisymmetric case, the incompressibility reads

∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0. (C8)

From the boundary condition ur|W = 0, we obtain Dn = 0 (n � 0). Substituting ur|W = 0
into the incompressibility, we find

∂uz

∂z

∣∣∣∣W = 0, (C9)

which leads to

p|W = −2
∂w0

∂z

∣∣∣∣W . (C10)

Substituting the expressions for p and w0 into the identity, we obtain

Bn = nCn−1 − (2n + 1)Cn + (n + 1)Cn+1 (n � 0). (C11)

From the boundary condition uz|P = f2, we obtain the equation

1
2

sinh η0 [An sinh(λnη0) + Bn cosh(λnη0)] + Cn cosh η0 sinh(λnη0)

− n
2n − 1

sinh(λn−1η0) Cn−1 − n + 1
2n + 3

sinh(λn+1η0) Cn+1 = αn, (C12)

where αn comes from the expansion

√
cosh η0 − cos ξ v2 =

∞∑
n=0

αn Pn(cos ξ). (C13)

Expansion coefficients αn are calculated using the orthogonality of Legendre polynomials:

αn = λn

∫ π

0

√
cosh η0 − cos ξ v2 Pn(cos ξ) sin ξ dξ (n � 0). (C14)
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Substituting (C11) into (C12) allows us to write A0
n in terms of C0

n:

An = 2αn

sinh η0 sinh(λnη0)
− 2κn

(
n

2n − 1
Cn−1 − Cn + n + 1

2n + 3
Cn+1

)
(n � 0),

(C15)

with coefficients κn = λn coth(λnη0) − coth η0. The boundary condition ur|W = 0 leads
to

u0|W = − r
2

p0|W = r
∂w0

∂z

∣∣∣∣W . (C16)

Substituting (C6) and (C7) into (C16), we find

Fn = 1
2(Cn+1 − Cn−1) (n � 1). (C17)

Paralleling the two boundary conditions on P gives

− sin ξ

sinh η0
w0|P + u0|P = g, g = v1 − sin ξ

sinh η0
v2. (C18a,b)

Substituting (C6) and (C7) into (C18a), we obtain

1
2n − 1

sinh(λn−1η0) Cn−1 − 1
2n + 3

sinh(λn+1η0) Cn+1

+ sinh η0 [En sinh(λnη0) + Fn cosh(λnη0)] = sinh η0βn, (C19)

where βn are coefficients in the expansion

g√
cosh η0 − cos ξ

=
∞∑

n=1

βn P1
n(cos ξ). (C20)

From the orthogonality of associated Legendre polynomials, we have

βn = λn

n(n + 1)

∫ π

0

g√
cosh η0 − cos ξ

P1
n(cos ξ) sin ξ dξ (n � 1). (C21)

In the case v1 = 0 and v2 = 1 (translating spherical particle), the expansion coefficients
αn and βn are calculated analytically:

αn =
√

2 e−λnη0

[
cosh η0 − n eη0

2n − 1
− (n + 1) e−η0

2n + 3

]
,

βn = 2
√

2
sinh η0

e−λnη0

[
cosh η0 − (n − 1) eη0

2n − 1
− (n + 2) e−η0

2n + 3

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C22)

Substituting (C17) into (C19), we write coefficients En in terms of Cn:

En = βn

sinh(λnη0)
+ κn

(
1

2n − 1
Cn−1 − 1

2n + 3
Cn+1

)
(n � 1). (C23)
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From the incompressibility, we have the two equations

− 1
2 nAn−1 + 5

2 An + 1
2 (n + 1)An+1 − (n − 1)nEn−1 + 2n(n + 1)En

− (n + 1)(n + 2)En+1 − nDn−1 + (2n + 1)Dn − (n + 1)Dn+1 = 0, (C24)

− 1
2 nBn−1 + 5

2 Bn + 1
2 (n + 1)Bn+1 − (n − 1)nFn−1 + 2n(n + 1)Fn

− (n + 1)(n + 2)Fn+1 − nCn−1 + (2n + 1)Cn − (n + 1)Cn+1 = 0. (C25)

It is verified that (C25) is satisfied automatically using (C11) and (C17). Plugging (C15)
and (C23) into (C24) yields a linear system for Cn:

Lh
n,1Cn−1 + Lh

n,2Cn + Lh
n,3Cn+1 = Rh

n (n � 0), (C26)

where Lh
n,1, Lh

n,2, Lh
n,3 and Rh

n are

Lh
n,1 = −nκn−1 + n(2n − 3)

2n − 1
κn,

Lh
n,2 = n(2n − 1)

2n + 1
κn−1 + 5κn − (n + 1)(2n + 3)

2n + 1
κn+1,

Lh
n,3 = −(n + 1)(2n + 5)

2n + 3
κn + (n + 1) κn+1,

Rh
n = n

sinh(λn−1η0)

[
αn−1

sinh η0
+ (n − 1)βn−1

]
− 1

sinh(λnη0)

[
5αn

sinh η0
+ 2n(n + 1)βn

]

− n + 1
sinh(λn+1η0)

[
αn+1

sinh η0
− (n + 2)βn+1

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C27)

The equation for n = 0 in the system (C26) has two terms involving C0 and C1 since
Lh

0,1 = 0.

Appendix D. Flow and electric field in an unbounded domain

The unbounded problem is solved numerically in the spherical coordinates (r, θ, ϕ)

originated at the centre of the particle. The electric potential solved from the leading-order
electrostatics is

Φ0
p = − 3

σ̃p + 2
r cos θ, Φ0

m = −
(

r + σ̃p − 1
σ̃p + 2

1
r2

)
cos θ, (D1a,b)

where σ̃p is the dimensionless particle conductivity, σ̃ = σp/σ0. The O(ε)

electrohydrodynamic problem in spherical coordinates is(
∂2

∂r2 + 2
r

∂

∂r
+ cot θ

r2
∂

∂θ
+ 1

r2
∂2

∂θ2 − 1

r2 sin2 θ

)
ω = −H, (D2)

ω = 1
r

[
∂

∂r
(ruθ ) − ∂ur

∂θ

]
, (D3)

1
r2

∂

∂r
(r2ur) + 1

r sin θ

∂

∂θ
(sin θuθ ) = 0, (D4)
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Colloidal electrohydrodynamics in a non-polar fluid

where ur and uθ are the velocity components, and ω is the vorticity. Equation (D2) is
derived by taking the curl of the Stokes equation, and H is the curl of the Coulomb force
f :

H = 1
r

[
∂

∂r
(rfθ ) − ∂fr

∂θ

]
. (D5)

Due to the symmetry, we can simplify the domain to be the quarter of the plane r ∈
(r, +∞) and θ ∈ (0, π/2). The boundary conditions are

uθ = ω = 0,
∂ur

∂θ
= 0 at θ = 0, π/2,

ur = uθ = 0, ω = ∂uθ

∂r
at r = 1,

ur → 0, uθ → 0, ω → 0 as r → ∞.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(D6)

The problem (D2)–(D4) is solved numerically with the Chebyshev collocation method
(Trefethen 2000). In a practical numerical implementation, (D2) and (D3) are combined
to eliminate the vorticity ω and corresponding boundary conditions.

REFERENCES

AL HARRAQ, A., CHOUDHURY, B.D. & BHARTI, B. 2022 Field-induced assembly and propulsion of
colloids. Langmuir 38 (10), 3001–3016.

BAZANT, M.Z., KILIC, M.S., STOREY, B.D. & AJDARI, A. 2009 Towards an understanding of
induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv. Colloid Interface
Sci. 152 (1), 48–88.

BHARTI, B. & VELEV, O.D. 2015 Assembly of reconfigurable colloidal structures by multidirectional
field-induced interactions. Langmuir 31 (29), 7897–7908.

VAN BLAADEREN, A., DIJKSTRA, M., VAN ROIJ, R., IMHOF, A., KAMP, M., KWAADGRAS, B.W.,
VISSERS, T. & LIU, B. 2013 Manipulating the self assembly of colloids in electric fields. Eur. Phys.
J: Spec. Top. 222 (11), 2895–2909.

BLAKE, J.R. & CHWANG, A.T. 1974 Fundamental singularities of viscous flow. Part I: the image systems in
the vicinity of a stationary no-slip boundary. J. Engng Maths 8 (1), 23–29.

BOYMELGREEN, A., SCHIFFBAUER, J., KHUSID, B. & YOSSIFON, G. 2022 Synthetic electrically driven
colloids: a platform for understanding collective behavior in soft matter. Curr. Opin. Colloid Interface Sci.
60, 101603.

BRICARD, A., CAUSSIN, J.-B., DAS, D., SAVOIE, C., CHIKKADI, V., SHITARA, K., CHEPIZHKO, O.,
PERUANI, F., SAINTILLAN, D. & BARTOLO, D. 2015 Emergent vortices in populations of colloidal rollers.
Nat. Commun. 6, 7470.

BRICARD, A., CAUSSIN, J.-B., DESREUMAUX, N., DAUCHOT, O. & BARTOLO, D. 2013 Emergence of
macroscopic directed motion in populations of motile colloids. Nature 503, 95–98.

CASTELLANOS, A. 1998 Electrohydrodynamics, CISM International Centre for Mechanical Sciences,
vol. 380. Springer.

DENAT, A., GOSSE, B. & GOSSE, J.P. 1982 Electrical conduction of solutions of an ionic surfactant in
hydrocarbons. J. Electrostat. 12, 197–205.

DIWAKAR, N.M., KUNTI, G., MILOH, T., YOSSIFON, G. & VELEV, O.D. 2022 AC electrohydrodynamic
propulsion and rotation of active particles of engineered shape and asymmetry. Curr. Opin. Colloid
Interface Sci. 59, 101586.

DRISCOLL, M. & DELMOTTE, B. 2019 Leveraging collective effects in externally driven colloidal
suspensions: experiments and simulations. Curr. Opin. Colloid Interface Sci. 40, 42–57.

EDWARDS, T.D. & BEVAN, M.A. 2014 Controlling colloidal particles with electric fields. Langmuir 30 (36),
10793–10803.

FERNÁNDEZ-MATEO, R., CALERO, V., MORGAN, H., GARCÍA-SÁNCHEZ, P. & RAMOS, A. 2022 Wall
repulsion of charged colloidal particles during electrophoresis in microfluidic channels. Phys. Rev. Lett.
128, 074501.

1000 A15-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.997


Z. Wang, M.J. Miksis and P.M. Vlahovska

GANGWAL, S., CAYRE, O.J., BAZANT, M.Z. & VELEV, O.D. 2008 Induced-charge electrophoresis of
metallodielectric particles. Phys. Rev. Lett. 100, 058302.

HAN, K., SHIELDS, C.W. IV & VELEV, O.D. 2018 Engineering of self-propelling microbots and
microdevices powered by magnetic and electric fields. Adv. Funct. Mater. 28 (25), 1705953.

HASHEMI, A., BUKOSKY, S.C., RADER, S.P., RISTENPART, W.D. & MILLER, G.H. 2018 Oscillating
electric fields in liquids create a long-range steady field. Phys. Rev. Lett. 121, 185504.

KARANI, H., PRADILLO, G.E. & VLAHOVSKA, P.M. 2019 Tuning the random walk of active colloids: from
individual run-and-tumble to dynamic clustering. Phys. Rev. Lett. 123 (20), 208002.

KATZMEIER, F., ALTANER, B., LIST, J., GERLAND, U. & SIMMEL, F.C. 2022 Emergence of colloidal
patterns in AC electric fields. Phys. Rev. Lett. 128, 058002.

KHAIR, A.S. 2022 Nonlinear electrophoresis of colloidal particles. Curr. Opin. Colloid Interface Sci.
59, 101587.

LEE, S.H. & LEAL, L.G. 1980 Motion of a sphere in the presence of a plane interface. Part 2. An exact
solution in bipolar co-ordinates. J. Fluid Mech. 98 (1), 193–224.

MA, F., YANG, X., ZHAO, H. & WU, N. 2015 Inducing propulsion of colloidal dimers by breaking the
symmetry in electrohydrodynamic flow. Phys. Rev. Lett. 115, 208302.

MELCHER, J.R. & TAYLOR, G.I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses.
Annu. Rev. Fluid Mech. 1 (1), 111–146.

NISHIGUCHI, D. & SANO, M. 2015 Mesoscopic turbulence and local order in Janus particles self-propelling
under an AC electric field. Phys. Rev. E 92, 052309.

ONSAGER, L. 1934 Deviations from Ohm’s law in weak electrolytes. J. Chem. Phys. 2 (9), 599–615.
PARK, J.K., RYU, J.C., KIM, W.K. & KANG, K.H. 2009 Effect of electric field on electrical conductivity of

dielectric liquids mixed with polar additives: DC conductivity. J. Phys. Chem. B 113 (36), 12271–12276.
PRADILLO, G.E., KARANI, H. & VLAHOVSKA, P.M. 2019 Quincke rotor dynamics in confinement: rolling

and hovering. Soft Matt. 15 (32), 6564–6570.
PRIEVE, D.C., SIDES, P.J. & WIRTH, C.L. 2010 2-D assembly of colloidal particles on a planar electrode.

Curr. Opin. Colloid Interface Sci. 15 (3), 160–174.
PRIEVE, D.C., YEZER, B.A., KHAIR, A.S., SIDES, P.J. & SCHNEIDER, J.W. 2017 Formation of charge

carriers in liquids. Adv. Colloid Interface Sci. 244, 21–35, special issue in honour of the 90th birthday of
Professor Eli Ruckenstein.

RISTENPART, W.D., AKSAY, I.A. & SAVILLE, D.A. 2004 Assembly of colloidal aggregates by
electrohydrodynamic flow: kinetic experiments and scaling analysis. Phys. Rev. E 69 (2), 021405.

RISTENPART, W.D., AKSAY, I.A. & SAVILLE, D.A. 2007 Electrohydrodynamic flow around a colloidal
particle near an electrode with an oscillating potential. J. Fluid Mech. 575, 83–109.

RYU, J.C., PARK, H.J., PARK, J.K. & KANG, K.H. 2010 New electrohydrodynamic flow caused by the
Onsager effect. Phys. Rev. Lett. 104 (10), 104502.

SAINIS, S.K., MERRILL, J.W. & DUFRESNE, E.R. 2008 Electrostatic interactions of colloidal particles at
vanishing ionic strength. Langmuir 24 (23), 13334–13337.

SAVILLE, D.A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid
Mech. 29, 27–64.

SNEZHKO, A. 2016 Complex collective dynamics of active torque-driven colloids at interfaces. Curr. Opin.
Colloid Interface Sci. 21 (SI), 65–75.

SQUIRES, T.M. & BAZANT, M.Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217–252.
SQUIRES, T.M. & BAZANT, M.Z. 2006 Breaking symmetries in induced-charge electro-osmosis and

electrophoresis. J. Fluid Mech. 560, 65–101.
TREFETHEN, L.N. 2000 Spectral Methods in MATLAB. SIAM.
VELEV, O.D. & BHATT, K.H. 2006 On-chip micromanipulation and assembly of colloidal particles by electric

fields. Soft Matt. 2 (9), 738–750.
VLAHOVSKA, P.M. 2019 Electrohydrodynamics of drops and vesicles. Annu. Rev. Fluid Mech. 51, 305–330.
WANG, Z., MIKSIS, M.J. & VLAHOVSKA, P.M. 2022 Particle–surface interactions in a uniform electric field.

Phys. Rev. E 106 (3), 034607.
WANG, Z., MIKSIS, M.J. & VLAHOVSKA, P.M. 2023 Electrostatic force on a spherical particle confined

between two planar surfaces. Soft Matt. 19, 7663–7672.
YAN, J., HAN, M., ZHANG, J., XU, C., LUIJTEN, E. & GRANICK, S. 2016 Reconfiguring active particles by

electrostatic imbalance. Nat. Mater. 15 (10), 1095.
ZHANG, B., KARANI, H., VLAHOVSKA, P.M. & SNEZHKO, A. 2021a Persistence length regulates emergent

dynamics in active roller ensembles. Soft Matt. 17, 4818–4825.
ZHANG, Z., YUAN, H., DOU, Y., DE LA CRUZ, M.O. & BISHOP, K.J.M. 2021b Quincke oscillations of

colloids at planar electrodes. Phys. Rev. Lett. 126 (25), 258001.

1000 A15-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.997

	1 Introduction
	2 Problem formulation
	2.1 The Onsager effect
	2.2 Governing equations

	3 Solution
	3.1 The electrohydrodynamic flow
	3.1.1 Particular solution
	3.1.2 Homogeneous solution

	3.2 Electrohydrodynamic force on the particle near the electrode

	4 Results and discussion
	5 Conclusions
	Appendix A. Leading-order solution: electric field about a particle near an electrode
	Appendix B. Particular solution in cylindrical coordinates
	Appendix C. Homogeneous solution in bispherical coordinates
	Appendix D. Flow and electric field in an unbounded domain
	References

