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Abstract

We consider the finite W -algebra U(g, e) associated to a nilpotent element e ∈ g in a simple
complex Lie algebra g of exceptional type. Using presentations obtained through an algorithm
based on the PBW-theorem for U(g, e), we verify a conjecture of Premet, that U(g, e) always
has a 1-dimensional representation when g is of type G2, F4, E6 or E7. Thanks to a theorem of
Premet, this allows one to deduce the existence of minimal dimension representations of reduced
enveloping algebras of modular Lie algebras of the above types. In addition, a theorem of Losev
allows us to deduce that there exists a completely prime primitive ideal in U(g) whose associated
variety is the coadjoint orbit corresponding to e.

1. Introduction

Finite W -algebras were introduced into the mathematical literature by Premet in [16]. We
recall that a finite W -algebra U(g, e) is a certain finitely generated algebra associated to a
reductive Lie algebra g and a nilpotent element e ∈ g; it is a quantization of the Slodowy
slice through the nilpotent orbit of e. Recently, there has been much research activity in
the representation theory of U(g, e); see for example [2, 3, 9–12, 17–19]. However, the
fundamental question of the existence of a 1-dimensional representation of U(g, e) remains open
in general. Indeed, it was only recently proved by Premet in [18, Corollary 1.1] that U(g, e)
always has finite-dimensional representations; alternative proofs Losev [10, Theorem 1.2.2(viii)]
and Ginzburg [9, Theorem 4.5.2]. It was conjectured by Premet in [17, Conjecture 3.1] that
there is always a 1-dimensional U(g, e)-module; this conjecture has now been verified for g of
classical type by Losev in [10, Theorem 1.2.3]. Further, the conjecture was reduced to the case
where e is rigid by Premet in [19, Theorem 1.1]; we recall that e is rigid if the nilpotent orbit
of e cannot be obtained through Lusztig–Spaltenstein induction [14] from a nilpotent orbit in
a Levi subalgebra of g.

In this article we consider Premet’s conjecture in the case where g is of exceptional type:
our main result is the following theorem.

Theorem 1.1. Let g be a simple Lie algebra over C of type G2, F4, E6 or E7, and let e ∈ g
be nilpotent. Then there exists a 1-dimensional representation of the finite W -algebra U(g, e).

Our approach is computational and based on the Poincaré–Birkhoff–Witt (PBW) theorem for
finite W -algebras; see [16, Theorem 4.6] along with the above mentioned theorem of Premet
reducing to the case where e is rigid. We have developed an algorithm that determines an
explicit presentation of a given finite W -algebra which we have used for the cases g of type
G2, F4, E6 or E7 and e rigid. From these presentations, it is straightforward to determine all
1-dimensional representations of U(g, e); in fact, the number of 1-dimensional representations
is either one or two, see Table 1. We remark that it is possible to determine the 1-dimensional
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representations without calculating a full presentation, which we have done in a number of
cases when g is of type E7; see Proposition 3.5 and § 5 for more details.

Our results taken with the work of Losev and Premet mean that Premet’s conjecture is
reduced to the cases where g is of type E8 and e lies in a rigid orbit of g. Our methods allow us
to prove the existence of 1-dimensional U(g, e)-modules for some rigid e in the case where g is
of type E8; at present it is computationally unfeasible to deal with those e with large height,
see Remark 5.1 for more details. Also, after this paper was written, Losev announced in [13]
an alternative approach to finding the 1-dimensional representations of U(g, e) based on the
highest weight theory from [2].

We now discuss how results of Premet provide an application of Theorem 1.1 to the
representation theory of modular Lie algebras, which we state in Theorem 1.2. It is necessary
to introduce some notation.

Let G be a simple simply connected algebraic group over C. Let g be the Lie algebra of G and
let gZ be a Chevalley Z-form of g. Let p be a prime that is assumed to be good for G and let k
be the algebraic closure of Fp. Let gk = gZ ⊗ k and let ξ ∈ g∗k. The reduced enveloping algebra
corresponding to ξ is denoted Uξ(gk). We write dξ for half the dimension of the coadjoint orbit
of ξ.

Given a nilpotent orbit in g it is possible to choose a representative e ∈ gZ such that we can
find an sl2-triple (e, h, f) contained in gZ, see § 4.2. Let κ be the Killing form on g and assume
that p is such that it does not divide κ(e, f). Then we can normalize κ to obtain the bilinear
form (·, ·) with (e, f) = 1, which can be viewed as a bilinear form on both g and gk. We may
view e both as an element of g and gk, and therefore view χ defined by χ(x) = (x, e) both as
an element of g∗ and g∗k.

The Kac–Weisfeiler conjecture, proved by Premet in [15], says that the dimension of a
Uξ(gk)-module is divisible by pdξ . The existence of a Uξ(gk)-module with dimension equal to pdξ
is an open problem; see [15, § 4.4]. Thanks to the Kac–Weisfeiler theorem, or its generalization
[6, Theorem 3.2] due to Friedlander and Parshall, there is a reduction to the case of nilpotent ξ.

In [19, Theorem 1.4], Premet proves that the existence of a 1-dimensional U(g, e)-module
implies existence of a representation of Uχ(gk) of dimension pdχ for p sufficiently large.
As a consequence of Premet’s and Losev’s results, the existence of a minimal dimension
representation of Uξ(gk) is now proved for g of classical type and p sufficiently large; see
[19, Corollary 1.1]. We can deduce the following from Theorem 1.1.

Theorem 1.2. Let gk be a simple Lie algebra over k of type G2, F4, E6 or E7. Assume
that p� 0 and let ξ ∈ g∗k. Then the reduced enveloping algebra Uξ(gk) has a simple module of
dimension pdξ , where dξ is half the dimension of the coadjoint orbit of ξ.

The restriction in [19, Theorem 1.4] leading to the condition that p is sufficiently large stems
from a number of rationality assumptions in the construction of U(g, e) made in [19, Section 2];
in particular, that U(g, e) is defined over Z[d−1], but only for d a sufficiently large integer. As
discussed in [19, Remark 2.2], this bound can be lowered by knowledge of explicit presentations
of U(g, e). In the cases where g is of type G2, F4 and E6, we are able to give an explicit bound,
which just requires p to be good and not to divide all κ(e0, f0), where (e0, h0, f0) is an sl2-triple
in a Levi subalgebra of g in which e0 is rigid; see Remark 5.2 for more details.

Next we discuss how Theorem 1.1 implies existence of completely prime primitive ideals,
through Skryabin’s equivalence and a result of Losev. This is stated in Theorem 1.3 below.

We recall that Skryabin’s equivalence gives an equivalence of categories between the category
of U(g, e)-modules and a certain category of generalized Whittaker modules; see [20] or [7,
Theorem 6.1]. For a U(g, e)-module M , we write M̂ for the Whittaker U(g)-module obtained
through this equivalence, and IM for the annihilator of M̂ in U(g). Premet proved in [16,
Theorem 3.1] that the associated variety VA(IM ) of IM contains the coadjoint orbit G · χ
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and that VA(IM ) =G · χ if and only if M is finite-dimensional. Further, it was conjectured in
[17, Conjecture 3.1] that if M is 1-dimensional, then IM is completely prime; this conjecture
was verified by Losev in [10, Proposition 3.4.6]. Therefore, we can deduce the following from
Theorem 1.1.

Theorem 1.3. Let g be a simple Lie algebra over C of type G2, F4, E6 or E7. Let e ∈ g
be nilpotent and let χ= (e, ·) ∈ g∗. Then there is a completely prime primitive ideal of U(g)
whose associated variety is G · χ.

We give a brief outline of the structure of the paper. First we recall the definition of the finite
W -algebra U(g, e) and state a version of the PBW theorem for U(g, e) in § 2. Next, in § 3 we
use the PBW theorem to give presentations of U(g, e) and show, in Theorem 3.2, that some
of the relations are superfluous. Our algorithm is explained in § 4 and we discuss the results
obtained from it in § 5. Finally, in § 6 we present an example of how the algorithm works for
g of type G2 and e a short root vector.

2. Preliminaries

We begin by giving the notation that we require, and recalling the definition of the finite
W -algebra U(g, e). There are at present three equivalent definitions of finite W -algebras in the
literature. Here we only consider the Whittaker model definition introduced in [16]: this was
proved to be equivalent to the definition via BRST cohomology in [4] and to the definition via
Fedosov quantization in [10, Corollary 3.3.3].

2.1. Notation

Let G be a simple simply connected algebraic group over C and let g be the Lie algebra
of g. Let e ∈ g be a nilpotent element and let (e, h, f) be an sl2-triple in g. Let (· , ·)
be a non-degenerate symmetric invariant bilinear form on g normalized so that (e, f) = 1.
Define χ ∈ g∗ by χ(x) = (e, x) for x ∈ g. The Dynkin grading g =

⊕
j∈Z g(j) of g is defined by

g(j) = {x ∈ g | [h, x] = jx}. We write ge for the centralizer of e in g.
Let te be a Cartan subalgebra of ge ∩ g(0), and let t be a Cartan subalgebra of g containing

te. We write Φ⊆ t∗ for the root system of g with respect to t and Π for a set of simple
roots. Recall that the restricted root system Φe is defined by Φe = {α|te | α ∈ Φ} ⊆ (te)∗; see [1,
Sections 2 and 3]. We have the te-weight space decomposition g = g0 ⊕

⊕
α∈Φe gα of g, where

gα = {x ∈ g | [t, x] = α(t)x for all t ∈ te} for α ∈ Φe ∪ {0}.

2.2. Definition of U(g, e)

For x, y ∈ g(−1), let 〈x, y〉= χ([x, y]), so that 〈· , ·〉 defines a non-degenerate alternating bilinear
form on g(−1). Choose a Lagrangian subspace g(−1)0 of g(−1) with respect to 〈· , ·〉 and define
the nilpotent subalgebra

m = g(−1)0 ⊕
⊕
i6−2

g(i)

of g. It is straightforward to check that χ restricts to a character of m, so we can consider
the 1-dimensional U(m)-module Cχ and the induced module Qχ = U(g)⊗U(m) Cχ. The finite
W -algebra associated to g and e is defined to be the endomorphism algebra

U(g, e) = EndU(g)(Qχ)op.

Let Iχ be the left ideal of U(g) generated by all x− χ(x) for x ∈m. The PBW theorem for
U(g) implies that Qχ identifies with U(g)/Iχ as a vector space. Through this identification we
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get an isomorphism between U(g, e) and the space of m-invariants of U(g)/Iχ:

{u+ Iχ ∈ U(g)/Iχ | [x, u] ∈ Iχ for all x ∈m}.

We use these identifications throughout the sequel.
Thanks to [17, Lemma 2.4], there is an embedding te ↪→ U(g, e). We identify te with its

image in U(g, e), so we have an adjoint action of te on U(g, e). The weights of this action lie
in ZΦe ⊆ (te)∗.

2.3. The PBW theorem for U(g, e)

In Theorem 2.1 below we state a version of the PBW theorem for U(g, e). To state this explicitly
we need to pick a suitable basis of g.

Define the parabolic subalgebra p =
⊕

j>0 g(j) of g; note that we have the inclusion ge ⊆ p.
Let x1, . . . , xr be a basis of ge and extend this to a basis x1, . . . , xm of p; we assume that
xi = e for some i ∈ {1, . . . , r}. The form 〈· , ·〉 is te-invariant, that is 〈[x, t], y〉= 〈x, [t, y]〉
for x, y ∈ g(−1) and t ∈ te, so we may choose a Witt basis z1, . . . , zs, z

∗
1 , . . . , z

∗
s of g(−1)

consisting of te-weight vectors. We choose g(−1)0 to have basis z∗1 , . . . , z
∗
s , and set xm+i = zi

and xm+s+i = z∗i for i= 1, . . . , s. Next we choose a basis xm+2s+1, . . . , xm+2s+s′ of g(−2) as
follows. It is clear that ker χ|g(−2) is te-stable, so we choose xm+2s+1, . . . , xm+2s+s′−1 to be
te-weight vectors forming a basis of ker χ|g(−2) and xm+2s+s′ = f . Finally, we extend to a basis
x1, . . . , xn of all of g.

It is clear that we can choose all of the elements of our basis to be weight vectors for te and
eigenvectors for ad h. We let ni ∈ Z and βi ∈ Φe be such that xi ∈ g(ni) ∩ gβi for i= 1, . . . , n.

Let {eα | α ∈ Φ} ∪ {hα | α ∈Π} be a Chevalley basis of g. Let gZ be the corresponding Z-form
on g and let gQ = gZ ⊗Z Q. It is well-known that the G-orbit of e intersects gZ, so we can assume
that e ∈ gZ. Then it is easy to see that we can choose our basis elements x1, . . . , xn ∈ gQ.

From the PBW theorem for U(g) we see that a basis of Qχ is given by the cosets
xa + Iχ = xa1

1 . . . x
am+s
m+s + Iχ for a = (a1, . . . , am+s) ∈ Zm+s

>0 . For a ∈ Zm+s
>0 , we define

|a|=
m+s∑
i=1

ai and |a|e =
m+s∑
i=1

ai(ni + 2).

This allows us to define the Kazhdan filtration on Qχ by declaring that xa + Iχ has filtered
degree |a|e. This restricts to the Kazhdan filtration on U(g, e) and we write FiU(g, e) for the
ith filtered part of the Kazhdan filtration on U(g, e). Given an element u ∈ U(g, e), we say that
u has Kazhdan degree i to mean u ∈ FiU(g, e), not necessarily assuming that i is minimal.

The PBW theorem for U(g, e) is sometimes stated in terms of the associated graded algebra
gr U(g, e) for the Kazhdan filtration; see for example [7, Theorem 4.1]. For our purposes the
following more explicit version is more convenient. The statement combines [15, Theorem 4.1]
and [17, Lemma 2.2]. The uniqueness statements are not given in the references, but they are
straightforward to deduce.

Theorem 2.1. Let x1, . . . , xn be a basis of g as above. Then the following hold.
(1) There is a set of generators for U(g, e) given by

Θi =
(
xi +

∑
|a|e6ni+2

λiax
a

)
+ Iχ,

for i= 1, . . . , r, where the coefficients λia ∈Q are zero when ar+1 = . . .= am+s = 0, or if
|a|e = ni + 2 and |a|= 1. The coefficients λia are uniquely determined by the choice of ordered
basis x1, . . . , xn of g and the above vanishing conditions.

(2) The Θi are weight vectors for te with weight βi.
(3) The monomials Θa = Θa1

1 . . .Θar
r with a ∈ Zr>0 form a PBW basis of U(g, e).
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(4) We have [Θi,Θj ] ∈ Fni+nj+2U(g, e). Moreover, if [xi, xj ] =
∑r
k=1 µ

k
ijxk in ge, then

[Θi,Θj ] =
r∑

k=1

µkijΘk + qij(Θ1, . . . ,Θr) mod Fni+njU(g, e),

where qij is a polynomial with coefficients in Q, and zero constant and linear terms.

3. Removing relations

Theorem 2.1 allows one to determine a presentation of U(g, e), as in [18, Lemma 4.1], from
which one can work out all 1-dimensional representations of U(g, e). However, this presentation
involves a large number of commutator relations, so is rather laborious to calculate. In
Theorem 3.2 we show that fewer relations suffice to obtain a presentation of U(g, e). Further,
in Proposition 3.5 we show that if we are only interested in determining the 1-dimensional
representations of U(g, e), then we need to consider even fewer relations.

In the following lemma, which is required for the proof of Theorem 3.2, we use the notation
introduced in § 2.3 and Theorem 2.1.

Lemma 3.1. Suppose that ge is generated by x1, . . . , xb for b6 r. Then U(g, e) is generated
by Θ1, . . . ,Θb.

Proof. We may assume that xb+1, . . . , xr are chosen so that nb+1 6 . . .6 nr. The
assumption that x1, . . . , xb generate ge implies that there exists i, j 6 b such that [xi, xj ]
is in g(nb+1), but does not lie in the subspace of ge spanned by x1, . . . , xb. Now we can assume
that we picked our basis of ge with xb+1 = [xi, xj ]. Similar arguments show that for k > b we
can assume that

xk =
∑
i,j<k

νkij [xi, xj ],

where νkij ∈Q.
To prove the lemma, it suffices to show that Θi lies in the subalgebra W of U(g, e) generated

by Θ1, . . . ,Θb for i= b+ 1, . . . , r. Suppose that we have shown that Θb+1, . . . ,Θk−1 ∈W ; in
particular, this means that Fnk+1U(g, e)⊆W . From Theorem 2.1(4) we see that∑

i,j<k

νkij [Θi,Θj ] = Θk +Gk(Θ1, . . . ,Θk−1) +Hk(Θ1, . . . ,Θk−1),

where Gk and Hk are a polynomials over Q such that Gk(Θ1, . . . ,Θk−1) ∈ Fnk+2U(g, e),
Hk(Θ1, . . . ,Θk−1) ∈ FnkU(g, e), and Gk has zero constant and linear terms. Therefore,
Gk(Θ1, . . . ,Θk−1) can be written as a sum of products of elements of Fnk+1U(g, e) and
Hk(Θ1, . . . ,Θk−1) ∈ Fnk+1U(g, e). Also, each commutator [Θi,Θj ] ∈W , so we have Θk ∈W ,
as required.

Although Lemma 3.1 shows that we can get by with fewer generators, we in fact use it to
show that some relations are not needed for a presentation of U(g, e) in Theorem 3.2. The
case where b= r in Theorem 3.2 is [18, Lemma 4.1]. Throughout the proof and statement of
Theorem 3.2 we use (Θ) as a shorthand for (Θ1, . . . ,Θr).

Theorem 3.2. Suppose that ge is generated by x1, . . . , xb for b6 r. Then U(g, e) is
generated by Θ1, . . . ,Θr subject only to the relations

[Θi,Θj ] = Fij(Θ1, . . . ,Θr) = Fij(Θ),
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for i= 1, . . . , b and j = 1, . . . , r, where Fij is a polynomial with coefficients in Q, and
Fij(Θ) ∈ Fni+nj+2U(g, e).

Proof. By Theorem 2.1, the commutator [Θi,Θj ] is of the form Fij(Θ), where Fij is a
polynomial satisfying the stated conditions, for i, j = 1, . . . , r. Thanks to [18, Lemma 4.1],
U(g, e) is generated by the Θi subject only to these commutator relations. Therefore, to prove
the theorem it suffices to show that the polynomials Fkl(Θ) for k, l = b+ 1, . . . , r can be
determined from the polynomials Fij(Θ) for i= 1, . . . , b and j = 1, . . . , r.

As in the proof of Lemma 3.1, we assume that xb+1, . . . , xr are chosen so that nb+1 6 . . .6 nr
and that

Θk =
∑
i,j<k

νkij [Θi,Θj ]−Gk(Θ)−Hk(Θ),

for k > b.
Consider [Θk,Θl] for some k, l ∈ {b+ 1, . . . , r}. We assume inductively that we have

calculated all Fk′l′ for nk′ + nl′ < nk + nl in terms of the Fij for i= 1, . . . , b and j = 1, . . . , r.
We have

[Θk,Θl] =
∑
i,j<k

νkij [[Θi,Θj ],Θl]− [Gk(Θ),Θl]− [Hk(Θ),Θl].

Consider a term of the form [[Θi,Θj ],Θl]. This commutator has Kazhdan degree ni + nj +
nl + 6 (note that nk = ni + nj). We can apply the Jacobi identity to obtain

[[Θi,Θj ],Θl] = [[Θi,Θl],Θj ] + [Θi, [Θj ,Θl]]
= [Fil(Θ),Θj ] + [Θi, Fjl(Θ)].

By induction, we can determine Fil(Θ) and Fjl(Θ) and they both have Kazhdan degree
nk + nl + 4. Now we can apply the Leibniz rule and inductive hypothesis to calculate
[Fil(Θ),Θj ] and [Θi, Fjl(Θ)] as polynomials in Θ of Kazhdan degree nk + nl + 2.

Next consider the term [Gk(Θ),Θl], this has Kazhdan degree nk + nl + 4, and Gk(Θ) has
zero linear term. Therefore, we can apply the Leibniz rule and the inductive hypothesis to
calculate [Gk(Θ),Θl] as a polynomial in Θ of Kazhdan degree nk + nl + 2.

Finally, consider the term [Hk(Θ),Θl]. Since Hk(Θ) has Kazhdan degree nk, this can be
calculated as a polynomial in Θ of Kazhdan degree nk + nl using the Leibniz rule and inductive
hypothesis.

Thus we have determined [Θk,Θl] = Fkl(Θ) as a polynomial of Kazhdan degree nk + nl + 2,
as required.

We next discuss how to find all 1-dimensional representations of U(g, e) from a presentation
as in Theorem 3.2. From now we fix b such that x1, . . . , xb generate ge. Let ρ : U(g, e)→ C
be a 1-dimensional representation of U(g, e). Then ρ is determined by the values ρ(Θi)
for i= 1, . . . , r. These must satisfy the relations [ρ(Θi), ρ(Θj)] = Fij(ρ(Θ1), . . . , ρ(Θr)) for
i= 1, . . . , b and j = 1, . . . , r. We thus see that finding 1-dimensional representations of U(g, e)
is equivalent to finding solutions to the polynomial equations

Fij(t1, . . . , tr) = 0 for i= 1, . . . , b and j = 1, . . . , r, (3.3)

with t1, . . . , tr ∈ C.
The following lemma and proposition show that the values of certain ti in solutions to (3.3)

are forced to be zero, which means that we do not have to consider all the equations in (3.3) to
work out all 1-dimensional representations of U(g, e). This in turn means that if we only wish
to determine the 1-dimensional representations of U(g, e), then it is not necessary to calculate
all the commutator relations from Theorem 3.2.
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Lemma 3.4. Let ρ : U(g, e)→ C be a representation of U(g, e). Then ρ(Θi) = 0 for all
i= 1, . . . , r such that βi 6= 0.

Proof. As explained in § 2.2, there is an embedding te ↪→ U(g, e) and we identify te with
its image in U(g, e). Let i ∈ {1, . . . , r} such that βi 6= 0 and let t ∈ te with βi(t) 6= 0. Then

βi(t)ρ(Θi) = ρ(βi(t)Θi) = ρ([t,Θi]) = [ρ(t), ρ(Θi)] = 0.

Thus ρ(Θi) = 0, as required.

The next proposition means that in order to determine the 1-dimensional representations of
U(g, e), we only need to know the commutators [Θi,Θj ], when βj =−βi. We need to introduce
some notation in order to state the proposition.

Let I = {i ∈ {1, . . . , r} | βi = 0} and let J = {(i, j) ∈ {1, . . . , b} × {1, . . . , r} | βj =−βi}.
Let Fij be the polynomials from Theorem 3.2 and for (j, k) ∈ J define F̄jk ∈Q[Ti | i ∈ I] by
F̄jk(Ti | i ∈ I) = Fjk(δ1T1, . . . , δrTr), where δi = 1 if i ∈ I and δi = 0 if i /∈ I.

Proposition 3.5. The 1-dimensional representations ρ : U(g, e)→ C are in bijective
correspondence with solutions (ti | i ∈ I) to the polynomial equations F̄jk(ti | i ∈ I) = 0 for
(j, k) ∈ J . The solution (ti | i ∈ I) corresponds to the 1-dimensional representation ρ determined
by ρ(Θi) = ti for i ∈ I and ρ(Θi) = 0 if i /∈ I.

Proof. As discussed above, the 1-dimensional representations of U(g, e) are given by
solutions to (3.3). By Lemma 3.4, we must have ti = 0 for i /∈ I in any solution to these
equations. By considering the te-weights, we see that each monomial in a polynomial Fjk for
(j, k) /∈ J must contain a Ti for some i /∈ I. The result follows from these two observations.

4. The algorithm

In this section we describe our algorithm for calculating a presentation of U(g, e) as given
in Theorem 3.2. We work with a Chevalley Z-form of g, and end up with a presentation of
U(g, e) that is defined over Z[d−1], where d is a product of certain primes. We wish to keep d
as small as possible, but at some points it is necessary to allow divisions by certain primes, as
in the construction in [19, Section 2]. Keeping d small allows us to control the bound on p in
Theorem 1.2; see Remark 5.2. We keep track of how d ‘grows’ throughout the algorithm and
begin with d being the product of bad primes for g.

4.1. Input

The input to our algorithm is the root system Φ of a simple Lie algebra g over C along with
a set of simple roots Π and the labelled Dynkin diagram D of a nilpotent orbit in g. We write
dα for the label of α ∈Π in D.

From this data we can determine the Chevalley Z-form gZ of g with Chevalley basis
{hα | α ∈Π} ∪ {eα | α ∈ Φ}. The Cartan subalgebra t has basis {hα | α ∈Π}. We define
gZ[d−1] = gZ ⊗Z Z[d−1]. The labelled Dynkin diagram D determines a decomposition Φ =⋃
j∈Z Φ(j), where Φ(j) = {

∑
α∈Π aαα ∈ Φ |

∑
α∈Π aαdα = j}; this in turn gives the grading

g =
⊕

j∈Z g(j), where g(j) is spanned by the eα with α ∈ Φ(j) for j 6= 0, and g(0) is spanned
by t and the eα with α ∈ Φ(0).

4.2. Finding the sl2-triple

We wish to determine the sl2-triple (e, h, f). The labelled Dynkin diagram D uniquely
determines h ∈ t as follows: we may write h=

∑
α∈Π λαhα, and the λα are uniquely determined
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by the conditions
∑
α∈Π λαβ(hα) = dβ for all β ∈Π. In fact, since the eigenvalues of h on each

fundamental irreducible representation of g are integers, we have λα ∈ Z>0 for all α. We move on
to determining e. It is well-known that we may choose e to be of the form e=

∑
α∈Γ eα ∈ g(2),

where Γ is a certain linearly independent subset of Φ(2). Now there is a unique f ∈ g such that
(e, h, f) is an sl2-triple. We can find f by writing f =

∑
α∈Φ(2) µαe−α, then solving for the µα

in [e, f ] = h. One can show that it is always possible to choose e so that we get f ∈ gZ: to do
this one reduces inductively to the case where e does not lie in any proper subalgebra of g
containing t, and makes an explicit calculation in the remaining cases.

4.3. Determining the bilinear form

Now that we have our sl2-triple we can determine our bilinear form (· , ·) on g. We obtain
this by rescaling the Killing form κ so that (e, f) = 1. In general it will not be the case that
(x, y) ∈ Z for x, y ∈ gZ; we require that (· , ·) : gZ[d−1] × gZ[d−1]→ Z[d−1]. Thus we may increase
d here to ensure that κ(e, f) is invertible in Z[d−1]. With this choice of bilinear form we have
that χ ∈ g∗ defined by χ(x) = (x, e) is such that χ : gZ[d−1]→ Z[d−1].

4.4. Determining the basis

We next wish to find a basis of g as described in § 2.3.
Determining a basis x1, . . . , xr of ge is straightforward, using the Chevalley commutator

relations, though we may need to increase d here so that it is a Z[d−1]-basis of ge ∩ gZ[d−1].
We order this basis so that ge is generated by x1, . . . , xb and this generating set is chosen so
that it is small and convenient to work with. In particular, we want x1, . . . , xb to generate
ge ∩ gZ[d−1] over Z[d−1], so there is a possibility that we may have to increase d further.

We extend this to get a basis x1, . . . , xm of p. We may need to increase d so that x1, . . . , xm
form a Z[d−1]-basis of pZ[d−1] = gZ[d−1] ∩ p.

Next we move on to determine the basis xm+1, . . . , xm+2s of g(−1). We can choose
xm+1, . . . , xm+s by picking a set of positive roots Φe+ in Φe. Then we can readily take
{xm+1, . . . , xm+s}= {eα | α ∈ Φ(−1) and α|te ∈ Φe+}. We take each xm+s+i to be a linear
combination (over Q) of {eα | α ∈ Φ(−1) and α|te ∈ −Φe+} so that they are uniquely determined
subject to xm+1, . . . , xm+2s being a Witt basis of g(−1) with respect to 〈· , ·〉. We may have
to increase d so that all the coefficients that occur in these linear combinations lie in Z[d−1].

To determine our basis xm+2s+1, . . . , xm+2s+s′ of g(−2), we first choose a basis of the kernel
of χ restricted to g(−2) to consist of the e−α for α ∈ Φ(2)\Γ, and some elements of the form
e−α + λe−β for α, β ∈ Γ and λ ∈Q. We extend to a basis of g(−2) by adding f . We may
increase d here to ensure that λ lies in Z[d−1], thus to ensure that we obtain a Z[d−1]-basis of
gZ[d−1] ∩ g(−2).

Finally, we extend to a basis x1, . . . , xn of all of g by taking the xi for i=m+2s+s′+1, . . . , n
to be the Chevalley basis elements eα for α ∈

⋃
j6−3 Φ(j).

Remark 4.1. Although there are many places above where it seems necessary to increase
d, the cases that we have considered suggest that it suffices to take d to be the product of bad
primes for g along with those dividing κ(e, f). For example, it seems likely that it is always
possible to choose x1, . . . , xm so that x1, . . . , xr is a Z-basis of gZ ∩ ge, and x1, . . . , xm is a
Z-basis of gZ ∩ p.

4.5. Finding generators

We wish to determine expressions for the Θi in the form given in Theorem 2.1. First we list
the monomials xa = xa1

1 . . . x
am+s
m+s for which the coefficient λia may be non-zero: according

to Theorem 2.1 these are those satisfying
∑m+s
j=1 ajβj = βi and

∑m+s
j=1 aj(nj + 2) 6 ni + 2,
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and excluding those for which either ar+1 = . . .= am+s = 0 (that is terms in U(ge)), or∑m+s
j=1 aj(nj + 2) = ni + 2 and |a|= 1 (that is single terms of equal Kazhdan degree to the

leading term xi).
We choose K ⊆ {m+ s+ 1, . . . , n} so that the nilpotent subalgebra m is generated by
{xj | j ∈K}; we want to pick K to be small to reduce the amount of computation required. For
each xj with j ∈K, we require [xj ,Θi] ∈ Iχ for i= 1, . . . , r. This condition can be calculated
using the Chevalley commutator relations and gives rise to a set of linear equations for the
coefficients λia. Solving these equations yields a unique set of coefficients λia for Θi.

In some cases, when Θi has large Kazhdan degree, the number of linear equations that we
are required to solve is too large for the computation to be feasible. In these cases we try to
construct Θi in terms of the Θj for j < i. We chose our basis of g so that ge is generated by
x1, . . . , xb, which allows us to make this construction if i > b, where we follow the idea of the
proof of Lemma 3.1. In practice, we find an element in U(g, e) in terms of the Θj with j < i
with leading term xi and then subtract monomials in the Θj for j < i until the conditions of
Theorem 2.1 are met.

The expressions for the generators Θi involve coefficients λia ∈Q. At this point we may need
to increase d to ensure that all these coefficients lie in Z[d−1].

4.6. Finding relations

In order to determine the presentation of U(g, e) from Theorem 3.2, we now just have to find
the relations. So we have to find polynomials Fij for i= 1, . . . , b and j = 1, . . . , r. To find Fij
we first evaluate [Θi,Θj ] as an element of U(g), that is we take our expressions Θi = ui + Iχ
and Θj = uj + Iχ with ui, uj ∈ U(g) and calculate [ui, uj ] + Iχ. This determines an expression
of the form

[Θi,Θj ] =
∑

|a|e6ni+nj+2

µi,ja xa + Iχ,

with µi,ja ∈Q. Amongst the a with µi,ja 6= 0 and |a|e maximal, there must be one with ak = 0
for all k > r. Let a1, . . . , ac be all such a. Then we consider

[Θi,Θj ]−
c∑

k=1

µi,jak
Θak + Iχ.

This is an element of U(g, e) and by construction it must have lower Kazhdan degree than
[Θi,Θj ]. We continue by subtracting terms of maximal Kazhdan degree and after a finite
number of steps we obtain the required polynomial Fij .

In order to have our presentation defined over Z[d−1], we may have to increase d so that all
coefficients of the polynomials Fij lie in Z[d−1].

4.7. Determining 1-dimensional representations

Once we have the presentation of U(g, e), we can determine all 1-dimensional representations
of U(g, e) by solving the equations (3.3) or just those from Proposition 3.5. This is achieved
using standard techniques for solving polynomial equations.

4.8. Implementation in GAP

We have implemented this algorithm in the computer algebra language GAP [8] as explained
below.

The Lie algebra g is created in GAP by taking the inbuilt Chevalley basis of the simple Lie
algebra over Q and constructing the required basis as explained in § 4.4. By taking the Lie prod-
ucts in GAP of these elements, we create a table of structure constants from which the
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function LieAlgebraByStructureConstants returns g with the required ordered basis, and the
universal enveloping algebra U(g) is created using the function UniversalEnvelopingAlgebra.
This allows us to make all of the calculations required in the algorithm.

It should be noted that for calculations and operations in the universal enveloping algebra
U(g) involving elements with many terms GAP functions can be particularly slow and require
a lot of memory. Such calculations can be speeded up by storing elements of U(g) as elements
of a particular polynomial ring rather than as elements of the universal enveloping algebra.

5. Results

We have used our algorithm to calculate presentations of U(g, e) for all cases where g is of
type G2, F4 or E6 and e ∈ g is rigid nilpotent. From these presentations we have determined all
1-dimensional representations of U(g, e). For g of type E7 and e rigid nilpotent, we have
calculated all generators of U(g, e) and enough relations to determine all 1-dimensional
representations of U(g, e) using Proposition 3.5.

In these cases we found that there are one or two 1-dimensional representations of U(g, e),
as shown in Table 1. Here we give the Bala–Carter label of the rigid nilpotent orbits in g; the
column indicates whether the number of 1-dimensional representations of U(g, e) is one or two.
A list of rigid orbits can be found in [21, p. 173].

Remark 5.1. For some cases where g is of type E8 and e ∈ g is rigid nilpotent we are
able to show that there exist 1-dimensional representations of U(g, e). We have checked this
when e has Bala–Carter label A1, 2A1, 3A1, 4A1, A2 +A1, A2 + 2A1, A2 + 3A1, 2A2 +A1

and A3 +A1, where in each but the last case there is just one 1-dimensional representation
while in the last instance there are two such representations. At present it is computationally
unfeasible to deal with the remaining eight rigid nilpotent e ∈ g.

Recall that the height of e is defined to be the maximal j for which g(j) 6= 0. When the height
of e is large then there are generators Θi of U(g, e) with large Kazhdan degree. Consequently,
the expression for Θi given in Theorem 2.1 can be very complicated. This means that it is at
present unfeasible to determine all generators, and to calculate the required commutators.

Remark 5.2. We discuss some rationality issues related to Theorem 1.2. In our algorithm
we keep track of a positive integer d such that U(g, e) is defined over Z[d−1]. For g of type G2,
F4 or E6 and e rigid, where we have calculated a full presentation of U(g, e), we see that we
can take d to be the product of the bad primes for g along with those dividing κ(e, f). This
means that the reduction modulo p argument from [19, Section 2] goes through for all good p
not dividing κ(e, f). This allows one to obtain an explicit lower bound M on p for Theorem 1.2
for g of type G2, F4 or E6, that is so that the conclusions of the theorem hold for all p >M .
This bound M is determined by considering all pairs (l, e0), where l is a Levi subalgebra of
g and e0 ∈ l is rigid nilpotent, then taking M to be the maximum prime dividing κl(e0, f0),
where (e0, h0, f0) is an sl2-triple in l and κl is the Killing form on l. To ensure that this is
the correct bound it was necessary to calculate presentations of the finite W -algebras U(l, e0)
associated to all such pairs (l, e0). Explicitly, for G2 we obtain M = 3, and for F4 and E6 we

Table 1. The number of 1-dimensional representations of U(g, e) for e rigid.

g 1 2

G2 A1 Ã1

F4 A1, Ã1, A1 + Ã1, A2 + Ã1 Ã2 +A1

E6 A1, 3A1, 2A2 +A1

E7 A1, 2A1, (3A1)′, 4A1, A2 + 2A1, 2A2 +A1 (A3 +A1)′
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obtain M = 5. We have to omit the prime 5 for g of type F4 or E6 as it divides κ(e0, f0), where
e0 is a certain rigid nilpotent element for l of type B3 or D5 respectively.

For the cases where g is of type E7 it is not possible to be so explicit about a bound. We
have not calculated all the relations, and we cannot rule out the possibility that the other
relations will lead to an increase in d. In all the relations that we have calculated the only
primes occurring in denominators of coefficients are bad primes for g, so it seems likely that
this is the case for all relations. If this were true, then we would get an analogous bound as for
g in the previous paragraph.

6. An example

We illustrate our algorithm with an explicit example where g is of type G2 and e is a short
root vector.

Let g be the simple Lie algebra of type G2. Then GAP gives the Chevalley basis b1, . . . , b14,
where b1, . . . , b6 denote the positive root vectors, b7, . . . , b12 denote the negative root vectors,
and the 2-dimensional Cartan subalgebra is generated by b13 = [b1, b7] and b14 = [b2, b8]. We
divide the Killing form by 24 to obtain our bilinear form (· , ·).

An sl2-triple for the orbit is determined to be e= b4, h= 2b13 + 3b14 and f = b10. We
construct our basis x1, . . . , x14 in terms of the Chevalley basis b1, . . . , b14 as described in
§ 4.4. In Table 2 we give this basis and show which parts of the basis form bases of ge, p
and m, respectively. We also give the values of ni and βi; as te = Cx6 is 1-dimensional, the
weight βi can be identified with the integer such that [x6, xi] = βixi. We note that we can pick
x1, . . . , xm to be multiples of elements of the Chevalley basis; this is not the case in general.
We observe that our basis is a Z[ 1

2 ]-basis of gZ[ 12 ]; however, we only view it as a Z[ 1
6 ]-basis of

gZ[ 16 ] as we have already divided by 3 to make (e, f) = 1 (also 3 is a bad prime for G2). We
note that there is no small generating set of ge, so we take b= r = 6; also there is no small
generating set of m so we take K from § 4.5 to be {11, 12, 13, 14}.

We calculate Θi as explained in § 4.5. We illustrate the procedure with the calculation
of Θ1. We have that Θ1 is of the form Θ1 = (x1 +

∑
λ1
ax

a) + Iχ and satisfies the conditions of
Theorem 2.1. We first determine for which a the coefficient λ1

a can be non-zero and denote
this set by A1; the elements of A1 correspond to the monomials x4x6x10, x4x7, x4x9x10, x4x10,
x6x8, x8 and x8x9. We next calculate [xi, x1 +

∑
a∈A1

λ1
ax

a] in U(g) for i= 11, . . . , 14, viewing
the λ1

a as indeterminates. Then we project into Qχ = U(g)/Iχ to obtain a set of linear equations
to solve for the coefficients λ1

a. These equations have a unique solution which determines the
value of Θ1. We determine Θi for i= 2, . . . , 6 in the same way and obtain the complete list of
generators of U(g, e):

Θ1 = (x1 + 3x4x6x10 + x4x7 + 2x4x9x10 − 4x4x10

+ 2x6x8 − 4x8 + x8x9) + Iχ

Θ2 = (x2 + 1
2x3x10 − 3

2x4x5x10 + 1
2x4x

3
10 − x5x8 − x6x7

− 1
2x6x9x10 + x6x10 + 2x7 − x7x9 + 1

2x8x
2
10

+ 5
2x9x10 − 1

2x
2
9x10 − 3x10) + Iχ

Table 2. Basis of g of type G2.

p m

ge

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

b6 b5 b4 b2 b8 b14 b1 b3 b13 b9
1
2
b7 b10 b11 b12

ni 3 3 2 0 0 0 1 1 0 −1 −1 −2 −3 −3
βi 1 −1 0 2 −2 0 −1 1 0 −1 1 0 1 −1
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Θ3 = (x3 + 3
4x4x

2
10 + 3x6x9 + x8x10 − 5x9 + x2

9) + Iχ

Θ4 = x4 + Iχ

Θ5 = (x5 − 1
4x

2
10) + Iχ

Θ6 = x6 + Iχ.

Next we calculate the relations. We illustrate this by calculating the polynomial F3,5 such
that [Θ3,Θ5] = F3,5(Θ1, . . . ,Θ6). We begin by taking the expressions for Θ3 and Θ5 above
and calculating

[Θ3,Θ5] = (9x5x6 − 9
4x6x

2
10 − 51

2 x5 + 15
8 x

2
10) + Iχ.

The monomial x5x6 is the only monomial of Kazhdan degree n3 + n5 + 2 and consists of basis
elements of ge that occur in the above expression. Therefore, according to the method described
in § 4.6, we consider

[Θ3,Θ5]− 9Θ5Θ6 = (− 51
2 x5 − 51

8 x
2
10) + Iχ.

Following the algorithm leads us to calculate

[Θ3,Θ5]− 9Θ5Θ6 + 51
2 Θ5 = 0 + Iχ.

Therefore, we have calculated the relation and we have that F3,5(T1, . . . , T6) = 9T5T6 − 51
2 T5.

The other commutator relations are found in the same way and all are given below; we omit
all commutators that are equal to 0:

[Θ1,Θ2] = 5Θ3Θ4Θ5 − 1
2Θ2

3 −Θ3Θ2
6 + 9Θ4Θ5Θ2

6

− 9
2Θ2

4Θ2
5 + 7Θ3Θ6 − 69

2 Θ4Θ5Θ6 + 6Θ3
6

− 6Θ3 + 93
4 Θ4Θ5 − 30Θ2

6 + 42Θ6 − 18
[Θ1,Θ3] = 6Θ1Θ6 − 3Θ2Θ4 − 3Θ1

[Θ1,Θ5] = Θ2

[Θ1,Θ6] = −Θ1

[Θ2,Θ3] = −3Θ1Θ5 − 6Θ2Θ6 + 12Θ2

[Θ2,Θ4] = Θ1

[Θ2,Θ6] = Θ2

[Θ3,Θ4] = −9Θ4Θ6 + 15
2 Θ4

[Θ3,Θ5] = 9Θ5Θ6 − 51
2 Θ5

[Θ4,Θ5] = 1
2 + Θ6

[Θ4,Θ6] = −2Θ4

[Θ5,Θ6] = 2Θ5.

We can observe that 2 is the only prime occurring in the denominators in the formulas for
the generators and relations. Therefore, the finite W -algebra U(g, e) is defined over Z[ 1

6 ].
We move on to determining the 1-dimensional representations of U(g, e). That is, we have to

find the solutions to the equations (3.3) where the polynomials Fij are given in the commutator
relations above. We immediately see that we have

t1 = t2 = t4 = t5 = 0 and t6 =− 1
2 .

We substitute these values in F1,2 and are left to solve

− 1
2 t

2
3 − 39

4 t3 −
189
4 = 0

for t3. This gives the solutions t3 =−9,− 21
2 , so there are two 1-dimensional representations of

U(g, e).
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