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Deviations of asset prices from the random walk dynamic imply the predictability

of asset returns and thus have important implications for portfolio construction

and risk management. This paper proposes a real-time monitoring device for such

deviations using intraday high-frequency data. The proposed procedures are based

on unit root tests with in-fill asymptotics but extended to take the empirical features

of high-frequency financial data (particularly jumps) into consideration. We derive

the limiting distributions of the tests under both the null hypothesis of a random

walk with jumps and the alternative of mean reversion/explosiveness with jumps.

The limiting results show that ignoring the presence of jumps could potentially lead

to severe size distortions of both the standard left-sided (against mean reversion)

and right-sided (against explosiveness) unit root tests. The simulation results reveal

satisfactory performance of the proposed tests even with data from a relatively short

time span. As an illustration, we apply the procedure to the Nasdaq composite

index at the 10-minute frequency over two periods: around the peak of the dot-com

bubble and during the 2015–2106 stock market sell-off. We find strong evidence

of explosiveness in asset prices in late 1999 and mean reversion in late 2015. We

also show that accounting for jumps when testing the random walk hypothesis on

intraday data is empirically relevant and that ignoring jumps can lead to different

conclusions.

1. INTRODUCTION

The issue of whether stock prices follow a random walk or a mean-reverting

process received considerable attention at the end of the 20th century. Evidence

of mean reversion in stock prices or autocorrelation in long-horizon returns has
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114 SÉBASTIEN LAURENT AND SHUPING SHI

been documented in the stock prices of the United States (Fama and French, 1988;

Poterba and Summers, 1988; Lo and MacKinlay, 1988)1 and many other countries

(Richards, 1997; Balvers, Wu, and Gilliland, 2000; Chaudhuri and Wu, 2003).

There is also a burgeoning research program searching for evidence of asset prices

deviating toward an explosive regime (viz. speculative bubbles). It is argued that

asset prices are explosive (Diba andGrossman, 1988) in the presence of speculative

bubbles, as opposed to being a random walk under normal market conditions.

With recently developed bubble identification techniques, the literature presents

abundant evidence of explosiveness in asset prices.2 It is important to note that

the empirical evidence of both mean reversion and explosiveness of asset prices is

observed from low-frequency (weekly, monthly, or quarterly) data.

Several trading strategies have been developed to exploit the mean-reverting

behavior (Balvers et al. 2000; Gatev, Goetzmann, and Rouwenhorst, 2006; Serban,

2010) and the explosive dynamics (Brooks and Katsaris, 2005; Guenster and Kole,

2009; Milunovich et al. 2019) of asset prices. These trading strategies are shown

to outperform the buy-and-hold strategy, with or without the consideration of

transaction costs. They are, however, designed for low-frequency trading, which

often requires a long holding period to be profitable. The readily available high-

frequency financial data provide a strong motive for investors to extend those

strategies to high-frequency settings and trade more frequently. The profitability of

such high-frequency trading will rely critically upon having a timely and accurate

identification technique for such deviations.

Moreover, deviations from the random walk imply the presence of a nonzero

drift in a linear drift–diffusion (e.g., Ornstein–Uhlenbeck [OU]) process. Laurent

and Shi (2020) show that the presence of a nonzero drift results in the over-

estimation of the integrated variance using various realized volatility estimators

(including jump robust estimators) and a power loss for jump detection procedures.

As a remedy, they suggest using centered returns for the calculation of integrated

volatilities and the construction of the jump test statistics. An effective tool for

identifying such deviations in the high-frequency regime will, therefore, be an

essential step for statistically documenting empirical evidence of nonzero drifts

in the price dynamics of various assets and hence justifying the need for handling

drifts with care.

This paper addresses this need by providing a real-time monitoring technique

for deviations of asset prices from the randomwalk using high-frequency data. The

real-time monitoring procedure arises from the unit root testing literature,3 which

started in the late 1970s and was catalyzed by the work of Nelson and Plosser

1This finding is, however, subject to criticisms. See Lo and MacKinlay (1988), Richardson (1993), McQueen (1992),

Kim, Nelson, and Startz (1991), and Miller, Muthuswamy, and Whaley (1994).

2See, for example, Brooks and Katsaris (2005), Phillips, Wu, and Yu (2011), Phillips and Yu (2011), Homm and

Breitung (2012), Phillips and Yu (2013), Phillips, Shi, and Yu (2015a), Milunovich, Shi, and Tan (2019), Narayan,

Sharma, and Phan (2016), Shi and Song (2016), and Harvey, Leybourne, and Zu (2019).

3See, for example, Dickey and Fuller (1979, 1981), Said and Dickey (1984), Phillips (1987a), Phillips and Perron

(1988), Kwiatkowski et al. (1992), and Schmidt and Phillips (1992).
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(1982). The view that most economic time series are characterized by stochastic

trends has since become prevalent. Despite the popularity of unit root testing,

there is a profound concern regarding structural breaks caused by changes in

institutional or policy settings (Kim et al. 1991). At the turn of the 20th century, an

enormous amount of effort was devoted to tackling this issue, considering different

break types (such as breaks in the null or in the alternative; breaks in the mean,

trend, or slope; sudden or gradual breaks; and breaks with different magnitudes),

known or unknown break dates, and the number of breaks.4 Although one could

employ a procedure to endogenously determine the break dates, some assumptions

on the nature of the break must be made for practical implementation.5 Those

assumptions are often critical and could lead to distinct results from those obtained

under other choices. The unsatisfactory performance of those tests, therefore,

prevents their widespread application.

The technique proposed here utilizes intraday data from a relatively short time

interval, which is in sharp contrast to the existing literature that searches for

evidence of deviations with low-frequency data and usually over a long time span.

Therefore, unlike conventional unit root tests, structural breaks are of less concern

for the new test. In addition, the use of intraday data could potentially enable more

effective detection of such deviations. The unit root test for high-frequency data

employs in-fill asymptotics, where the sample period N is fixed, and the sampling

interval 1 converges to zero. The analysis of a fixed time span and fine sampling

intervals is typical in the high-frequency literature (e.g., Merton, 1980; Andersen

and Bollerslev, 1998a). Moreover, in-fill asymptotics have been shown to provide

better approximations to their finite sample counterparts (Yu, 2014; Zhou and Yu,

2015; Jiang, Wang, and Yu, 2018, 2020) than long-span (N → ∞) and double

asymptotics (N → ∞ and 1 → 0).

Although the in-fill asymptotics for unit root tests were developed as early as

1987 (Phillips, 1987a; Perron, 1991), there have been very few attempts at applying

the test to high-frequency data over the past three decades. This is partially due

to the paper by Shiller and Perron (1985), who show through simulations that

the power of the conventional unit root tests increases with the time span but

not with the sampling frequency. More importantly, bringing unit root tests to

the high-frequency data context is nontrivial. There are many stylized facts of

high-frequency financial data, namely jumps (Andersen, Bollerslev, and Diebold,

2007a; Lee and Mykland, 2008; hereafter (LM)), conditional heteroskedasticity

(Engle, 1982; Bollerslev, 1986; Taylor, 1994), microstructure noise (Aït-Sahalia,

Mykland, and Zhang, 2005; Ait-Sahalia and Yu, 2009), and intraday periodicity

(Taylor and Xu, 1997; Andersen and Bollerslev, 1997), which may potentially

affect the performance and limit theory of the test.

4See Perron (1989, 1990), Banerjee, Lumsdaine, and Stock (1992), Perron (1997), Lumsdaine and Papell (1997),

Vogelsang and Perron (1998), Clemente, Montañés, and Reyes (1998), Zivot and Andrews (2002), Kim, Leybourne,

and Newbold (2002), Lee and Strazicich (2003), and Enders and Lee (2012), among others.

5See, for example, Amsler and Lee (1995), Vogelsang and Perron (1998), Lee and Strazicich (2001), Chong (2001),

Harvey, Leybourne, and Newbold (2001), and Saikkonen and Lütkepohl (2002).
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The main focus of this paper is on the effect of jumps on unit root tests. The

presence of jumps in high-frequency data has now been widely recognized in the

literature.6 In the empirical application, we identified 149 jumps in the 10-minute

Nasdaq log prices around the peak of the dot-com bubble (from May 1999 to June

2000) and 91 jumps fromMay 2015 to January 2016, with their locations displayed

in Figure 8. Some of the jumps identified are of a very large magnitude. The

occurrence of jumps might be due to macroeconomic news and company-specific

announcements such as share buybacks (Lee, 2012; Bajgrowicz, Scaillet, and

Treccani, 2015). We show both asymptotically and by simulations that ignoring

the presence of jumps leads to a severe size distortion for the Dickey–Fuller (DF)

test, depending on the number, locations, and magnitudes of jumps. Specifically,

we account for the presence of jumps by including a set of jump dummies in the

model (assuming jumps are predetermined) and provide limiting distributions of

theDF statistic under the null of a randomwalkwith or without jumps. The limiting

distribution of the DF statistic under the unit root null with jumps (i.e., ϒ3 in (16))

differs substantially from the one derived under the null without jumps (i.e., ϒ1 in

(6)), suggesting a size distortion of the DF test in the presence of jumps.

The proposed procedure takes the presence of jumps in high-frequency data

into consideration. The test statistic, referred to as DFJ and defined formally in

(13), is constructed similarly to the DF statistic but from a regression model with

jump dummies. We derive the limiting distribution of DFJ under both the null of

a random walk with jumps and the alternative of mean reversion or explosiveness

(with jumps). In addition, while the DF test has a size distortion in the presence of

jumps, the DF statistic coupled with ϒ3 (instead of ϒ1), referred to as the DF(J)

test, could provide correct sizes and hence serve as an alternative unit root test

for high-frequency data. We derive the limiting distribution of the DF statistic

under the alternative when jumps are present. TheDFJ andDF(J) tests assume the

number and locations of jumps are known and hence are infeasible. We consider

feasible versions of theDFJ andDF(J) tests, which rely on a test to identify jumps.

The infeasible and feasible tests have identical limiting properties. The limiting

distributions of the test statistics under the alternative depend on the magnitude of

the deviation from a random walk, as well as the locations and sizes of the jumps.

Under the in-fill asymptotic scheme, the unit root tests are not consistent as the

alternative is local by construction.

In the simulations, we show that in the presence of jumps, the conventional unit

root test (which ignores jumps) is undersized for the mean reversion alternative

and oversized for the alternative of an explosive process. In contrast, the new

tests, which account for the presence of jumps, have satisfactory finite sample

performance. The empirical sizes are close to the nominal sizes, while the powers

of the new tests are reasonably high even for very small deviations from the

random walk. Moreover, the presence of conditional heteroskedasticity, intraday

periodicity in volatility, and microstructure noise does not affect the performance

6See Mancini (2011) for a review on jumps in high-frequency financial data.
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of the tests when the test window is one quarter or longer and the sampling

frequency is 10minutes or lower. Furthermore, we show that although the power of

DF(J) is higher than DFJ under certain parameter settings, the right-sided DF(J)

test has a high probability of rejecting the null against the explosive alternative

when the process is stationary (but very close to a random walk) with jumps and N

is relatively low. Therefore, we recommend the use of the DFJ test for empirical

applications.

Finally, we apply the DFĴ test (a feasible version of DFJ), along with the

conventional unit root test, to 10-minute log prices of the Nasdaq composite index

around the peak of the dot-com bubble (1999–2000) and the 2015–2016 sell-off

periods. We find cases where different conclusions are drawn from DF and DFĴ .

We attribute these differences to the lack of power of the left-sided DF test and

the oversize of the right-sided DF test when jumps are ignored. Moreover, there

are several interesting empirical findings. First, we find evidence of deviations

from the random walk hypothesis to the explosive direction in late 1999 and to the

stationary direction in late 2015. Second, our findings show that the dynamic of

the log Nasdaq price switches back to a random walk (from being explosive) as it

approaches the peak of the bubble episode. This finding suggests that the DFĴ test

could potentially enable investors to withdraw from the market before it collapses.

Third, while the dot-com bubble bursts in a random walk fashion, the stock market

crash in late 2015 follows a mean-reverting pattern. The last finding provides

empirical support for the mildly stationary process of Phillips and Shi (2018) and

the random drift martingale process of Phillips and Shi (2019) for crashes.

This paper is closely related to the work of Tao, Phillips, and Yu (2019), Kim

and Park (2019), and Jiang et al. (2018). Tao et al. (2019) propose new tests for the

identification of extreme behaviors in asset prices using high-frequency data. Kim

and Park (2019) propose using the conventional unit root tests for the identification

of mean-reverting behaviors and applying unit root tests to Lamperti-transformed

data series to distinguish stationary and nonstationary processes. Jiang et al. (2018)

analyze the behavior of the Kwiatkowski–Phillips–Schmidt–Shin stationarity test

in a continuous-time framework. However, none of these papers considers the

impact of the high-frequency features of financial data (especially jumps) on test

performance.

The remainder of the paper is organized as follows. Section 2 revisits the conven-

tional unit root test with in-fill asymptotics under both the null and the alternatives.

Section 3 introduces the new unit root tests for intraday high-frequency data,

provides the limiting distributions of the new test statistics under both the null

and the alternative, and discusses the jump detection procedure. Monte Carlo

simulations are conducted in Section 4. An empirical illustration using the Nasdaq

stock index is proposed in Section 5. Section 6 concludes the paper. The proofs of

theorems are collected in the Appendix, whereas the proofs of lemmas and remarks

are presented in the Supplementary Material.
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2. ECONOMETRIC METHOD

Consider a set of equally spaced data sampled at an interval 1. The logarithmic

price is denoted by yi1 with i = {1, . . . ,T}. The T observations span across N =
T1 days. The aim is to detect any deviations of yi1 from the random walk using

intraday data from a fixed time period (N days). Jumps are not considered here but

will be introduced in the next section.

2.1. Hypotheses and Model Specifications

The null hypothesis of a unit root is specified as

yi1 = y(i−1)1 +σ
√

1εi1, (1)

with initial value y0, where σ is a constant and εi1
iid∼ N (0,1). The alternative

hypothesis is

yi1 = α0 +β0y(i−1)1 +λ0εi1, (2)

where α0 = µ
(

1− eθ1
)

with µ and θ being constant, β0 = eθ1, and λ2
0 =

σ 2

2θ

(

e2θ1 −1
)

. Model (2) is the exact discrete time solution of the drift–diffusion

process

dyt = θ (yt −µ)dt+σdwt, (3)

wherewt is the standardWiener process. It reduces toModel (1) when θ = 0.When

θ 6= 0, the autoregressive coefficient

β0 = 1+ θ1+O
(

12
)

converges to unity at a rate of 1 = N/T . Given that N is fixed, the process is

equivalent to the local-to-unity process of Phillips (1987b) in both the explosive

(when θ > 0) and mean reversion (when θ < 0) directions.7

The regression model used to test the null hypothesis of a unit root includes an

intercept and is specified as follows:

yi1 = α +βy(i−1)1 + vi1, (4)

where vi1 is the error term. The DF statistic is

DF =
(

β̂ −1
)







T
∑T

j=1 y
2
(j−1)1 −

(

∑T
j=1 y(j−1)1

)2

∑T
j=1

(

yj1 − α̂ − β̂y(j−1)1

)2







1/2

, (5)

7Kim and Park (2019) show that for the drift–diffusion process (3), (non)mean reversion is equivalent to

(non)stationarity. Furthermore, they consider a general null recurrent diffusion process and show that even under

this general model setting, one could employ unit root tests to identify mean-reverting behaviors. However, mean

reversion is not equivalent to stationarity in the general setting. A process can be nonstationary and mean reverting.

Testing for stationarity versus nonstationarity can be achieved by employing the Lamperti transformation before

conducting unit root tests.
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where α̂ and β̂ represent the ordinary least squares (OLS) estimates of α

and β.

Next, we provide the asymptotic properties of the unit root test under both the

null and the alternative.

2.2. Asymptotics Under the Null

LEMMA 2.1. Under the null hypothesis (1), as 1 → 0 (T → ∞ with N fixed):

(a) yT1 H⇒ σN1/2 (w1 +γ) ≡ σN1/291,

(b) T−1

T
∑

j=1

yj1 H⇒ σN1/2

(∫ 1

0

wsds+γ

)

≡ σN1/292,

(c) T−1

T
∑

j=1

y2j1 H⇒ σ 2N

(∫ 1

0

w2
sds+γ

2 +2γ

∫ 1

0

wsds

)

≡ σ 2N93,

(d) T−1/2

T
∑

j=1

y(j−1)1εj1 H⇒ 1

2
σN1/2

(

w2
1 +2γw1 −1

)

≡ σN1/294,

with γ = y0
N1/2σ

.

THEOREM 2.1. Under the null hypothesis (1) and with regression model (4),

when the sampling interval1 → 0 and the time spanN is fixed, the DF test statistic

DF
L→ −92w1 +94
(

93 −92
2

)1/2
=

1
2

(

w2
1 −1

)

−w1

∫ 1

0
wsds

[

∫ 1

0
w2
sds−

(

∫ 1

0
wsds

)2
]1/2

≡ ϒ1. (6)

The results in Lemma 2.1 are identical to those in Theorem 6.2 of Phillips

(1987a). It is repeated here for ease of comparison. Although the asymptotics of the

four quantities in Lemma 2.1 depend on the nuisance parameter γ, the test statistic

is asymptotically pivotal. Furthermore, the limiting distribution of DF is identical

to its long-span asymptotic (see Hamilton, 1994 for a book reference). This is in

sharp contrast to the in-fill limits provided by Phillips (1987a) and Perron (1991),

which depend on the nuisance parameter γ. This difference arises from the fact that

our regression model includes an intercept, whereas there is no intercept in that of

Phillips (1987a) and Perron (1991). Suppose that we did not include an intercept

in the regression model as in Phillips (1987a) and Perron (1991). Under the null

hypothesis of (1), the test statistic

DF
L→

1
2

(

w2
1 −1

)

+γw1
[

γ2 +
∫ 1

0
w2
sds+2γ

∫ 1

0
wsds

]1/2
.
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The proof follows directly from that of Lemma 2.1 and is omitted for brevity.

Remark 2.1. The null specification (1) can be generalized to allow for an

asymptotically negligible drift such that

yi1 = µ1η + y(i−1)1 +σ
√

1εi1,

with µ being a constant and η > 1. The inclusion of the small drift µ1η does not

have any impact on the limiting properties of the DF statistic.

2.3. Asymptotics Under Local Alternatives

By recursive substitution, Model (2) becomes

yi1 = α0

1− eiθ1

1− eθ1
+λ0

i
∑

j=1

e(i−j)θ1εj1 + eiθ1y0. (7)

The stochastic component converges to an OU process in the limit, i.e.,

T−1/2

⌊Tr⌋
∑

j=1

e(⌊Tr⌋−j)θ1ε1j

H⇒ Jc (r) =
∫ r

0

exp(c(r− s))dws with r ∈ [0,1] and c= θN,

where ⌊.⌋ denotes the integer part of the argument.

LEMMA 2.2. Under the alternative of (2), as 1 → 0 (T → ∞ with N fixed),

(a) yT1 H⇒ σN1/2
[

δ (1− ec)+ Jc (1)+ ecγ
]

≡ σN1/241,

(b) T−1

T
∑

i=1

yi1 H⇒ σN1/2

[

δ +
∫ 1

0

Jc (r)dr+ (γ− δ)
ec−1

c

]

≡ σN1/242,

(c) T−1

T
∑

i=1

y2i1 H⇒ σ 2N

[

δ2 +2δ (γ− δ)
ec−1

c
+ (γ− δ)2

e2c−1

2c

+
∫ 1

0

Jc (r)
2 dr+2δ

∫ 1

0

Jc (r)dr+2(γ− δ)

∫ 1

0

ecrJc (r)dr

]

≡ σ 2N43,

(d) T−1/2

T
∑

i=1

y(i−1)1εi1 H⇒ σN1/2

2

(

42
1 −γ

2 −2c43 −1+2cδ42

)

≡ σN1/244,

with Jc (r) =
∫ r

0
exp (c(r− s))dws and δ = µ

N1/2σ
.

Lemma A.1 of Perron (1991) is a special case of Lemma 2.2 with µ = 0. The

results in Lemma 2.2 are identical to those reported in Lemma 8.1 of Zhou and Yu

(2015).
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(a) N = 20 (b) N = 60

Figure 1. The asymptotic distributions (kernel densities) of the DF test statistic under the nullϒ1 and

the alternatives ϒA
1 for N = 20 and 60. The value of θ ranges from −0.02 to 0.02 with an increment of

0.0001. We set y0 = 6.959, µ = 0.0002, and σ = 0.009.

THEOREM 2.2. Under the alternative hypothesis (2), as1 → 0 (T → ∞ with

N fixed), the DF statistic has the following limit distribution:

DF
L→ −42w1 +44
(

43 −42
2

)1/2
+ c

(

43 −42
2

)1/2 ≡ ϒA
1 ,

where 42,43 and 44 are defined in Lemma 2.2.

The limiting distribution of the DF statistic (and hence the asymptotic power of

the test) depends on the model parameters y0,N,µ,θ , and σ . This distribution is

continuous with respect to θ . Specifically, when θ → 0, we have c→ 0, Jc (1) →
w1, 41 → w1 + γ = 91, 42 →

∫ 1

0
w(r)dr+ γ = 92, 43 → γ

2 +
∫ 1

0
w(r)2 dr+

2γ
∫ 1

0
w(r)dr= 93, and44 → 1

2

(

w2
1 +2γw1 −1

)

= 94. It follows that the limiting

distribution

ϒA
1 = −42w1 +44

(

43 −42
2

)1/2
+ c

(

43 −42
2

)1/2 → −92w1 +94
(

93 −92
2

)1/2
= ϒ1.

Figure 1 graphs the asymptotic distributions (kernel densities) of the DF statistic

for various settings of θ with N = {20,60}. We allow θ to take values from −0.02

to 0.02 with an increment of 0.0001. The initial value y0 = 6.959 is the log price

of the Nasdaq stock market on January 2, 1996. The parameter σ = 0.009, which

is the average of the estimated spot volatility for the 10-minute Nasdaq log price

from January 2, 1996, to December 8, 2017. The time period N equals one month

(N = 20) and one quarter (N = 60). The distributions are obtained from 10,000

replications, approximating theWiener process by partial sums of standard normal

variates with 10,000 steps. The parameter µ is set to 0.0002. The case of θ = 0

corresponds to the null distribution ϒ1.
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First, ϒA
1 is a nonlinear function of θ . When N = 20, the shape resembles a

“swimmer” with the peak of the limiting distribution of θ = 0 being the head,

those of θ > 0 (resp. θ < 0) forming the right (resp. left) shoulder and arm.

The right shoulder and arm are always behind the head, reaching back. That

is, when θ > 0, the distribution moves sequentially to the right as θ increases,

implying a rising power of the right-tailed unit root test. When θ < 0, the limiting

distribution changes in a nonmonotonic fashion. It moves first to the right of the

null distribution and then gradually to the left as θ deviates further away from zero.

The nonmonotonicity occurs when θ is very close to zero (viz. the left shoulder)

and has an implication for the performance of the tests under this circumstance. In

particular, when θ takes a small negative value (e.g., θ = −0.001 ), with critical

values from the null distribution, the probability of (falsely) rejecting the unit

root null against an explosive alternative will be nonnegligible. In contrast, the

chance of correctly rejecting the null against a mean-reverting alternative will be

meagre under this setting. This problem disappears when the left arm is ahead of

the head (i.e., θ moves further away from zero). Furthermore, from panel (b), the

distribution of the DF statistic moves rapidly to the right (resp. left) for positive

(resp. negative) θs as the time period N rises to 60. The rate of divergence is faster

on the right than on the left.

Remark 2.2. Under the data generating process (DGP)(2) and a double asymp-

totic scheme (N → ∞ and 1 → 0 ),

DF ∼







eθN
√

θ
2
1
σ

|y0 −µ+σZ1| → +∞ if θ > 0

N1/2 θ
σ

(

− 1
2θ

)1/2 → −∞ if θ < 0

,

where Z1 ∼ N
(

0, 1
2θ

)

. The proof follows directly from the results of Wang and

Yu (2016). See the Supplementary Material for details. The DF statistic diverges

to positive and negative infinity when θ > 0 and θ < 0, respectively. This result

suggests that one could obtain the asymptotic consistency of the test by allowing

the time period N go to infinity. Furthermore, when θ > 0, the divergence rate

is exponential, i.e., Op

(

eθN
)

. The divergence rate of the DF statistic is Op

(

N1/2
)

when θ < 0, which is slower than that of DF when θ > 0. This result is consistent

with our observation from Figure 1.

3. UNIT ROOT TESTS FOR HIGH-FREQUENCY DATA

As highlighted in Bauwens, Hafner, and Laurent (2012), empirical studies have

shown that stochastic diffusion models driven by Brownian motion fail to explain

some characteristics of asset returns. One of the most important features of

financial assets is the presence of discontinuities in prices, also called jumps. See

Andersen et al. (2007a) and Lee and Mykland (2008), among others.

Several jump-diffusion processes have been proposed in the literature to account

for the presence of either small (infinite activity) jumps or large finite activity
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jumps. See, for example, Merton (1976), Ahn and Thompson (1988), Kou (2002),

and Mancini (2011). Here, jumps in log prices are additive and governed by a

compound Poisson process Jt as follows:

dyt = θ (yt −µ)dt+σdwt +dJt. (8)

The exact discrete time solution of (8) is

yi1 = α0 + Ji1 +β0y(i−1)1 +λ0εi1, (9)

where α0, β0, and λ0 are identical to those in (2). The jump component Ji1 is

defined as

Ji1 =



















0 if there is no jump within the interval

((i−1)1,i1]

∑Ki1
k=K(i−1)1+1 e

θ(i1−τ s
k)ξk if there are jumps within the interval

((i−1)1,i1],

where Ki1 is the total number of jumps within the interval [0,i1] and follows a

Poisson distribution with intensity λ, and τ sk is the location of the kth jump. The

jump size {ξk} is a sequence of independent random variables governed by law f,

e.g., the lognormal distribution (Merton, 1976) or double exponential distribution

(Kou, 2002).

For the unit root tests, we consider a DGP with a predetermined jump compo-

nent, as in the recent bubble literature.8 The total number of jumps and the jump

locations are assumed to be known. This assumption is not at all stringent as in

practice jumps can be identified before conducting the unit root tests and with

great accuracy. We show in Section 3.2 that the additional jump identification step

does not have any asymptotic consequence on the unit root tests and in Section 4

(via Monte Carlo simulations) that the jump identification method advocated in

our paper does not distort the finite sample properties of the test.

The total number of jumps within the sample period K is fixed, and jump

locations are set by parameter τk = ⌊rkT⌋with k= 1, . . . ,K, rather than governed by

a Poisson process. Instead of being random quantities, the jump sizes are captured

by parameter φk. The model with predetermined jumps has the form

yi1 = α0 +
K
∑

k=1

φkI
k
i1 +β0y(i−1)1 +λ0εi1, (10)

where
∑K

k=1φkI
k
i1 is the jump component. The jump dummy Iki1 is defined as

Iki1 = 1(i= τk),

8Whereas Blanchard and Watson (1982) and Evans (1991) consider stochastic bubble generating processes where

the collapse of bubbles is governed by a Bernoulli process, Phillips et al. (2011) and Phillips et al. (2015a, 2015b)

assume deterministic switching points of bubbles for their analysis of bubble origination and termination dates.
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with 1(.) being the indicator function. It takes value one at period τk when the kth

jump occurs and zero otherwise. By construction,
∑T

i=1 I
k
i1 = 1 (for k = 1, . . . ,K)

and
∑K

k=1 I
k
i1 = 1 (for t = 1, . . . ,T). The jump component

K
∑

k=1

φkI
k
i1 =

{

0 if there is no jump at period i

φk∗ if the k∗th jump occurs at period i,

with k∗ ∈ [1,K]. In the special case where the sizes of the jumps are identical, i.e.,

φ1 = ·· · = φK = φ, the jump component

K
∑

k=1

φkI
k
i1 = φ

K
∑

k=1

Iki1 = φI∗i1 with I∗i1 =
K
∑

k=1

Iki1.

The dummy variable I∗i1 takes value one when there is a jump and zero otherwise

(i.e.,
∑T

i=1 I
∗
i1 = K). By splitting the jump indicator I∗i1 into k orthogonal variables

{

Iki1
}K

k=1
, we, therefore, allow for different jump sizes.

The null hypothesis of a unit root with jumps is

yi1 =
K
∑

k=1

φkI
k
i1 + y(i−1)1 +σ

√
1εi1, (11)

and the alternative is (10). We provide the limiting properties of yT1,
∑T

i=1 yi1,
∑T

i=1 y
2
i1, and

∑T
i=1 y(i−1)1εi1 under the null and the alternative in Lemmas

3.1 and 3.2, respectively. The proofs of these two lemmas are collected in the

Supplementary Material.

LEMMA 3.1. Under the null hypothesis (11), as1 → 0 (T → ∞ with N fixed):

(a)yT1 H⇒ σN1/2

(

91 +
K
∑

k=1

ζk

)

≡ σN1/29̃1,

(b)T−1

T
∑

i=1

yi1 H⇒ σN1/2

[

92 +
K
∑

k=1

ζk (1− rk)

]

≡ σN1/29̃2,

(c)T−1

T
∑

i=1

y2i1

H⇒ σ 2N

[

93 +11 +2

K
∑

k=1

ζk

∫ 1

rk

wsds+2γ

K
∑

k=1

ζk (1− rk)

]

≡ σ 2N9̃3,

(d)T−1/2

T
∑

i=1

y(i−1)1εi1

H⇒ σN1/2

2

[

9̃2
1 −γ

2 −1−
K
∑

k=1

ζ 2
k −2

K
∑

k=1

ζk
(

wrk +γ+12

)

]

≡ σN1/29̃4,
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where ζk = φk
σN1/2 ,

11 =
{

ζ 2
1 (1− r1) if K = 1
∑K−1

k=1 (rk+1 − rk)
(

∑k
j=1 ζj

)2

+ (1− rK)

(

∑K
j=1 ζj

)2

if K > 1
,

and

12 =
{

0 if K = 1
∑k−1

j=1 ζj if K > 1
.

We denote the limiting properties of the above four quantities under the null

without jumps (1) by 9 (with their exact forms in Lemma 2.1) and those under

the null with jumps (11) by 9̃. It is evident from Lemma 3.1 that the jump

component
∑K

k=1φkI
k
i1 has an asymptotic impact on those four quantities. There

are additional terms in 9̃, relating to the number of jumps K, the jump sizes φk,

and the (fractional) location of the jumps rk.
9

LEMMA 3.2. Under the alternative model (10), as 1 → 0 (T → ∞ with N

fixed):

(a) yT1 H⇒ σN1/2

[

41 +
K
∑

k=1

ζke
(1−rk)c

]

≡ σN1/24̃1,

(b) T−1

T
∑

i=1

yi1 H⇒ σN1/2

{

42 + 1

c

K
∑

k=1

ζk
[

e(1−rk)c−1
]

}

≡ σN1/24̃2,

(c) T−1

T
∑

i=1

y2i1 H⇒ σ 2N

{

43 +13 + 1

c
δ

K
∑

k=1

ζk
[

2ec(1−rk) −2− ec(2−rk) + erkc
]

+2

K
∑

k=1

ζk

∫ 1

rk

ec(r−rk)Jc (r)dr+
1

c
γ

K
∑

k=1

ζke
rkc
[

e2c(1−rk) −1
]

}

≡ σ 2N4̃3,

(d) T−1/2

T
∑

i=1

y(i−1)1εi1 H⇒ σN1/2

2

{

4̃2
1 −γ

2 −2c4̃3 −1+2cδ4̃2 −
K
∑

k=1

ζ 2
k

−2

K
∑

k=1

ζk
[

δ (1− erkc)+ Jc (rk)+ erkcγ+14

]

}

≡ σN1/24̃4,

9We assume that there is a finite number of jumps and that the magnitude of the jumps is finite. One could potentially

relax this assumption to allow for an infinite number of jumps K or the magnitude of jumps φk to diverge to infinity

or to shrink to zero. We leave these extensions to future research.
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where c= θN, δ = µ

N1/2σ
, and

13 =























ζ 2
1
e2c(1−r1)−1

2c
if K = 1

∑K−1
k=1

(

∑k
j=1 ζje

−rjθ
)2

e2rkθ e
2θ(rk+1−rk)−1

2c

+
(

∑K
j=1 ζje

−rjθ
)2

e2rKθ e2θ(1−rK )−1

2c
if K > 1

,

14 =
{

0 if K = 1
∑k−1

j=1 e
(rk−rj)θζj if K > 1

.

Analogously, we use 4 to denote limiting properties under (2) and 4̃ for those

under (10). As in Lemma 3.1, the impact of the jump component
∑K

k=1φkI
k
i1 under

the alternative does not disappear in the limit. We observe additional terms in 4̃,

which depend on the three jump characteristics (i.e., K, φK , and rk) as well as θ

and N through the parameter c.

3.1. Unit Root Test with Known Jump Location

For the unit root tests, the jump number K and jump locations τk are either

assumed to be known as a prior or can be identified using a separate procedure

with reasonable accuracy. Assume for now that the number of jumps and their

locations are known. We consider the latter in Section 3.2. The regression model

used to test the null hypothesis of a random walk with jumps is

yi1 = α +
K
∑

k=1

φkI
k
i1 +βy(i−1)1 + vi1. (12)

We use the notation ∼ to denote the OLS estimates of the model coefficients in

(12). The corresponding test statistic, denoted DFJ , is

DFJ =
(

β̃ −1
)







T
∑T

i=1 y
2
(i−1)1 −

(

∑T
i=1 y(i−1)1

)2

∑T
i=1

(

yi1 − β̃y(i−1)1 − α̃ −
∑K

k=1 φ̃kI
k
i1

)2







1/2

. (13)

The limiting distributions of the DFJ statistic under both the null and the alter-

natives are provided below. Moreover, we show the limiting distributions of the

DF statistic under the null of (11) and the alternative of (10) (i.e., one ignores the

presence of jumps and applies the standard unit root test).

3.1.1. Asymptotics of the DFJStatistic.

THEOREM 3.1. Under the null hypothesis of a random walk with jumps (11),

the OLS estimators have the following limiting properties: as1 → 0 (T → ∞with

N fixed),
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T1/2
(

φ̃k −φk

)

H⇒ N (0,σ 2N),

σ̃ 2
v → σ 2N,

where σ̃ 2
v =

∑T
i=1

(

yi1 − β̃y(i−1)1 − α̃ −
∑K

k=1 φ̃kI
k
i1

)2

. The test statistic DFJ has

the following limiting distribution:

DFJ H⇒ −9̃2w1 + 9̃4
(

9̃3 − 9̃2
2

)1/2
≡ ϒ2. (14)

Theorem 3.1 suggests that given the exact number of jumps and their locations,

the estimated jump sizes φ̃k and the error variance σ̃ 2
v are consistent. Furthermore,

the limiting distribution ofDFJ under the new setting (with jumps) is very different

from ϒ1 (i.e., in the absence of jumps, see Theorem 2.1). The numerator of ϒ2 can

be rewritten as

[

1

2

(

w2
1 −1

)

−w1

∫ 1

0

wsds

]

+ 1

2





(

K
∑

k=1

ζk

)2

−
K
∑

k=1

ζ 2
k



−
K
∑

k=1

ζk12,

and the denominator of ϒ2 is the square root of the following quantity:

[

∫ 1

0

w2
sds−

(∫ 1

0

wsds

)2
]

+






11 + (1− rK)





K
∑

j=1

ζj





2

−
(

K
∑

k=1

ζk(1− rk)

)2






+2

[

K
∑

k=1

ζk

∫ 1

rk

wsds−
∫ 1

0

wsds

K
∑

k=1

ζk(1− rk)

]

.

The limiting distribution of DFJ does not depend on y0 but on parameters related

to jumps, i.e., rk and ζk (including φk, σ , and N). Next, we simulate the distribution

ϒ2. For simplicity, we assume one jump per week such that K = ⌊N/5⌋+1, τ1 =
1/1, and τk = 5(k− 1)/1, for k > 1. The sign and magnitude of the jumps are

assumed to be the same (i.e., φk = φ). We set φ = {−0.02, − 0.01,0,0.01,0.02}
and N = 60 in the left panel and N = {20,60,100,200} and φ = 0.02 in the right

panel. We set σ = 0.009 as in Section 2.3. We see in Figure 2 that ϒ2 is always

on the right of ϒ1 and shifts to the right as the magnitude of the jumps increases

(regardless of the sign of the jumps) or the time period N expands.

THEOREM 3.2. Under the alternative hypothesis (10), the limiting properties

of the OLS estimators are as follows:

T1/2
(

φ̃k −φk

)

⇒ N (0,σ 2N),

σ̃ 2
v → σ 2N.
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(a) N = 60
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(b) φ = 0.02
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Figure 2. The asymptotic distribution ofDFJ (kernel densities) under the null hypothesis of a random

walk with jumps. We assume K = ⌊N/5⌋+1, τ1 = 1/1, τk = 5(k−1)/1, for k> 1, and φk = φ. The

jump size φ = {−0.02, −0.01,0.01,0.02} with N = 60 in the left panel and N = {20,60,100,200} with
φ = 0.02 in the right panel.

The test statistic DFJ has the limiting distribution of

DFJ H⇒ 4̃4 − 4̃2w1
(

4̃3 − 4̃2
2

)1/2
+ c

(

4̃3 − 4̃2
2

)1/2

≡ ϒA
2 . (15)

Theorem 3.2 shows that under the alternative (10), the OLS estimators φ̃k and

σ̃ 2
ε are consistent. The limiting distribution of DFJ depends on θ and N through

the parameter c, in addition to the nuisance parameters in ϒ2. We now plot the

asymptotic distribution of DFJ against θ with N = {20,60} in Figure 3. To reduce
computation, we allow θ to vary from −0.002 to −0.02 on the left and from 0.002

to 0.02 on the right, with an increment of 0.001 (instead of 0.0001 for Figure 1).

The setting of jumps is identical to that in Figure 2. The other parameters are the

same as those in Figure 1. One can see that the pattern of the DFJ distribution is

similar to that of the DF statistic in Figure 1.

For practical implementation, one needs to estimate rk, φk, and σ before

simulating the asymptotic critical values. As shown in Theorems 3.1 and 3.2, given

the locations of the jumps, the magnitude of the jumps φk can be consistently

estimated by OLS with equation (12), whereas σ 2 can be consistently estimated as

σ̃ 2 = 1

N

T
∑

i=1

(

yi1 − β̃y(i−1)1 − α̃ −
K
∑

k=1

φ̃kI
k
i1

)2

→ σ 2

under both the null and the alternative. The time period N is known for a given

sample. The location of jumps rk can be identified by the procedure introduced in

Section 3.2.1.

3.1.2. Asymptotic of the DF Statistic in the Presence of Jumps. We first show

that the standard unit root test, which compares the DF test statistic with critical

values obtained from ϒ1, has incorrect size in the presence of additive jumps.
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(a) N = 20
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Figure 3. The asymptotic distributions (kernel densities) of the DFJ test statistic under the null and

the alternative when N = 20 and 60. The value of θ ranges from −0.02 to −0.002 on the left and from

0.002 to 0.02 on the right, with an increment of 0.001. We set y0 = 6.959, µ = 0.0002, σ = 0.009,

K = ⌊N/5⌋+1, τ1 = 1/1, τk = 5(k−1)/1, for k > 1, and φk = φ = 0.02.

THEOREM3.3. Suppose that theDGP is (11) and that one ignores the presence

of jumps by estimating Model (4). As 1 → 0 (T → ∞ with N fixed):

σ̂ 2
v =

∑

(

yj1 − β̂y(j−1)1 − α̂
)2

→ σ 2N

(

1+
K
∑

k=1

ζ 2
k

)

.

The DF test statistic has the following limiting distribution:

DF H⇒
9̃4 − 9̃2w1 +

∑K
k=1 ζk

(

wrk +γ+12 − 9̃2

)

(

1+
∑K

k=1 ζ 2
k

)1/2(

9̃3 − 9̃2
2

)1/2
≡ ϒ3. (16)

It is evident from Theorem 3.3 that the estimated model error variance σ̂ 2
v is

inconsistent. The limiting distribution of the DF statistic under (11) is ϒ3, instead

ofϒ1. The unit root tests that compare theDF test statistic with critical values from

ϒ1 will, therefore, have size distortions. In Figure 4, we simulateϒ3 and compare it

with ϒ1. As before, we set y0 = 6.959, σ = 0.009, φ = {−0.02, −0.01,0.01,0.02},
and N = 60 in the left panel and N = {20,60,100,200} and φ = 0.02 in the right

panel. One can see that the distribution of the DF statistic ϒ3 moves to the right

of ϒ1 when jumps (both positive and negative) are ignored. This implies that the

left-sided DF test is undersized in the presence of jumps, whereas the right-sided

DF test is oversized in the presence of jumps.

As correctly pointed out by an anonymous referee, one can obtain the correct

size for a test using the DF statistic by constructing critical values from ϒ3 in the

presence of jumps, provided consistent estimates of the nuisance parameters and
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(a) N = 60
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(b) φ = 0.02
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Figure 4. The asymptotic distributions (kernel densities) ofDF under the null hypothesis of a random

walk with jumps. We assume K = ⌊N/5⌋+1, τ1 = 1/1, τk = 5(k−1)/1, for k> 1, and φk = φ. The

jump size φ = {−0.02, −0.01,0.01,0.02} with N = 60 in the left panel and N = {20,60,100,200} with
φ = 0.02 in the right panel.

knowledge of jump occurrence. Theorem 3.4 provides the limiting properties of

the DF statistic under the alternative with jumps (10).

THEOREM 3.4. Suppose that the DGP is (10) and the regression model is (4).

As 1 → 0 (T → ∞ with N fixed),

σ̂ 2
v =

∑

(

yj1 − β̂y(j−1)1 − α̂
)2

→ σ 2N

(

1+
K
∑

k=1

ζ 2
k

)

.

The DF test statistic has the following limiting distribution:

DF H⇒
4̃4 − 4̃2w1 +

∑K
k=1 ζk

[

δ (1− erkc)+ Jc (rk)+ erkcγ+14 − 4̃2

]

(

1+
∑K

k=1

φ2
k

σ 2N

)1/2
(

4̃3 − 4̃2
2

)1/2

+ c





4̃3 − 4̃2
2

1+
∑K

k=1

φ2
k

σ 2N





1/2

≡ ϒA
3 .

It is obvious that σ cannot be consistently estimated with regression (4) in the

presence of jumps. To compute critical values fromϒ3, one would need to estimate

the nuisance parameters from regression (12) as for the DFJ test.

Recall that the test based on the DF statistic and distribution ϒ1 was denoted by

DF.We label the test based on theDF statistic and distributionϒ3 asDF(J).We use

two different notations to highlight the fact that although the two test statistics are

identical, the limiting distributions of the test statistic are derived under different

specifications of the null (with or without jumps).

The asymptotic distributions of the DF statistic under the null and alternative

hypotheses with jumps are presented in Figure 5. The shapes of the density
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Figure 5. The asymptotic distributions of the DF test statistic under the null and alternative

hypotheses with jumps when N = 20 and 60. The value of θ ranges from −0.02 to −0.002 on the

left of θ = 0 and from 0.002 to 0.02 on the right, with an increment of 0.001. We set y0 = 6.959,

µ = 0.0002, σ = 0.009, K = ⌊N/5⌋+1, τ1 = 1/1, τk = 5(k−1)/1, for k > 1, and φk = φ = 0.02.

functions are similar to those of the DF and DFJ tests (Figures 1 and 3). In

particular, when θ takes negative but small values, the distribution moves to the

right (instead of the left) of the null distribution. As such, the right-sided unit root

test might falsely reject the null of unit root against explosiveness when the true θ

is negative but very close to zero.

As an illustration, let us consider the case of θ = −0.002. Figure 6 displays

the null and alternative limiting distributions of the three approaches (DF, DFJ ,

and DF(J)) when θ = −0.002 and N = {20,60}. For all three approaches, when
N = 20, the alternative distribution moves to the right of their null distribution.

The movement of ϒA
2 is the least significant, implying the lowest false rejection

probability of the right-tailed DFJ test. As the time period increases to 60, the

right movements of ϒA
1 and ϒA

3 decrease, whereas the ϒA
2 distribution moves

to the left instead. This suggests that unlike the other two methods, the false

identification issue of the DFJ test disappears when N increases to 60. The DFJ

has a clear advantage over DF(J) in this regard. Consequently, we will focus

on DFJ rather than DF(J) to account for jumps in the empirical application and

advocate not considering small windows (i.e.,N ≤ 20) with one-sided tests to avoid

systematically wrong conclusions.

3.2. Unit Root Test with Unknown Jump Location

We consider a two-step procedure for the case with unknown jumps. The first step

is to identify jumps (i.e., total number of jumps K̂ and their respective locations τ̂k
with k = 1, . . . ,K̂). The method employed to identify the jumps and the limiting

properties of the jump test are discussed in Section 3.2.1. What is important for the
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Figure 6. The null and alternative limiting distributions of the three approaches when θ = −0.002

and N = {20,60}: (ϒ1, ϒ
A
1 ) for DF, (ϒ2, ϒ

A
2 ) for DF

J , and (ϒ3, ϒ
A
3 ) for DF(J).

second step is to construct a set of jump dummies Îki1 (with k= 1, . . . ,K̂) such that

Îki1 = 1
(

i= τ̂k
)

,

which takes value one at period τ̂k and zero otherwise. By construction, we have
∑T

i=1 Î
k
i1 = 1, for all k = 1, . . . ,K̂, and

∑K̂
k=1 Î

k
i1 = 1, for all t = 1, . . . ,T . In the

second step, we conduct the DFJ test by replacing the true jump dummies in

regression (12) with the estimated ones. The limiting properties of the feasible

version of the DFJ test, denoted by DFĴ , are discussed in Section 3.2.2.

3.2.1. Jump Identification. The most popular approach to the estimation of

jump arrival time(s) is probably that proposed by LM. The DGP under the null

hypothesis of no jumps, considered by LM, is

dyt = µtdt+σtdwt, (17)

where the drift and diffusion coefficients µt and σt are assumed not to change dra-

matically over a short time interval. See LM for further details on the assumptions.

This model includes (3) as a special case with µt = θ (yt −µ) and σt = σ . Under

the alternative,

dyt = µtdt+σtdwt + xtdJ̃t, (18)

where J̃t is a counting process independent of wt and xt is the jump size, which is

assumed to be predictable.
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However, the LM jump test suffers from a significant downward size distortion

and has low power in finite samples when the drift coefficient µt is large in

size, as shown by Laurent and Shi (2020). An example given by Laurent and

Shi (2020) is the drift–diffusion process (3) with θ and hence the drift coefficient

µt = θ (yt −µ) being nonzero.10 They propose a simple modification to the LM

test and show a dramatic improvement in test performance. As shown in our

empirical application, deviations from the random walk (i.e., nonzero θ ) are not

rare events. It is, therefore, important to account for such a feature and rely

on the jump identification procedure of Laurent and Shi (2020), which is less

sensitive to µt.

Let ri1 = yi1 − y(i−1)1 denote the log return at time i1, m̂i1 be the median of

the past M log returns (prior to and including the current observation), and r∗i1 =
ri1 − m̂i1 be the centered log return. The test statistic of Laurent and Shi (2020),

denoted by Ui1, is constructed from the centered log returns (instead of the raw

return ri1 as in LM) such that

Ui1 = r∗i1
σ̂ ∗
i1

with σ̂ ∗
i1 =

√

1

M
BV∗

i1, (19)

where BV∗
i1 = π

2
M

M−1

∑i
j=i−M+2 |r∗j1||r∗(j−11)| is the bipower variation computed on

centered log returns. Under the null hypothesis, the test statistic Ui1 follows a

standard normal distribution Z. As in LM, we reject the null hypothesis of no jump

at period i1 when |Ui1| > cvL,αL , where

cvL,αL = CL +SLβL, (20)

with CL = (2logL)1/2 − 1
2
(2logL)−1/2[log4π + log(logL)], βL = − log[− log

(1−αL/2)], and SL = (2logL)−1/2, L being the number of tests conducted. The

critical value is derived from extreme value theory for the purpose of controlling

for the oversize issue of multiple tests. In all our simulations and the empirical

application, we set L to the total number of observations per month (of 20 days)

and αL to 0.75, so that the expected number of spurious detected jumps is one every

4 months.

Remark 3.1. Assume that L→ ∞ at the same rate of T and βL → ∞ at a rate

that is slower than
√

L log (L). It follows that

cvL,αL = CL +SLβL = CL
[

1+op (1)
]

= O
(

√

2logL
)

= O
(

√

−2log(1)

)

.

Furthermore, under the assumption that M = O(1a) with −1 < a < −1/2, we

have the asymptotic equivalence of σ̂ ∗
i1 and σ

√
1 (Lee and Mykland, 2008).

Suppose that there is a jump at period i1. The probability of correctly identifying

10A nonzero drift in the continuous-time framework does not necessarily imply a nonzero drift in the discrete time

framework. Take the OU process (3) and its exact discrete time solution (2) as an example. Suppose µ = 0 and θ 6= 0.

We have the continuous-time drift coefficient µt = θ (yt −µ) = θyt but the discrete time drift α0 = µ(1− eθ1) = 0.

The continuous-time drift is related to both the intercept and the autoregressive component in the discrete time model.
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the jump is

P
(

|Ui1| > cvL,αL
)

= P

(
∣

∣

∣

∣

r∗i1
σ̂ ∗
i1

∣

∣

∣

∣

> cvL,αL

)

= P
(
∣

∣r∗i1
∣

∣> cvL,αL σ̂
∗
i1

)

∼ P
(

∣

∣r∗i1
∣

∣> σ
√

−2log (1)1
)

= 1−F|r∗i1|
(

σ
√

−2log (1)1
)

→ 1

as 1 → 0, which follows the same argument as in Lee (2012). Now, suppose that

there is no jump in period i1. The probability of not rejecting the null is

P
(

|Ui1| ≤ cvL,αL
)

∼ 1−28
(

−
√

2logL
)

→ 1,

as 1 → 0, where 8 is the cumulative distribution function of the standard normal

distribution, given thatUi1 converges to the standard normal distribution under the

null.

Remark 3.2. Following directly from Remark 3.1, we have the consistency

of the aggregated jump dummy Î∗i1 = 1
(

|Ui1| > cvL,αL
)

and the individual jump

dummy Îki1, i.e.,

Î∗i1 − I∗i1 = op (1) and Îki1 − Iki1 = op (1)

as 1 → 0. Consequently, the estimated number of jumps K̂ and their locations τ̂k
are consistently estimated, i.e.,

K̂ =
T
∑

i=1

Î∗i1 → K and τ̂k = argmax
i

{

Îki1

}

→ τk.

As in Andersen, Bollerslev, and Dobrev (2007b), Boudt, Croux, and Laurent

(2011), and Laurent and Shi (2020), we also take the intraday periodicity in the

volatility into consideration. The jump test statistic is

U∗
i1 = Ui1

f̂ ∗i1
,

where f̂ ∗i1 is a robust-to-jumps estimate of the intraday periodicity. In the empirical

application, we assume f̂ ∗i1 to be the same across weeks but to vary within the

week. The periodic component is obtained from the weighted standard deviation

estimator of Boudt et al. (2011) but computed on the centered log returns r∗i1 rather

than ri1 as in Laurent and Shi (2020). See Boudt et al. (2011) and Laurent and

Shi (2020) for a detailed presentation of this estimator. In the simulation studies,

for simplicity, we assume f̂ ∗i1 to be the same across days and set the estimated

intraday periodicity to the true value plus zero mean noise. This is because for

the estimation of intraday periodicity, one would need a long sample period.

However, it is very computationally intensive to simulate long time spans at the

1-second frequency. Therefore, the estimated intraday periodicity f̂ ∗i1 is assumed
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to follow aN (f ∗i1,0.01) distribution11 and drawn from this distribution to account

for estimation error of the periodicity on the jump test in our simulation study.

3.2.2. FeasibleDFJTest. The second step is to conduct the DFĴ test based on

the jump identification results. To do so, we replace K and Iki1 in the regression

model with their estimates such that

yi1 = α +
K̂
∑

k=1

φk Î
k
i1 +βy(i−1)1 + vi1. (21)

The feasible test statistic DFĴ is

DFĴ =
(

β̈ −1
)







T
∑T

j=1 y
2
(j−1)1 −

(

∑T
j=1 y(j−1)1

)2

∑T
j=1

(

yj1 − β̈y(j−1)1 − α̈ −
∑K̂

k=1 φ̈k Î
k
j1

)2







1/2

,

where α̈, β̈, and φ̈k are the estimated OLS coefficients from regression (21). Let

σ̈ 2
v =

T
∑

i=1

(

yi1 − β̈y(i−1)1 − α̈ −
K
∑

k=1

φ̈kI
k
i1

)2

.

THEOREM 3.5. The OLS estimators of regression (21) and the test statistic

DFĴ have the following limiting properties: as 1 → 0 (with N fixed),

T1/2
(

φ̈k −φk
)

H⇒ N (0,σ 2N) and σ̈ 2
v → σ 2N

under both the null and alternative hypotheses; the feasible unit root test statistic

DFĴ H⇒ −9̃2w1 + 9̃4
(

9̃3 − 9̃2
2

)1/2
≡ ϒ2 (22)

under the null hypothesis (11), and

DFĴ H⇒ 4̃4 − 4̃2w1
(

4̃3 − 4̃2
2

)1/2
+ c

(

4̃3 − 4̃2
2

)1/2

≡ ϒA
2 (23)

under the alternative hypothesis (10).

Due to the asymptotic consistency of the jump identification procedure (Remark

3.2), the limiting distributions of the DFĴ test are identical to those of DFJ .

11For the variance of f̂i1 (i.e., the setting of 0.01), we first estimated the intraday periodicity with the 10-minute

Nasdaq log prices in 1996 using the parametric approach proposed by Andersen and Bollerslev (1998b). Using the

estimated parameters, we simulate data and run a Monte Carlo study to obtain the mean squared error of the fitted

intraday periodicity.
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Remark 3.3. A feasible version of the DF(J) test, denoted by DF(Ĵ), employs

the same test statistic (i.e., DF) and has the same limiting distributions (i.e., ϒ3

under the null and ϒA
3 under the alternative) as DF(J). Unlike the DF(J) test, it

further replaces the jump related parameters in the limiting distributions with the

estimated ones. We refer to the estimated limiting distributions as ϒ̂3 and ϒ̂A
3 .

The asymptotic equivalence of the original distributions and the estimated ones is

ensured by the consistent properties of the jump test.

4. SIMULATION STUDIES

This section investigates the finite sample performance of the unit root test.We first

consider a simple DGP with constant volatility (with or without jumps). We then

extend this model with generalized autoregressive conditional heteroskedasticity

(GARCH) effects, intraday periodicity in the volatility, and microstructure noise.

In practice, the true DGP is unknown. When investigating the dynamic of the

data series, one first needs to specify the null and alternative hypotheses. While the

null hypothesis is unit root, the alternative is either mean reversion or explosiveness

for a one-sided test. In other words, one needs to decide whether to conduct a left-

sided or a right-sided test. This is, unfortunately, not immediately clear in most

cases, especially when the dynamic of the data series is close to unity. One could

decide to conduct a two-sided test, but the information provided by a two-sided

test might not be sufficient for some purposes (e.g., designing trading strategies).

Alternatively, one could implement both the left- and right-sided tests as in our

empirical application. It is, therefore, important to investigate the performance of

the tests under all of the six scenarios listed in Table 1.

The first two cases are for studying the size of the tests, whereas Cases 3

and 6 allow us to investigate the power of the left- and right-sided tests. Finally,

Cases 4 and 5 examine the possibility of false rejections when the alternative

hypothesis is on the opposite side of the true DGP. The settings in Cases 4 and 5

are unconventional but essential here due to the nonmonotonicity of the limiting

distributions (Figures 1, 3, and 5).

4.1. Constant Volatility

The DGP is (11) under the null and (10) with θ 6= 0 (or α 6= 1) under the alternative.

The value of θ is set to {−0.006, − 0.004, − 0.002} under the mean reversion

Table 1. Possible scenarios

DGP/Test Left-sided test Right-sided test

Unit root Case 1 Case 2

Mean reversion Case 3 Case 4

Explosiveness Case 5 Case 6
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alternative and {0.002,0.004,0.006} in the case of explosiveness. We consider the

same parameter values for y0,N,θ , and σ as in Section 2.3 and εi1
iid∼ N (0,1). In

the case of jumps, the locations of jumps τ ki1 are drawn randomly from a uniform

distribution. The number of jumps is set to one per week. The magnitude of jumps

φk is set to κσ with κ = 2 for positive jumps and κ = −2 for negative jumps.

Each day of simulated log prices consists of 23,400 observations, corresponding

to 1-second data over 6.5 hours. The 1-second log prices are then aggregated to

obtain data at the 10-minute frequency.12 The nominal size of the tests is 5%,

and the number of replications is 1,000. We compare the performance of the

new test statistics DFĴ and DF(Ĵ) with the conventional unit root test DF. Jump

dummies are constructed by employing the test statistic of Laurent and Shi (2020)

as presented in Section 3.2.1.

The empirical size and power of both the left-sided (i.e., H1 : θ < 0) and the

right-sided (i.e., H1 : θ > 0) tests are reported in Table 2. The left panel is for the

test against the mean reversion alternative, whereas the right panel is for the test

against explosiveness. The top panel reports the unit root test results in the absence

of jumps in log prices. The performance of the three tests is almost identical in

this setting, which is as expected and reassuring of good performance (low false

identification rate) for the jump detection procedure. The empirical sizes of both

tests are close to the nominal size. The power of each test increases as the process

deviates further from the random walk. Note that when N = 60 and θ = −0.002,

the power of the three left-sided tests is lower than the nominal size. The power

of the left-sided tests, however, increases as θ deviates further from zero (in the

negative direction). This result is consistent with our observation from Figures 1,

3, and 5. That is, as θ decreases from 0 to negative values, the distribution of the

test statistic first moves to the right of the null distribution before turning to the left.

Moreover, the power of the tests increases with the time span N. Notably, when

θ = −0.002, the power of the left-sided tests increases from 0.6% to approximately

25% as the time span extends from one quarter (N = 60) to approximately one year

(N = 200).

The middle and bottom panels are for the cases with positive and negative

jumps, respectively. One can see that in the presence of jumps (either positive or

negative), the left-sided DF test is undersized (due to overlooked jumps), whereas

the right-sided DF test, for the same reason, is severely oversized. The model

under the null hypothesis (11) is equivalent to a random walk process with breaks

in the drift (due to the presence of jumps).13 The results of the left-sided test

echo the literature documenting observational equivalences between unit roots

12The simulation results are qualitatively the same for 5-minute and 30-minute data and are, therefore, not reported

to save space.

13This feature distinguishes jumps from bubbles, which are often modeled as a mildly explosive process (Phillips

et al. 2011; Phillips et al. 2015a; Phillips and Shi, 2018). The autoregressive coefficient of the mildly explosive

process is greater than unity and takes the form of ρT = 1+ cT−α , with c being a constant, T being the sample size,

and α ∈ (0,1).
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Table 2. Empirical sizes and powers of the unit root tests at the 10-minute
frequency: constant volatility. The nominal size is 5%

H1 : α < 1 H1 : α > 1

θ −0.006 −0.004 −0.002 0 0 0.002 0.004 0.006

No jumps

N = 60

DF 60.4 7.7 0.6 6.1 4.1 61.9 97.4 100.0

DFĴ 60.3 7.7 0.6 6.1 4.0 61.8 97.4 100.0

DF(Ĵ) 60.4 7.7 0.6 6.1 4.1 61.9 97.4 100.0

N = 100

DF 100.0 53.8 3.5 5.4 5.2 83.6 100.0 100.0

DFĴ 100.0 53.8 3.5 5.4 5.2 83.6 100.0 100.0

DF(Ĵ) 100.0 53.8 3.5 5.4 5.1 83.6 100.0 100.0

N = 200

DF 100.0 100.0 24.6 5.7 5.4 99.9 100.0 100.0

DFĴ 100.0 100.0 24.7 5.7 5.4 99.9 100.0 100.0

DF(Ĵ) 100.0 100.0 24.6 5.7 5.4 99.9 100.0 100.0

Positive jumps

N = 60

DF 23.5 3.7 0.5 1.5 20.6 61.7 94.2 100.0

DFĴ 74.6 18.1 3.0 4.6 4.1 26.8 83.6 100.0

DF(Ĵ) 53.6 23.7 12.3 4.9 3.5 40.8 92.8 100.0

N = 100

DF 89.3 18.8 1.6 1.2 28.6 81.1 100.0 100.0

DFĴ 100.0 69.1 9.0 5.3 4.3 48.5 100.0 100.0

DF(Ĵ) 92.9 54.2 22.1 5.7 4.5 59.4 100.0 100.0

N = 200

DF 100.0 97.1 6.7 0.6 33.9 100.0 100.0 100.0

DFĴ 100.0 100.0 37.7 4.7 5.2 99.3 100.0 100.0

DF(Ĵ) 100.0 97.8 39.2 5.3 5.4 99.7 100.0 100.0

Negative jumps

N = 60

DF 37.6 6.7 0.8 1.5 22.9 50.5 87.3 99.9

DFĴ 87.7 29.6 4.0 3.8 5.4 16.7 68.3 99.9

DF(Ĵ) 74.4 17.5 2.0 3.2 5.6 37.3 68.4 95.7

N = 100

DF 98.2 36.7 2.0 1.1 30.0 66.0 99.9 100.0

DFĴ 100.0 89.4 16.1 4.1 5.9 27.9 99.2 100.0

DF(Ĵ) 100.0 82.2 10.8 4.8 5.4 44.6 91.5 100.0

(Continued)
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Table 2. (Continued)

H1 : α < 1 H1 : α > 1

θ −0.006 −0.004 −0.002 0 0 0.002 0.004 0.006

N = 200

DF 100.0 100.0 22.3 1.0 39.7 95.2 100.0 100.0

DFĴ 100.0 100.0 74.8 5.4 5.2 80.3 100.0 100.0

DF(Ĵ) 100.0 100.0 68.1 5.2 5.4 67.4 100.0 100.0

and structural breaks (e.g., Perron, 1990, Banerjee et al. 1992, Perron, 1997, and

Lumsdaine and Papell, 1997). Our result for the right-sided test is consistent with

the findings of Phillips and Shi (2019), where a random drift martingale process is

considered. Although one could visually separate negative jumps from an upward

expanding explosive process (Phillips and Shi, 2019), there is no solution in the

literature for distinguishing positive jumps from upward explosive processes.

By including jump dummies in the model specifications, the DFĴ test is able to

isolate the impact of jumps while detecting breaks in the autoregressive coefficient.

Both theDFĴ andDF(Ĵ) tests have reasonable sizes in all configurations. The size

distortion of the DF tests translates into a lack of power for the left-sided DF test

and more rejections for the right-sidedDF test than the right-sidedDFĴ andDF(Ĵ)

tests. Interestingly, despite the low (absolute) values of the θ parameters considered

in the simulation, DFĴ and DF(Ĵ) have good power against both alternatives. As

expected, the powers increase with |θ | and N. Between DFJ and DF(J), none of

the tests uniformly dominates the other in terms of sizes and powers.

Table 3 reports the rejection frequencies of the left-sided tests when the true

process is explosive (Case 5) and the probabilities of rejecting the null hypothesis

against explosiveness (right-sided tests) when the true DGP is mean-reverting

(Case 4). Recall that Figures 1, 3, and 5 show that when θ is negative and close

to zero (mean reversion), the right-sided tests of all three methods (i.e., DF, DFJ ,

and DF(J)) have a nonnegligible probability of making a false-positive rejection

(against the explosive alternative) in the limit. The simulation results in Table 3

are consistent with our theoretical results. In the absence of jumps, there are no

obvious differences between the three approaches. While the left-sided tests are

well-behaved (i.e., have close-to-zero probabilities of false rejection), the right-

sided tests have substantial false rejection probabilities when the trueDGP ismean-

reverting (with small absolute values of θ and N). The problem of false rejection

disappears when N increases to 200.

The story is different for cases with jumps. In the presence of jumps, the

relative performance of DFJ and DF(J) varies. Under the explosive DGP with

jumps, the probability of falsely rejecting the unit root null against a mean-

reverting alternative is generally very low for all three approaches. Nevertheless,

the performance of DFJ is more stable than DF(J) under this setting. As we can
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Table 3. The false rejection probabilities of the unit root tests under Cases 4 and
5 at the 10-minute frequency: constant volatility. The nominal size is 5%

Case 5: H1 : α < 1 Case 4: H1 : α > 1

0.002 0.004 0.006 −0.006 −0.004 −0.002

No jumps

N = 60

DF 0.1 0.0 0.0 0.2 6.9 32.8

DFĴ 0.1 0.0 0.0 0.2 6.9 32.9

DF(Ĵ) 0.1 0.0 0.0 0.2 6.9 32.9

N = 100

DF 0.0 0.0 0.0 0.0 0.2 19.8

DFĴ 0.0 0.0 0.0 0.0 0.2 19.8

DF(Ĵ) 0.0 0.0 0.0 0.0 0.2 19.8

N = 200

DF 0.0 0.0 0.0 0.0 0.0 1.3

DFĴ 0.0 0.0 0.0 0.0 0.0 1.3

DF(Ĵ) 0.0 0.0 0.0 0.0 0.0 1.3

Positive jumps

N = 60

DF 0.0 0.0 0.0 1.9 15.9 34.4

DFĴ 0.2 0.0 0.0 0.0 0.6 6.5

DF(Ĵ) 0.2 0.0 0.0 3.8 15.9 27.9

N = 100

DF 0.0 0.0 0.0 0.0 3.7 26.2

DFĴ 0.0 0.0 0.0 0.0 0.0 2.6

DF(Ĵ) 0.0 0.0 0.0 0.1 5.6 19.9

N = 200

DF 0.0 0.0 0.0 0.0 0.0 8.9

DFĴ 0.0 0.0 0.0 0.0 0.0 0.0

DF(Ĵ) 0.0 0.0 0.0 0.0 0.0 7.3

Negative jumps

N = 60

DF 0.2 0.0 0.0 0.8 10.5 31.8

DFĴ 0.8 0.0 0.0 0.0 0.2 5.0

DF(Ĵ) 8.5 1.4 0.0 0.0 0.9 10.9

N = 100

DF 0.0 0.0 0.0 0.0 0.7 20.3

DFĴ 0.9 0.0 0.0 0.0 0.0 1.6

DF(Ĵ) 7.6 0.1 0.0 0.0 0.0 2.3

(Continued)
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Table 3. (Continued)

Case 5: H1 : α < 1 Case 4: H1 : α > 1

0.002 0.004 0.006 −0.006 −0.004 −0.002

N = 200

DF 0.0 0.0 0.0 0.0 0.0 2.4

DFĴ 0.0 0.0 0.0 0.0 0.0 0.0

DF(Ĵ) 1.5 0.0 0.0 0.0 0.0 0.0

see, the false rejection probability ofDF(J) rises to around 8%when the jumps are

negative, θ = 0.002, and N = {60,100}, while that ofDFJ is close to zero under all
parameter settings. Furthermore, Figure 6 shows that in the presence of jumps, the

false identification issue of the right-sided tests is less severe forDFJ thanDF and

DF(J). The simulation results in Table 3 are again consistent with our theoretical

findings. In the presence of jumps, DFĴ rejects the null hypothesis in favor of the

wrong hypothesis much less frequently. For example, when N = 60, θ = −0.002,

and with positive jumps, the false rejection frequency of the right-sided DFJ test

is 6.5%, compared to 34.4% for DF and 27.9% for DF(J).

In finite samples, the number of jumps might be over- or underestimated. The

results reported in Table 3 have already accounted for the fact that the detection of

jumps is subject to errors as the jump dummies are created based on the outcome

of the intraday test for jumps. To further investigate the sensitivity of DFĴ and

DF(Ĵ) to spurious jumps (i.e., when K̂ > K), we run another set of simulations.

The design of the simulations is similar to the one in Table 3, but we added 5, 8,

and 16 spuriously identified jumps to the regression model, respectively, for N =
60,100, and 200. The locations of the spurious jumps are set randomly. Results are

qualitatively the same (not reported for brevity), confirming that overidentification

of jumps is not a big issue in finite samples. The underidentification of jumps (i.e.,

K̂ < K) is most likely to happen when jump sizes are small, as the power of the

jump test is higher when the jump size is larger (Laurent and Shi, 2020). The finite

sample impact of the underidentification of jumps on the unit root test statistics is,

therefore, expected to be marginal.

4.2. Time-Varying Volatility and Microstructure Noise

To study the impact of time-varying volatility and microstructure noise, we

consider more general model specifications. Under the null hypothesis, efficient

log prices are now generated as follows:

yi1 = α0 +
K
∑

k=1

φkI
k
i1 + y(i−1)1 +λi1εi1, (24)
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Figure 7. The simulated 1-second periodicity fi1 illustrated for 1 day.

where the volatility of log returns consists of a deterministic term fi1 and a

stochastic component σi1 such that

λi1 = fi1σi1
√

1.

We assume that f varies within the day but, for simplicity, restrict it to be the same

across the N days in this simulation. To simulate a realistic periodic factor, we

follow Laurent and Shi (2020) and take the estimated periodicity obtained using

the parametric method proposed by Andersen and Bollerslev (1998b) on the 10-

minute Nasdaq stock price index from January 2, 1996, to December 8, 2017. The

periodic component fi1 used in the simulations is plotted in Figure 7. It displays the

usual diurnal pattern found in the volatility of intraday returns of most individual

stocks and stock indices. The value of fi1 ranges from 0.6 to 1.6.

The stochastic component is assumed to follow the GARCH(1,1) diffusion

process of Nelson (1991), which has a discretized form of

σ 2
i1 = δ0 +σ 2

(i−1)1(β1 +α1εi1), (25)

where δ0 = κω1, β1 = 1−κ1, α1 =
√
2λκ1, and εi1

iid∼N (0,1). As in Andersen

and Bollerslev (1998a), we choose the parameters κ = 0.035 and λ = 0.296 to

simulate a log price process with realistic GARCH effects and set ω = 0.012 such

that E(σ 2
i1) = 0.012 as in the previous simulations.

Under the alternative, we have

yi1 = α0 +
K
∑

k=1

φkI
k
i1 +β0y(i−1)1 +λi1εi1. (26)

The settings of α0, β0, and jumps are the same as in the previous section.
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In addition, we assume that log prices are contaminated by microstructure noise

such that y∗i1 is observed instead of the true efficient log price yi1, where

y∗i1 = yi1 +̟vi1

with ̟ 2 = ξ

√

1
1

∑1/1
j=1 σ 4

i1 and vi1
iid∼ N (0,1). We set ξ to 0.0005.

Table 4 displays the sizes and powers of the one-sided tests in the presence

of microstructure noise, GARCH effects, and intraday periodicity for a nominal

size of 5%. The organization of the table is identical to that of Table 2. Table

5 corresponds to Table 3 presenting results for Cases 4 and 5 but with time-

varying volatilities. The results are qualitatively the same as in the case of constant

volatility, which suggests that heteroskedasticity and microstructure noise have

little impact on the performance of the unit root tests when they are applied to

10-minute data and when N ≥ 60.14

The simulation results can be summarized as follows. There are no visible

differences among the three methods (DF, DFĴ , DF(Ĵ)) in the absence of jumps.

The relative performance of the three methods in the presence of jumps are detailed

below.

Cases 1 and 2 (Sizes). In the presence of jumps, the left-sided DF test is

undersized, whereas the right-sided DF test is significantly oversized. On

the contrary, both DFĴ and DF(Ĵ) have satisfactory sizes.

Case 3 (Power of the left-sided tests).While both DFĴ and DF(Ĵ) outperform

DF, the relative performance of DFĴ and DF(Ĵ) depends on the parameter

settings. The power of the DFĴ test is larger than that of the DF(Ĵ) test when

there are negative jumps in the sample. When jumps are positive, the DF(Ĵ)

test has higher power than the DFĴ test when θ is close to zeros (i.e., θ =
−0.002) but lower power when θ moves further away from zero (e.g., θ =
−0.006).

Case 4 (Probability of false rejections: mean-reverting DGPs and the right-

sided tests). When the true DGP is mean-reverting, there is a substantially

higher chance of false rejection with the right-sidedDF(Ĵ) test than the right-

sidedDFĴ test. This is especially whenN is small and the dynamic of the data

series is close to the unit root. The false rejection probability can be as high

as 27.9% for the DF(Ĵ) test but less than 7.3% for the DFĴ test.

Case 5 (Probability of false rejections: explosive DGPs and the left-sided

tests). When the true DGP is explosive, the three approaches generally do

not falsely reject the null of unit root against a mean-reverting alternative. In

the presence of negative jumps, however, unlike the DFĴ test, the DF(Ĵ) test

14Unreported simulation results suggest that time-varying volatility has a larger impact on test performance when the

window size is small, e.g., when N < 5. In this case, as in Boswijk and Zu (2018), an adaptive wild bootstrap version

of our test can be employed. We leave this extension for further research.

https://doi.org/10.1017/S0266466621000098 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000098


144 SÉBASTIEN LAURENT AND SHUPING SHI

Table 4. Empirical sizes and powers of the unit root tests at the 10-minute
frequency: GARCH effects, intraday periodicity, and microstructure noise. The
nominal size is 5%

H1 : α < 1 H1 : α > 1

θ −0.006 −0.004 −0.002 0 0 0.002 0.004 0.006

No jumps

N = 60

DF 57.0 8.1 0.9 7.3 5.1 64.1 96.0 100.0

DFĴ 57.3 8.1 0.9 7.4 5.2 64.1 96.0 100.0

DF(Ĵ) 57.4 8.1 0.9 7.4 5.2 64.1 96.0 100.0

N = 100

DF 98.9 48.2 2.4 6.6 5.3 82.1 100.0 100.0

DFĴ 98.9 48.0 2.4 6.7 5.2 82.1 100.0 100.0

DF(Ĵ) 98.9 48.0 2.4 6.7 5.3 82.2 100.0 100.0

N = 200

DF 100.0 99.6 19.6 6.0 5.6 99.6 100.0 100.0

DFĴ 100.0 99.7 19.3 5.7 5.5 99.6 100.0 100.0

DF(Ĵ) 100.0 99.7 19.5 5.7 5.5 99.6 100.0 100.0

Positive jumps

N = 60

DF 24.3 3.5 0.7 1.7 22.8 63.0 93.0 100.0

DFĴ 67.9 16.3 3.6 5.3 5.4 29.4 81.6 99.9

DF(Ĵ) 50.7 24.2 14.6 5.0 5.6 43.9 90.1 100.0

N = 100

DF 24.3 3.5 0.7 1.7 22.8 63.0 93.0 100.0

DFĴ 67.9 16.3 3.6 5.3 5.4 29.4 81.6 99.9

DF(Ĵ) 50.7 24.2 14.6 5.0 5.6 43.9 90.1 100.0

N = 200

DF 100.0 88.3 6.4 0.9 35.9 99.7 100.0 100.0

DFĴ 100.0 99.6 30.9 4.8 5.5 97.8 100.0 100.0

DF(Ĵ) 100.0 94.1 39.7 4.9 5.6 98.3 100.0 100.0

Negative jumps

N = 60

DF 38.7 6.1 0.8 1.4 23.2 52.0 85.4 99.6

DFĴ 80.4 27.7 4.9 5.2 7.1 17.7 67.6 98.9

DF(Ĵ) 68.2 16.3 2.5 5.2 6.6 38.9 67.6 93.2

N = 100

DF 93.3 32.8 2.6 1.9 30.2 63.2 98.8 100.0

DFĴ 99.9 84.3 13.4 5.4 4.1 25.9 98.2 100.0

DF(Ĵ) 99.7 74.0 8.9 4.9 4.5 42.2 88.4 99.9

(Continued)
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Table 4. (Continued)

H1 : α < 1 H1 : α > 1

θ −0.006 −0.004 −0.002 0 0 0.002 0.004 0.006

N = 200

DF 100.0 97.3 15.8 1.0 37.6 89.7 100.0 100.0

DFĴ 100.0 100.0 65.0 5.1 5.7 71.4 100.0 100.0

DF(Ĵ) 100.0 100.0 59.9 5.2 5.9 64.2 100.0 100.0

has a high false rejection probability when θ is closer to zero (e.g., about 8%

when N = 60,100 and θ = 0.002).

Case 6 (Power of the right-sided tests). The power of DF(Ĵ) is higher than

DFĴ when N ≤ 100 but lower when the jumps are negative and N = 200.

Although the DF(Ĵ) test has higher power under some parameter settings, the

DFJ test has a substantially lower probability in rejecting the unit root null against

the explosive alternative when the true DGP is mean-reverting and has jumps. For

this reason, and since there is abundant evidence on the presence of jumps in high-

frequency asset prices, we use the DFĴ test in empirical applications.

5. EMPIRICAL APPLICATION

The primary purpose of this section is to show the impact of jumps on unit root

testing on intraday data by comparing the performance of the standard DF test

and the proposed DFĴ test. The DF(Ĵ) test is not considered because it has a

much higher probability of rejecting against wrong hypotheses (as discussed). We

investigate the dynamics of the 10-minute log prices of the Nasdaq composite

index over two sample periods (1995-05-01 to 2000-06-30 and 2015-05-01 to

2016-01-31). The data are downloaded from Thomson Reuters DataScope and

displayed in Figure 8.

The first period falls in the famous dot-com bubble period (Phillips et al. 2011;

Shi and Song, 2016). It has been widely recognized that asset prices exhibit

explosive dynamics in the presence of speculative bubbles (Diba and Grossman,

1988; Phillips et al. 2011; Phillips et al. 2015a, 2015b). Evidence of speculative

bubbles has been detected in various markets with low-frequency data (daily,

weekly, or monthly).15 The dot-com bubble is the most prominent episode. We

can see a dramatic increase in the Nasdaq stock price in the second half of 1999.

The market peaked on March 10, 2000, followed by a sharp downturn.

15See, for example, Phillips et al. (2011), Gutierrez (2012), Etienne, Irwin, and Garcia (2013), Pavlidis et al. (2016),

Fantazzini (2016), Shi (2017), and Hu and Oxley (2018).
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Table 5. The false rejection probabilities under Cases 4 and 5 at the 10-minute
frequency: GARCH effects, intraday periodicity, and microstructure noise. The
nominal size is 5%

Case 5: H1 : α < 1 Case 4: H1 : α > 1

0.002 0.004 0.006 −0.006 −0.004 −0.002

No jumps

N = 60

DF 0.1 0.0 0.0 0.4 7.8 31.6

DFĴ 0.1 0.0 0.0 0.4 7.7 31.5

DF(Ĵ) 0.1 0.0 0.0 0.4 7.8 31.5

N = 100

DF 0.0 0.0 0.0 0.0 0.4 20.2

DFĴ 0.0 0.0 0.0 0.0 0.4 20.5

DF(Ĵ) 0.0 0.0 0.0 0.0 0.4 20.4

N = 200

DF 0.0 0.0 0.0 0.0 0.0 3.2

DFĴ 0.0 0.0 0.0 0.0 0.0 3.2

DF(Ĵ) 0.0 0.0 0.0 0.0 0.0 3.2

Positive jumps

N = 60

DF 0.1 0.0 0.0 2.1 14.9 32.0

DFĴ 0.6 0.0 0.0 0.0 1.2 7.0

DF(Ĵ) 0.2 0.0 0.0 4.1 16.2 26.3

N = 100

DF 0.0 0.0 0.0 0.0 3.4 26.8

DFĴ 0.1 0.0 0.0 0.0 0.0 2.8

DF(Ĵ) 0.0 0.0 0.0 0.0 4.9 19.6

N = 200

DF 0.0 0.0 0.0 0.0 0.0 12.7

DFĴ 0.0 0.0 0.0 0.0 0.0 0.2

DF(Ĵ) 0.0 0.0 0.0 0.0 0.2 9.0

Negative jumps

N = 60

DF 0.0 0.0 0.0 0.9 12.2 32.9

DFĴ 1.1 0.0 0.0 0.0 0.8 7.3

DF(Ĵ) 8.8 1.8 0.0 0.0 1.6 12.3

N = 100

DF 0.0 0.0 0.0 0.1 1.6 21.4

DFĴ 0.3 0.0 0.0 0.0 0.0 1.0

DF(Ĵ) 9.1 0.4 0.1 0.0 0.0 2.1

(Continued)
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Table 5. (Continued)

Case 5: H1 : α < 1 Case 4: H1 : α > 1

0.002 0.004 0.006 −0.006 −0.004 −0.002

N = 200

DF 0.0 0.0 0.0 0.0 0.0 5.2

DFĴ 0.0 0.0 0.0 0.0 0.0 0.0

DF(Ĵ) 4.2 0.0 0.0 0.0 0.0 0.0

(a) 1999-05-01 to 2000-06-30
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(b) 2015-05-01 to 2016-01-31
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Figure 8. The 10-minute log prices of the Nasdaq composite index for two sample periods. The

diamonds indicate the jumps used in the DFĴ test. The vertical lines indicate the cutoff dates of each

subsample.

The second episode is around the 2015–2016 stock market sell-off, triggered

by the bursting of the Chinese stock market bubble on June 12, 2015. We observe

dramatic turbulence in the Nasdaq stock market between August and October. In

particular, the Nasdaq market dropped 15.59% from August 19 to August 24. It

recovered to approximately the same level as before the crash by the end of October

2015. Various models have been proposed for capturing the dynamics of a bubble

bursting and market crashes (e.g., a mildly stationary process of Phillips and Shi,

2018 and the random drift martingale process of Phillips and Shi, 2019) but yet to

be tested empirically.

We first apply the jump test of Laurent and Shi (2020), with the same critical

values as in the simulation studies, to the two data series to create the jump

dummies. In empirical applications on jump detection with high-frequency data,

overnight returns are often removed because they convey information on a more

extended period than the other returns (i.e., 17.5 hours rather than 10 minutes in

our case). Removing the first observation of each day is obviously not a solution

for unit root tests with log prices. Therefore, we keep the first observations of

the days (and hence overnight returns) for both the jump and unit root tests. The

variance of overnight returns can be captured by the periodicity component, which

is taken care of in our test for jumps. Moreover, we show in our simulations that the

periodicity of variances does not have a significant impact on unit root tests when
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Table 6. Results of the DF and DFĴ tests

Start End DF left cv right cv DFĴ left cv right cv Jumps

1999-05-01 1999-12-31 1.639 −2.857 −0.089 2.215 −2.819 0.062 84

2000-01-01 2000-03-10 0.160 −2.857 −0.089 0.312 −2.672 0.404 34

2000-03-11 2000-06-30 −2.008 −2.857 −0.089 −1.937 −2.809 0.005 31

2015-05-01 2015-07-31 −2.357 −2.857 −0.089 −2.426 −2.823 −0.038 32

2015-08-01 2015-10-15 −2.406 −2.857 −0.089 −3.026 −2.714 0.268 22

2015-10-16 2016-01-31 −0.788 −2.857 −0.089 −0.120 −2.746 0.057 37

Notes: The statistics highlighted in bold are significant at the 5% level using either the left- or right-
sided critical values. The figures in the columns left cv and right cv are the critical values used for the
corresponding left-sided and right-sided tests, respectively. The figures in the last column correspond
to the number of jumps detected using the test of Laurent and Shi (2020).

N is larger than 60. Therefore, the inclusion of overnight returns is not expected

to affect our test outcomes. The identified jumps are marked with diamonds in

Figure 8. There are 149 jumps during the first sample (i.e., 1999-05-01 and 2000-

06-30) and 91 during the second one (i.e., 2015-05-01 and 2016-01-31). It is clear

from this figure that jumps are not rare events. Furthermore, some of the detected

jumps are very large and therefore expected to have an impact on the DF test.

For the unit root tests, we divide each period into three subsamples, guided by the

important events discussed above. The cutoff dates of the subsamples are marked

by vertical lines in Figure 8. The unit root test statistics DF and DFĴ and their

corresponding asymptotic critical values for the left- and right-sided tests (5% and

95%) are reported in Table 6, along with the exact dates of each subsample and the

number of jumps detected in each subsample.16

For the dot-com bubble period, both procedures detect explosive dynamics in

the Nasdaq stock market in the first subsample (between May 1999 and December

1999).17 In the second subsample, while the null hypothesis of a random walk is

still rejected against explosiveness with the DF test, the DFJ test does not reject

the null against the explosive alternative. The distinct outcomes of the DF and

DFĴ tests could potentially be explained by our findings in Sections 3 and 4. That

is, jumps could lead to spurious rejections of the DF test against the alternative

16Since the jump dummies are orthogonal to each other and φ̂k is asymptotically normally distributed (according to

Theorem 3.2), standard t-tests can be used to eliminate insignificant jump dummies in equation (10). As the results

are qualitatively the same when including all jump dummies or only dummies that are significant at the conventional

significance levels, we only report the results with all jump dummies. Unreported simulations reveal similar sizes and

powers for theDFĴ test when the regression includes all jump dummies (including redundant ones) or only significant

ones.

17The presence of explosive dynamics in asset prices does not imply the existence of bubbles. An additional necessary

step is to control for the impact of market fundamentals. Stock market fundamentals are often proxied by dividends or

earnings, which are unfortunately not available at such a high frequency. Therefore, we do not refer to the explosive

dynamics as bubbles in this paper.
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hypothesis of explosiveness. In contrast, the DFJ test, which accounts for the

presence of jumps, has satisfactory performance under this circumstance. TheDFĴ

test suggests that the process returns to a random walk in the period from 2000-

01-01 to 2000-03-10 before reaching the peak of the bubble episode. This result

has important implications for traders who have every intention to withdraw from

the market before bubbles collapse. Interestingly, the two tests again agree when

applied to the third subsample, spanning between March 11, 2000 and June 30,

2000. Indeed, we fail to reject the null hypothesis during this period using both

tests, suggesting that the bursting of the dot-com bubble follows a random walk

pattern.

Similarly, for the second sample period (2015–2016), DF and DFĴ yield

consistent results in the first and third subsamples but draw different conclusions in

the second subsample. Both tests conclude that the log Nasdaq price follows a unit

root process in the first and third subsamples. For the turbulent 2.5 months in 2015

(from August 1 to October 15), theDFĴ rejects the null against the mean reversion

alternative, whereas theDF test fails to do so. Again, this finding is not surprising,

as we find in Sections 3 and 4 that jumps decrease the power of theDF test against

mean reversion, and we observe jumps with extremely large magnitudes over this

period (e.g., at the opening of August 24, 2015). Interestingly, unlike the bursting

of the dot-com bubble, the DFĴ test suggests that the stock market crash in late

2015 follows a mean reversion process.

Finally, although the availability of high-frequency data allows us to conduct the

unit root tests using data over short time periods and hence reduce the probability

of having structural breaks within the sample period, it does not completely rule out

this possibility. The performance of the unit root tests in the presence of structural

breaks remains unknown. One could potentially account for structural breaks with

the model proposed by Jiang et al. (2020) but extended to allow for jumps. Here,

we provide examples of cases when both DF and DFĴ reject the unit root null

hypothesis in favor of the same alternative and, more importantly, when they

contradict, with carefully divided subsamples. A comprehensive analysis of the

structural break issue and a more extensive empirical application over a longer

sample period is left for future work.

6. CONCLUSION

This paper provides an efficient tool for detecting deviations of asset prices

from a random walk with intraday high-frequency data. The proposed tool is

based on unit root tests but takes the empirical features of high-frequency data

(particularly jumps) into consideration. The null hypothesis is a random walk,

whereas the alternative hypothesis is either mean reversion or explosiveness. Using

in-fill asymptotics, we show that the conventional DF tests could lead to severe

size distortions in the presence of jumps, according to both the asymptotic and

simulation results.
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We propose two new tests that account for the possible presence of jumps,

denoted DFJ and DF(J) for the infeasible version and DFĴ and DF(Ĵ) for the

feasible one. The limiting distributions of the new test statistics under both the

null and the alternative are provided. Both tests depend on nuisance parameters

for which we propose consistent estimators. Importantly, we show that the feasible

versions of the tests (i.e., relying on a test to identify jumps) have the same limiting

properties as the infeasible ones (i.e., assuming true jump occurrences). Simulation

results reveal the satisfactory performance (in terms of size and power) of the new

tests but also thatDF(Ĵ) tends to reject too often against thewrong alternativewhen

the process is mildly mean-reverting (θ < 0 but close to zero), and N is relatively

small. Therefore, we recommend the use of DFĴ for empirical applications.

Furthermore, we show via simulations that conditional heteroskedasticity, intra-

day periodicity, and microstructure noise do not affect the finite sample perfor-

mance of the tests when the test window is applied to one quarter of the data (or

more), and the sampling frequency is 10 minutes or lower.

We apply the conventional DF test and DFĴ to the 10-minute log prices of the

Nasdaq composite index around the peak of the dot-com bubble (1999–2000) and

the 2015–2016 stock market sell-off periods. Both tests reject the null against

the explosive alternative in late 1999. The two unit root tests, however, provide

contradictory results in the early 2000s before the bursting of the dot-com bubble

and in late 2015 when the market experienced turbulence. We attribute these

differences to the lack of power of the left-sided DF test and the oversize issue

of the right-sided DF test when jumps are ignored. The DFĴ test suggests that

log Nasdaq prices switch back to a random walk dynamic (from being explosive)

as the peak of the bubble approaches. In addition, the dot-com bubble collapses

in a random walk fashion, whereas the 2015 stock market crash follows a mean-

reverting process.

APPENDIX: A. Proofs

A.1. Asymptotics of the DF Statistic

Proof of Theorem 2.1. The least-squares estimators of the standardized intercept and

autoregressive coefficient are

[

α̂

β̂ −1

]

= σ
√

1

[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]−1[ ∑

εj1
∑

y(j−1)1εj1

]

.

Let
∑

denote summation over j = 1, . . . ,T . Based on Lemma 2.1(d), the appropriate

scaling matrix is ϒT = diag
(√

T,
√
T
)

. Premultiplying the above equation by T1/2ϒT

leads to

T1/2ϒT

[

α̂

β̂ −1

]

=
[

Tα̂

T(β̂ −1)

]
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= σN1/2

{

ϒ−1
T

[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]

ϒ−1
T

}−1{

ϒ−1
T

[

∑

εj1
∑

y(j−1)1εj1

]}

.

The first term

ϒ−1
T

[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]

ϒ−1
T

=
[

√
T 0

0
√
T

]−1
[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]

[
√
T 0

0
√
T

]−1

=
[

1 T−1∑y(j−1)1

T−1∑y(j−1)1 T−1∑y2
(j−1)1

]

H⇒
[

1 σN1/292

σN1/292 σ 2N93

]

.

The second term

ϒ−1
Tn

[

∑

εj1
∑

y(j−1)1εj1

]

=
[

T−1/2∑εj1

T−1/2∑y(j−1)1εj1

]

H⇒
[

w1
σN1/294

]

.

Combining these two terms, we have

[

Tα̂

T(β̂ −1)

]

H⇒ σN1/2

[

1 σN1/292

σN1/292 σ 2N93

]−1 [
w1

σN1/294

]

= 1

93 −92
2

[

σN1/2 (93w1 −9294)

−92w1 +94

]

.

Furthermore,

σ̂ 2
v =

∑

(

yj1 − α̂ − β̂y(j−1)1

)2

=
∑

[

σ
√

1εj1 − (β̂ −1)y(j−1)1 − α̂
]2

=
∑

[

σ 21ε2j1 +
(

β̂ −1
)2
y2(j−1)1 + α̂2 −2σ

√
1(β̂ −1)y(j−1)1εj1

−2σ
√

1α̂εj1 +2α̂(β̂ −1)y(j−1)1

]

= σ 2N

(

1

T

∑

ε2j1

)

+T(β̂ −1)2
(

1

T

∑

y2(j−1)1

)

+Tα̂2 −2σN1/2
(

β̂ −1
)(

T−1/2
∑

y(j−1)1εj1

)

−2σN1/2α̂
(

T−1/2
∑

εj1

)

+2Tα̂(β̂ −1)

(

1

T

∑

y(j−1)1

)

= σ 2N

(

1

T

∑

ε2j1

)

[

1+op (1)
]

→ σ 2N.
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The DF statistics is

DF =
(β̂ −1)

[

T
∑T

j=1 y
2
(j−1)1

−
(

∑T
j=1 y(j−1)1

)2
]1/2

[

∑T
j=1

(

yj1 − α̂ − β̂y(j−1)1

)2
]1/2

H⇒ −92w1 +94
(

93 −92
2

)1/2
.

�

Proof of Theorem 2.2. The least-squares estimators of the standardized intercept and

the autoregressive coefficients are

[

α̂ −α0

β̂ −β0

]

= σ
√

1

[

T
∑

y(i−1)1
∑

y(i−1)1
∑

y2
(i−1)1

]−1[ ∑

εi1
∑

y(i−1)1εi1

]

.

Let
∑

denote summation over i= 1, . . . ,T . Based on Lemma 2.2(d), the appropriate scaling

matrix is ϒT = diag
(√

T,
√
T
)

. Premultiplying the above equation by T1/2ϒT leads to

T1/2ϒT

[

α̂ −α0

β̂ −β0

]

=
[

T
(

α̂ −α0
)

T(β̂ −β0)

]

= σN1/2

{

ϒ−1
T

[

T
∑

y(i−1)1
∑

y(i−1)1
∑

y2
(i−1)1

]

ϒ−1
T

}−1{

ϒ−1
T

[
∑

εi1
∑

y(i−1)1εi1

]}

.

The first term

ϒ−1
T

[

T
∑

y(i−1)1
∑

y(i−1)1
∑

y2
(i−1)1

]

ϒ−1
T

=
[

1 T−1∑y(i−1)1

T−1∑y(i−1)1 T−1∑y2
(i−1)1

]

H⇒
[

1 σN1/242

σN1/242 σ 2N43

]

.

The second term

ϒ−1
T

[

∑

εi1
∑

y(i−1)1εi1

]

=
[

T−1/2∑εi

T−1/2∑y(i−1)1εi1

]

H⇒
[

w1

σN1/244

]

.

Combining these two terms, we have

[

T
(

α̂ −α0
)

T(β̂ −β0)

]

H⇒ σN1/2

[

1 σN1/242

σN1/242 σ 2N43

]−1 [
w1

σN1/244

]

= 1

43 −42
2

[

σN1/2 (43w1 −4244)

−42w1 +44

]

.

Therefore, β̂ −β0 converges at rate T to the following quantity:

T(β̂ −β0) H⇒ −42w1 +44

43 −42
2

.
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Furthermore, as in the proof of Theorem 2.1, σ̂ 2
v =

∑

(

yj1 − α̂ − β̂y(j−1)1

)2
→ σ 2N. The

DF statistic is

DF = (β̂ −1)







T
∑T

i=1 y
2
(i−1)1

−
(

∑T
i=1 y(i−1)1

)2

∑T
i=1

(

yi1 − α̂ − β̂y(i−1)1

)2







1/2

= (β̂ −β0)







T
∑T

i=1 y
2
(i−1)i1

−
(

∑T
i=1 y(i−1)1

)2

∑T
i=1

(

yi1 − α̂ − β̂y(i−1)1

)2







1/2

+ (β0 −1)







T
∑T

i=1 y
2
(i−1)1

−
(

∑T
i=1 y(i−1)1

)2

∑T
i=1

(

yi1 − α̂ − β̂y(i−1)1

)2







1/2

H⇒ −42w1 +44
(

43 −42
2

)1/2
+ c

(

43 −42
2

)1/2
.

�

A.2. The DFJ Test Statistic

The least-squares estimators of the standardized intercept and the autoregressive coefficients

with regression (12) are




















α̃ −α0

φ̃1 −φ1

...

φ̃K −φK

β̃ −β0





















= σ
√

1



























T
∑

I1i1 · · ·
∑

IKi1
∑

y(i−1)1

∑

I1i1
∑

(

I1i1

)2
· · ·

∑

I1i1I
K
i1

∑

I1i1y(i−1)1

...
... · · ·

...
...

∑

IKi1
∑

IKi1I
1
i1 · · ·

∑

(

IKi1

)2
∑

IKi1y(i−1)1
∑

y(i−1)1
∑

y(i−1)1I
1
i1 · · ·

∑

y(i−1)1I
K
i1

∑

y2
(i−1)1



























−1

×





















∑

εi1
∑

I1i1εi1

...
∑

IKi1εi1
∑

y(i−1)1εi1





















.
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Let
∑

denote summation over i = 1, . . . ,T . Based on Lemmas 3.1(d) and 3.2(d), the

appropriate scaling matrix is ϒTn = diag
(√

T,1, . . . ,1,
√
T
)

. Premultiplying the above

equation by ϒT leads to

T1/2ϒT





















α̃ −α0

φ̃1 −φ1

...

φ̃K −φK

β̃ −β0





















= σN1/2



















































ϒ−1
T



























T
∑

I1i1 · · ·
∑

IKi1
∑

y(i−1)1

∑

I1i1
∑

(

I1i1

)2
· · ·

∑

I1i1I
K
i1

∑

I1i1y(i−1)1

...
... · · ·

...
...

∑

IKi1
∑

IKi1I
1
i1 · · ·

∑

(

IKi1

)2
∑

IKi1y(i−1)1

∑

y(i−1)1
∑

y(i−1)1I
1
i1· · ·

∑

y(i−1)1I
K
i1

∑

y2
(i−1)1



























ϒ−1
T



















































−1

×ϒ−1
T





















∑

εi1
∑

I1i1εi1

...
∑

IKi1εi1
∑

y(i−1)1εi1





















with α0 = 0 and β0 = 1 under the null. The first term

ϒ−1
T
























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∑
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∑

IKi1
∑

y(i−1)1

∑
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∑
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∑
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∑
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∑
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1
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∑

(
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K
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∑

y2
(i−1)1

























ϒ−1
T

=



























1 T−1/2∑ I1i1 · · · T−1/2∑ IKi1 T−1∑y(i−1)1
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K
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=























1 T−1/2 · · · T−1/2 T−1∑y(i−1)1

T−1/2 1 · · · 0 T−1/2y(τ1−1)1

...
... · · ·

...
...

T−1/2 0 · · · 1 T−1/2y(τK−1)1

T−1∑y(i−1)1 T−1/2y(τ1−1)1 · · · T−1/2y(τK−1)1 T−1∑y2
(i−1)1























.

The second term

ϒ−1
T










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∑
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
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


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.

Proof of Theorem 3.1. Under the null hypothesis of (11), from Lemma 3.1, the first

term

ϒ−1
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∑
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∑
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∑
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∑
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and the second term
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Combining these two terms, we have

























Tα̃

T1/2
(

φ̃1 −φ1

)

...

T1/2
(

φ̃K −φK

)

T
(

β̃ −1
)

























⇒ σN1/2





















1 0 · · · 0 σN1/29̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/29̃2 0 · · · 0 σ 2N9̃3





















−1

×



















w1

ετ1

...

ετK

σN1/29̃4



















=



























σN1/2 9̃3w1−9̃29̃4

9̃3−9̃2
2

σN1/2ετ1

...

σN1/2ετK

9̃4−9̃2w1

9̃3−9̃2
2



























.

Therefore,

Tα̃ ⇒ σN1/2 9̃3w1 − 9̃29̃4

9̃3 − 9̃2
2

,

T1/2
(

φ̃k−φk

)

⇒ N

(

0,σ 2N
)

for k = 1, . . . ,K,

T
(

β̃ −1
)

⇒ 9̃4 − 9̃2w1

9̃3 − 9̃2
2

.

The estimated error variance

σ̃ 2
v =

∑



yi1 − β̃y(i−1)1 − α̃ −
K
∑

k=1

φ̃kI
k
i1





2

=
∑



σ
√

1εi1 −
(

β̃ −1
)

y(i−1)1 − α̃ +
K
∑

k=1

(

φ̃k−φk

)

Iki1





2

= σ 21
∑

ε2i1 +
(

β̃ −1
)2∑

y2(i−1)1 + α̃2 +
∑





K
∑

k=1

(

φ̃k−φk

)

Iki1





2

−2σ
√

1
(

β̃ −1
)

∑

y(i−1)1εi1 −2σ
√

1α̃
∑

εi1

+2σ
√

1
∑





K
∑

k=1

(

φ̃k−φk

)

Iki1



εi1
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+2
(

β̃ −1
)

α̃
∑

y(i−1)1 −2
(

β̃ −1
)

∑

y(i−1)1

K
∑

k=1

(

φ̃k−φk

)

Iki1

−2α̃
∑

K
∑

k=1

(

φ̃k−φk

)

Iki1

= σ 21
∑

ε2i1

[

1+op (1)
]

→ σ 2N

from Lemma 3.1 and the fact that α̃ = Op

(

T−1
)

,β̃ − 1 = Op

(

T−1
)

, and φ̃k − φk =

Op

(

T−1/2
)

,

DFJ =

(

β̃ −1
)

[

T
∑T

j=1 y
2
(j−1)1

−
(

∑T
j=1 y(j−1)1

)2
]1/2

[

∑T
j=1

(

yj1 − β̃y(j−1)1 − α̃ −
∑K

k=1 φ̃kI
k
j1

)2
]1/2

H⇒ 9̃4 − 9̃2w1
(

9̃3 − 9̃2
2

)1/2
.

�

Proof of Theorem 3.2. Under the alternative hypothesis of (10), from Lemma 3.2, the

first term

ϒ−1
T



























T
∑

I1i1 · · ·
∑

IKi1
∑

y(i−1)1

∑

I1i1
∑

(

I1i1

)2
· · ·

∑

I1i1I
K
i1

∑

I1i1y(i−1)1

...
... · · ·

...
...

∑

IKi1
∑

IKi1I
1
i1 · · ·

∑

(

IKi1

)2
∑

IKi1y(i−1)1
∑

y(i−1)1
∑

y(i−1)1I
1
i1 · · ·

∑

y(i−1)1I
K
i1

∑

y2
(i−1)1



























ϒ−1
T ⇒





















1 0 · · · 0 σN1/24̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/24̃2 0 · · · 0 σ 2N4̃3





















and the second term

ϒ−1
T





















∑

εi1
∑

I1i1εi1

...
∑

IKi1εi1
∑

y(i−1)1εi1





















⇒



















w1

ετ1

...

ετK

σN1/24̃4



















.
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Combining these two terms, we have

























T (α̃ −α0)

T1/2
(

φ̃1 −φ1

)

...

T1/2
(

φ̃K −φK

)

T
(

β̃ −β0

)

























⇒ σN1/2





















1 0 · · · 0 σN1/24̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/24̃2 0 · · · 0 σ 2N4̃3





















−1

×



















w1

ετ1

...

ετK

σN1/24̃4



















=



























σN1/2 4̃3w1−4̃24̃4

4̃3−4̃2
2

σN1/2ετ1

...

σN1/2ετK

4̃4−4̃2w1

4̃3−4̃2
2



























.

Similarly, we can show that the error variance σ̃ 2
v =

∑

(yi1− β̃y(i−1)1− α̃−
∑K

k=1 φ̃kI
k
i1)2

=σ 21
∑

ε2i1

[

1+op (1)
]

→ σ 2N. From Lemma 3.2 and the results that β̃ − β0 =
Op

(

T−1
)

,

DF =

(

β̃ −1
)

[

T
∑T

j=1 y
2
(j−1)1

−
(

∑T
j=1 y(j−1)1

)2
]1/2

[

∑T
j=1

(

yj1 − β̃y(j−1)1 − α̃ −
∑K

k=1 φ̃kI
k
j1

)2
]1/2

H⇒ 4̃4 − 4̃2w1
(

4̃3 − 4̃2
2

)1/2
+ c

(

4̃3 − 4̃2
2

)1/2
.

�

A.3. The DF Test Statistic in the Presence of Jumps

Proof of Theorem 3.3. The least-squares estimators of the standardized intercept and

the autoregressive coefficients with regression (4), under the DGP of (11), are

[

α̂

β̂ −1

]

=
[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]−1

×









∑K
k=1φk

∑

Ikj1
∑K

k=1φk
∑

y(j−1)1I
k
j1



+σ
√

1

[

∑

εj1
∑

y(j−1)1εj1

]



 .
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Premultiplying the above equation by ϒTn = diag
(√

T,
√
T
)

leads to

T1/2ϒTn

[

α̂

β̂ −1

]

=
{

ϒ−1
Tn

[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]

ϒ−1
Tn

}−1

×
[

∑K
k=1φk+σ

√
1
∑

εj1
∑K

k=1φky(τk−1)1 +σ
√

1
∑

y(j−1)1εj1

]

.

The first term

ϒ−1
Tn

[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]

ϒ−1
Tn

=
[

T T−1∑y(j−1)1

T−1∑y(j−1)1 T−1∑y2
(j−1)1

]

⇒
[

1 σN1/29̃2

σN1/29̃2 σ 2N9̃3

]

.

For the second term,

[

∑K
k=1φk+σ

√
1
∑

εj1
∑K

k=1φky(τk−1)1 +σ
√

1
∑

y(j−1)1εj1

]

=





∑K
k=1φk+σN1/2

(

T−1/2∑εj1

)

∑K
k=1φky(τk−1)1 +σN1/2

(

T−1/2∑y(j−1)1εj1

)





⇒





σN1/2
(

∑K
k=1

φk
σN1/2 +w1

)

σ 2N
[

∑K
k=1

φk
σN1/2

(

wrk +γ+12

)

+ 9̃4

]



 .

Combining these two terms, we have

[

Tα̂

T(β̂ −1)

]

⇒
[

1 σN1/29̃2

σN1/29̃2 σ 2N9̃3

]−1

×





σN1/2
(

∑K
k=1

φk
σN1/2 +w1

)

σ 2N
[

∑K
k=1

φk
σN1/2

(

wrk +γ+12

)

+ 9̃4

]





=











σN1/2
9̃3w1−9̃29̃4+

∑K
k=1

φk

σN1/2

[

9̃3−9̃2

(

wrk+γ+12

)

]

9̃3−9̃2
2

9̃4−9̃2w1+
∑K

k=1
φk

σN1/2

(

wrk+γ+12−9̃2

)

9̃3−9̃2
2











.
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Furthermore,

σ̂ 2
v =

∑

(

yj1 − β̂y(j−1)1 − α̂
)2

=
∑



σ
√

1εj1 − (β̂ −1)y(j−1)1 − α̂ +
K
∑

k=1

φkI
k
j1





2

= σ 21
∑

ε2j + (β̂ −1)2
∑

y2(j−1)1 + α̂2 +
∑





K
∑

k=1

φkI
k
j1





2

−2σ
√

1(β̂ −1)
∑

y(j−1)1εj1 −2σ
√

1α̂
∑

εj+2σ
√

1
∑





K
∑

k=1

φkI
k
j1



εj1

+2(β̂ −1)α̂
∑

y(j−1)1 −2(β̂ −1)
∑

y(j−1)1

K
∑

k=1

φkI
k
j1 −2α̂

∑

K
∑

k=1

φkI
k
j1

=






σ 21

∑

ε2j +
∑





K
∑

k=1

φkI
k
j1





2






{

1+op (1)
}

→ σ 2N



1+
K
∑

k=1

φ2
k

σ 2N





from Lemma 3.1 and the fact that α̃ = Op

(

T−1
)

, and β̃ − 1 = Op

(

T−1
)

. The DF

statistic is

DF =
(β̂ −1)

[

T
∑T

j=1 y
2
(j−1)1

−
(

∑T
j=1 y(j−1)1

)2
]1/2

[

∑T
j=1

(

yj1 − α̂ − β̂y(j−1)1

)2
]1/2

H⇒





9̃4 − 9̃2w1

9̃3 − 9̃2
2

+
∑K

k=1
φk

σN1/2

(

wrk +γ+12 − 9̃2

)

9̃3 − 9̃2
2











9̃3 − 9̃2
2

1+
∑K

k=1
φ2
k

σ 2N







1/2

=
9̃4 − 9̃2w1 +

∑K
k=1

φk
σN1/2

(

wrk +γ+12 − 9̃2

)

(

1+
∑K

k=1
φ2
k

σ 2N

)1/2 (

9̃3 − 9̃2
2

)1/2
.

�

Proof of Theorem 3.4. The least-squares estimators of the standardized intercept and

the autoregressive coefficients with regression (4), under the DGP of (10), are

[

α̂ −α0

β̂ −β0

]

=
[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]−1
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×









∑K
k=1φk

∑

Ikj1
∑K

k=1φk
∑

y(j−1)1I
k
j1



+λ0

[

∑

εj1
∑

y(j−1)1εj1

]



 .

Premultiplying the above equation by ϒTn = diag
(√

T,
√
T
)

leads to

T1/2ϒTn

[

α̂ −α0

β̂ −β0

]

=
{

ϒ−1
Tn

[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]

ϒ−1
Tn

}−1

×
[

∑K
k=1φk+λ0

∑

εj1
∑K

k=1φky(τk−1)1 +λ0
∑

y(j−1)1εj1

]

.

The first term

ϒ−1
Tn

[

T
∑

y(j−1)1
∑

y(j−1)1
∑

y2
(j−1)1

]

ϒ−1
Tn

=
[

T T−1∑y(j−1)1

T−1∑y(j−1)1 T−1∑y2
(j−1)1

]

⇒
[

1 σN
1/2
2 4̃2

σN1/24̃2 σ 2N4̃3

]

.

For the second term,

[

∑K
k=1φk+λ0

∑

εj1
∑K

k=1φky(τk−1)1 +λ0
∑

y(j−1)1εj1

]

=





∑K
k=1φk+T1/2λ0

(

T−1/2∑εj1

)

∑K
k=1φky(τk−1)1 +T1/2λ0

(

T−1/2∑y(j−1)1εj1

)





H⇒





σN1/2
(

∑K
k=1 ςk+w1

)

σ 2N
{

∑K
k=1 ςk

[

δ
(

1− erkc
)

+ Jc (rk)+ erkcγ+14

]

+ 4̃4

}



 .

Combining these two terms, we have

[

T
(

α̂ −α0
)

T(β̂ −β0)

]

⇒
[

1 σN
1/2
2 4̃2

σN
1/2
2 4̃2 σ 2N4̃3

]−1

×





σN1/2
(

∑K
k=1 ςk+w1

)

σ 2N
{

∑K
k=1 ςk

[

δ
(

1− erkc
)

+ Jc (rk)+ erkcγ+14

]

+ 4̃4

}





=











σN1/2
4̃3w1−4̃24̃4+

∑K
k=1 ςk

[

4̃3−[δ(1−erkc)+Jc(rk)+erkcγ+14]4̃2

]

4̃3−4̃2
2

4̃4−4̃2w1+
∑K

k=1 ςk

[

δ(1−erkc)+Jc(rk)+erkcγ+14−4̃2

]

4̃3−4̃2
2











.
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Furthermore,

σ̂ 2
v =

∑

(

yj1 − β̂y(j−1)1 − α̂
)2

=
∑



λ0εj1 − (β̂ −β0)y(j−1)1 −
(

α̂ −α0
)

+
K
∑

k=1

φkI
k
j1





2

= λ20

∑

ε2j + (β̂ −β0)
2
∑

y2(j−1)1 +
(

α̂ −α0
)2 +

∑





K
∑

k=1

φkI
k
j1





2

−2λ0(β̂ −β0)
∑

y(j−1)1εj1 −2λ0
(

α̂ −α0
)

∑

εj+2λ0

∑





K
∑

k=1

φkI
k
j1



εj1

+2(β̂ −1)
(

α̂ −α0
)

∑

y(j−1)1 −2(β̂ −1)
∑

y(j−1)1

K
∑

k=1

φkI
k
j1

−2
(

α̂ −α0
)

∑

K
∑

k=1

φkI
k
j1

=






λ20

∑

ε2j +
∑





K
∑

k=1

φkI
k
j1





2






{

1+op (1)
}

→ σ 2N



1+
K
∑

k=1

φ2
k

σ 2N





from Lemma 3.1 and the fact that α̃ =Op

(

T−1
)

, and β̃ −1=Op

(

T−1
)

. The DF statistic

is

DF =
(β̂ −1)

[

T
∑T

j=1 y
2
(j−1)1

−
(

∑T
j=1 y(j−1)1

)2
]1/2

[

∑T
j=1

(

yj1 − α̂ − β̂y(j−1)1

)2
]1/2

H⇒
4̃4 − 4̃2w1 +

∑K
k=1 ςk

[

δ
(

1− erkc
)

+ Jc (rk)+ erkcγ+14 − 4̃2

]

4̃3 − 4̃2
2

×







4̃3 − 4̃2
2

1+
∑K

k=1
φ2
k

σ 2N







1/2

+ c







4̃3 − 4̃2
2

1+
∑K

k=1
φ2
k

σ 2N







1/2
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=
4̃4 − 4̃2w1 +

∑K
k=1 ςk

[

δ
(

1− erkc
)

+ Jc (rk)+ erkcγ+14 − 4̃2

]

(

1+
∑K

k=1
φ2
k

σ 2N

)1/2 (

4̃3 − 4̃2
2

)1/2

+ c







4̃3 − 4̃2
2

1+
∑K

k=1
φ2
k

σ 2N







1/2

.

�

A.4. Asymptotics of the DFĴ Statistic

Proof of Theorem 3.5. The null and alternative models can be written in matrix form as

follows:

Y = Xθ0 +σ
√

1ε and Y = Xθ1 +λ0ε,

where Y = [y11,y21, . . . ,yT1]′, xi1 =
[

1,I1i1, . . . ,IKi1,y(i−1)1

]′
,X= [x11,x21, . . . ,xT1]′,

θ0 = (0,φ1, . . . ,φK,1)′, θ1 = (α0,φ1, . . . ,φK,β0)
′, ε = [ε11,ε21, . . . ,εT1]′. The

regression model is

Y = X̂θ + v,

where x̂i1 =
[

1, Î1i1, . . . , ÎK̂i1,y(i−1)1

]′
, X̂ =

[

x̂11,x̂21, . . . ,x̂T1

]′
, θ =

(

α,φ1, . . . ,φK̂,β
)′
,

and v = (v11,v21, . . . ,vT1)′. Let θ̈ =
(

α̈,φ̈1, . . . ,φ̈K̂,β̈
)′

be the OLS estimate of θ . We

have

θ̈ =
(

X̂′X̂
)−1

X̂′Y =
(

X̂′X̂
)−1

X̂′Xθ0 +σ
√

1
(

X̂′X̂
)−1

X̂′ε

under the null and

θ̈ =
(

X̂′X̂
)−1

X̂′Y =
(

X̂′X̂
)−1

X̂′Xθ1 +λ0

(

X̂′X̂
)−1

X̂′ε

under the alternative. Let ϒT = diag
(√

T,1, . . . ,1,
√
T
)

and ϒ∗
T = T1/2ϒT . We have

ϒ∗−1
T X̂′X̂

=



























1 T−1∑ Î1i1 · · · T−1∑ ÎK̂i1 T−1∑y(i−1)1

T−1/2∑ Î1i1 T−1/2∑
(

Î1i1

)2
· · · T−1/2∑ Î1i1 Î

K̂
i1 T−1/2∑ Î1i1y(i−1)1

...
... · · ·

...
...

T−1/2∑ ÎK̂i1 T−1/2∑ ÎK̂i1 Î
1
i1 · · · T−1/2∑

(

ÎK̂i1

)2
T−1/2∑ ÎK̂i1y(i−1)1

T−1∑y(i−1)1 T−1∑y(i−1)1 Î
1
i1 · · · T−1∑y(i−1)1 Î

K̂
i1 T−1∑y2

(i−1)1



























,
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ϒ∗−1
T X̂′X

=























1 T−1∑ I1i1 · · · T−1∑ IKi1 T−1∑y(i−1)1

T−1/2∑ Î1i1 T−1/2∑ Î1i1I
1
i1 · · · T−1/2∑ Î1i1I

K
i1 T−1/2∑ Î1i1y(i−1)1

...
... · · ·

...
...

T−1/2∑ ÎK̂i1 T−1/2∑ ÎK̂i1I
1
i1 · · · T−1/2∑ ÎK̂i1I

K
i1 T−1/2∑ ÎK̂i1y(i−1)1

T−1∑y(i−1)1 T−1∑y(i−1)1I
1
i1 · · · T−1∑y(i−1)1I

K
i1 T−1∑y2

(i−1)1























,

and

ϒ−1
T X̂′X̂ϒ−1

T

=



























1 T−1/2∑ Î1i1 · · · T−1/2∑ ÎK̂i1 T−1∑y(i−1)1

T−1/2∑ Î1i1
∑

(

Î1i1

)2
· · ·

∑

Î1i1 Î
K̂
i1 T−1/2∑ Î1i1y(i−1)1

...
... · · ·

...
...

T−1/2∑ ÎK̂i1
∑

ÎK̂i1 Î
1
i1 · · ·

∑

(

ÎK̂i1

)2
T−1/2∑ ÎK̂i1y(i−1)1

T−1∑y(i−1)1 T−1/2∑ Î1i1y(i−1)1 · · · T−1/2∑ ÎK̂i1y(i−1)1 T−1∑y2
(i−1)1



























.

By construction, we have
∑

Iki1 = 1,
∑

Îki1 = 1,
∑

Isi1I
l
i1 = 0, and

∑

Îsi1 Î
l
i1 = 0, for any

s,l,k ∈
[

1,K̂
]

and s 6= l. (1) Under the null hypothesis of (11),

ϒ∗−1
T X̂′X̂ H⇒





















1 0 · · · 0 σN1/29̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/29̃2 0 · · · 0 σ 2N9̃3





















(K+2)×(K+2)

,

ϒ∗−1
T X̂′X H⇒





















1 0 · · · 0 σN1/29̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/29̃2 0 · · · 0 σ 2N9̃3





















(K+2)×(K+2)

,

ϒ−1
T X̂′X̂ϒ−1

T H⇒





















1 0 · · · 0 σN1/29̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/29̃2 0 · · · 0 σ 2N9̃3





















(K+2)×(K+2)
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using results from Lemma 3.1. Therefore,

θ̈ =
(

ϒ∗−1
T X̂′X̂

)−1 (

ϒ∗−1
T X̂′X

)

θ0 +σ
√

1
(

X̂′X̂
)−1

X̂′ε ∼ θ0 +σ
√

1
(

X̂′X̂
)−1

X̂′ε.

Furthermore,

T1/2ϒ−1
T σ

√
1X̂′ε = T1/2σ

√
1





















T−1/2∑εi1

ετ̂11

...

ετ̂k1

T−1/2∑y(i−1)1εi1





















H⇒ σN1/2



















w1

ετ11

...

ετk1

σN1/29̃4



















using results from Lemma 3.1 and Remark 3.2. Therefore,

T1/2ϒT

(

θ̈ − θ0
)

∼ T1/2σ
√

1
(

ϒ−1
T X̂′X̂ϒ−1

T

)−1
ϒ−1
T X̂′ε H⇒



























σN1/2 9̃3w1−9̃29̃4

9̃3−9̃2
2

σN1/2ετ1

...

σN1/2ετK

9̃4−9̃2w1

9̃3−9̃2
2



























.

More explicitly, we have

Tα̈ H⇒ σN1/2 9̃3w1 − 9̃29̃4

9̃3 − 9̃2
2

;

T1/2
(

φ̈k−φk
)

H⇒ N (0,σ 2N);

T
(

β̈ −1
)

H⇒ 9̃4 − 9̃2w1

9̃3 − 9̃2
2

.

(2) Under the alternative of (10),

ϒ∗−1
T X̂′X̂ H⇒





















1 0 · · · 0 σN1/24̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/24̃2 0 · · · 0 σ 2N4̃3





















(K+2)×(K+2)

,
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ϒ∗−1
T X̂′X H⇒





















1 0 · · · 0 σN1/24̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/24̃2 0 · · · 0 σ 2N4̃3





















(K+2)×(K+2)

,

ϒ−1
T X̂′X̂ϒ−1

T H⇒





















1 0 · · · 0 σN1/24̃2

0 1 · · · 0 0

...
... · · ·

...
...

0 0 · · · 1 0

σN1/24̃2 0 · · · 0 σ 2N4̃3





















(K+2)×(K+2)

using results from Lemma 3.2. Therefore,

θ̈ =
(

ϒ∗−1
T X̂′X̂

)−1 (

ϒ∗−1
T X̂′X

)

θ1 +λ0

(

X̂′X̂
)−1

X̂′ε ∼ θ1 +λ0

(

X̂′X̂
)−1

X̂′ε.

Furthermore,

T1/2ϒ−1
T λ0X̂

′ε = T1/2λ0





















T−1/2∑εi1

ετ̂11

...

ετ̂k1

T−1/2∑y(i−1)1εi1





















H⇒ σN1/2



















w1

ετ11

...

ετk1

σN1/24̃4



















using results from Lemma 3.2 and Remark 3.2. Therefore, we have

T1/2ϒT

(

θ̈ − θ1
)

∼ T1/2λ0

(

ϒ−1
T X̂′X̂ϒ−1

T

)−1
ϒ−1
T X̂′ε H⇒



























σN1/2 4̃3w1−4̃24̃4

4̃3−4̃2
2

σN1/2ετ1

...

σN1/2ετK

4̃4−4̃2w1

4̃3−4̃2
2



























under the alternative. That is,

T (α̈ −α0) H⇒ σN1/2 4̃3w1 − 4̃24̃4

4̃3 − 4̃2
2

;

T1/2
(

φ̈k−φk
)

H⇒ N (0,σ 2N);

T
(

β̈ −β0
)

H⇒ 4̃4 − 4̃2w1

4̃3 − 4̃2
2

.
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One can see that the limiting properties of θ̈ are identical to those of θ̃ =
(

α̃,φ̃1, . . . ,φ̃K̂,β̃
)′

under both the null and the alternative. The remaining part of the proof is analogous to those

in Theorems 3.1 and 3.2. That is, σ̈ 2
v → σ 2N under both the null and alternative hypotheses,

DFĴ H⇒ 9̃4 − 9̃2w1
(

9̃3 − 9̃2
2

)1/2

under the null hypothesis, and

DFĴ H⇒ 4̃4 − 4̃2w1
(

4̃3 − 4̃2
2

)1/2
+ c

(

4̃3 − 4̃2
2

)1/2

under the alternative. �
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