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Abstract
We prove results about subshifts with linear (word) complexity, meaning that lim sup 𝑝 (𝑛)

𝑛 < ∞, where for every
n, 𝑝(𝑛) is the number of n-letter words appearing in sequences in the subshift. Denoting this limsup by C, we show
that when 𝐶 < 4

3 , the subshift has discrete spectrum, that is, is measurably isomorphic to a rotation of a compact
abelian group with Haar measure. We also give an example with 𝐶 = 3

2 which has a weak mixing measure. This
partially answers an open question of Ferenczi, who asked whether 𝐶 = 5

3 was the minimum possible among
such subshifts; our results show that the infimum in fact lies in [ 4

3 ,
3
2 ]. All results are consequences of a general

S-adic/substitutive structure proved when 𝐶 < 4
3 .
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1. Introduction

The main objects of study in symbolic dynamics are subshifts, which are dynamical systems defined
by a finite alphabet A, a closed shift-invariant set of sequences 𝑋 ⊂ AZ and the left-shift map 𝜎. We
sometimes speak of subshifts as measure-theoretic dynamical systems by associating a measure 𝜇; in
this case, 𝜇 is always assumed to be a Borel probability measure invariant under 𝜎. One of the most
basic ways to measure the ‘size’ of a subshift X is the word complexity function 𝑝(𝑛), which measures
the number of finite words of length n which appear within points of X. In addition to being intimately
connected with the fundamental notion of topological entropy (the entropy ℎ(𝑋) is just the exponential
growth rate of 𝑝(𝑛) when 𝑝(𝑛) grows exponentially), many recent works prove that slow growth of 𝑝(𝑛)
forces various strong structural properties of X.

The well-known Morse–Hedlund theorem [MH38] implies that if X is infinite, then 𝑝(𝑛) ≥ 𝑛 + 1 for
all n. There are subshifts which achieve this minimal value (i.e., 𝑝(𝑛) = 𝑛 + 1 for all n), which are called
Sturmian subshifts. We do not give a full treatment here, but briefly say that Sturmian subshifts are
defined by symbolic codings of orbits for irrational circle rotations and in fact are measure-theoretically
isomorphic to these rotations (associated with Lebesgue measure).
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Slightly above the minimum possible complexity is the property of linear complexity, meaning that
lim sup 𝑝(𝑛)/𝑛 = 𝐶 < ∞. This implies a great deal about X; a full list is beyond this work, but we list
a few such results here. In the following, X is transitive when there exists 𝑥 ∈ 𝑋 whose orbit {𝜎𝑛𝑥} is
dense in X and minimal when every 𝑥 ∈ 𝑋 has dense orbit.

1. If X is transitive, then the number of ergodic measures on X is bounded from above by �𝐶�. If𝐶 < 3,
then in fact there is only one 𝜎-invariant measure on X, in which case X is said to be uniquely
ergodic. ([Bos92], [DOP22])

2. For all X, the number of nonatomic generic measures on X is bounded from above by �𝐶� ([CK19])
3. If X is minimal, then the automorphism group of X is virtually Z (in particular, there are at most �𝐶�

cosets once one mods out by the shift action) ([CK15], [DDMP16])
4. If X is minimal, then X has finite topological rank ([DDMP21])
5. X cannot have any nontrivial strongly mixing measure ([Fer96])
6. If X is transitive and 𝐶 < 1.5, then X is minimal ([OP19])

(In fact, the weaker condition lim inf 𝑝(𝑛)/𝑛 < ∞ is sufficient for some of the structure above, but
as our results don’t involve this quantity, we don’t comment on it further here.) The final item above
is one of surprisingly few results proved about subshifts with C close to 1, and understanding more
about the structure of such shifts was a main motivation of this work. In a sense, we show that for C
sufficiently close to 1, a subshift must have structure more and more similar to the Sturmian subshifts,
which achieve minimal possible complexity. Recall that Sturmian subshifts are measure-theoretically
isomorphic to a (compact abelian) group rotation; this property is called discrete spectrum. In fact,
this property is equivalent to 𝐿2 (𝑋) being spanned by the measurable eigenfunctions of 𝜎 (i.e., f for
which 𝑓 (𝜎𝑥) = 𝜆 𝑓 (𝑥) for some 𝜆). When X has no eigenfunctions at all, it is said to be weak mixing,
which is in a sense an opposite property to discrete spectrum.

Ferenczi ([Fer96]) proved that the property of strong mixing (which means that 𝜇(𝐴 ∩ 𝜎−𝑛𝐵) →
𝜇(𝐴)𝜇(𝐵) for all measurable 𝐴, 𝐵) cannot hold for any nontrivial measure on a linear complexity
subshift. He also gave an example of X with a strongly mixing measure and 𝑝(𝑛) quadratic and asked
whether this complexity was the lowest possible. This was proved not to be the case in [Cre22] and
[CPR23], which provided examples first on the order of 𝑛 log 𝑛 and then below any possible superlinear
growth rate, establishing linear complexity as the ‘threshold’ for existence of such a measure. In a
different work, Ferenczi ([Fer95]) examined the same question for weakly mixing measures, where it is
known that linear complexity can occur via the well-known Chacon subshift. He there gave an example
of X with a nontrivial weakly mixing measure and 𝐶 = 5/3 and again asked whether this was minimal.
This was shown not to be the case in [Cre23], where examples were given of C arbitrarily close to (but
above) 3/2.

Our main results are the following.

Theorem 4.1 . If X is an infinite transitive subshift with lim sup 𝑝 (𝑞)
𝑞 < 4

3 , then X is uniquely ergodic
with unique measure which has discrete spectrum.

Theorem 5.1 . There exists an infinite transitive subshift X which is uniquely ergodic, has unique
measure which is weak mixing and for which lim sup 𝑝 (𝑞)

𝑞 = 3
2 .

In [Cre23], it was also suggested that perhaps a subshift X having a nontrivial weakly mixing measure
forces lim sup 𝑝 (𝑞)

𝑞 > 3
2 ; Theorem 5.1 answers this negatively. In fact, the examples from Theorem

5.1 satisfy lim 𝑝(𝑞) − 1.5𝑞 = −∞, in contrast to Theorem C from [Cre23], which showed that for
rank-one subshifts, even total ergodicity implies lim sup 𝑝(𝑞) − 1.5𝑞 = ∞. The examples also satisfy
lim inf 𝑝 (𝑞)

𝑞 = 1 and for any 𝑓 (𝑞) → ∞, there exist examples such that 𝑝(𝑞) < 𝑞 + 𝑓 (𝑞) infinitely often.
The proof of Theorem 4.1 depends on proving a substitutive structure for subshifts with 𝐶 < 4

3 . In
fact, for any 𝐶 < 2, Corollary 5.28 from [PS23] already implies that X can be generated by a sequence
of substitutions 𝜏𝑘 on the alphabet {0, 1}; this is known as having alphabet rank two. Similar results
from [DDMP21] prove that even lim inf 𝑝(𝑛)/𝑛 < ∞ implies finite alphabet rank. However, in general
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it is not so easy to prove dynamical properties of a subshift purely from such a structure; the key of our
arguments is that when C is closer to 1, these substitutions come from a very restricted class. We would
like to note that subshifts with 𝑝(𝑛) ≤ 4𝑛/3 + 1 were also studied in [Abe01], where the author proved
a substitutive structure and gave some interesting examples.

Specifically, our Proposition 3.1 shows that any such subshift is induced by a sequence of substitutions
of the form 𝜏𝑚𝑘 ,𝑛𝑘 : 0 ↦→ 0𝑚𝑘−11, 1 ↦→ 0𝑛𝑘−11, where 𝑛 ≤ 2𝑚 for 𝑚 > 1 and 𝑛 ≤ 3 for 𝑚 = 1. This
is related to the well-known Pisot conjecture for subshifts, which states that a subshift generated by
iterating a single substitution 𝜏 should have discrete spectrum if the associated matrix (in which the
(𝑎, 𝑏) entry is the number of occurrences of b in 𝜏(𝑎)) has largest eigenvalue which is a Pisot number
(i.e., a complex number with modulus greater than 1 all of whose conjugates have modulus less than 1).

The Pisot conjecture has been proved in some settings, including when |A| = 2 ([BD02], [HS03])
and whenever the so-called balanced pair algorithm terminates ([SS02]). Our proof of Theorem 4.1 is
in fact based on this algorithm.

In our case, the substitutive structure comes from a sequence of substitutions and not a single one;
this is sometimes called the S-adic Pisot conjecture, based on the often-used term ‘S-adic’ (among
other references, see [DLR13]) to refer to sequences obtained by a sequence of substitutions on a fixed
alphabet. This is much more difficult. The strongest result is due to [BST19], which is too long to state
formally here but which proves discrete spectrum in a fairly general S-adic setting. They do require,
however, that the sequence of substitutions (𝜏𝑛) be recurrent, meaning that for every k, there exists L so
that 𝜏𝑖 = 𝜏𝑖+𝐿 for 1 ≤ 𝑖 ≤ 𝑘 .

We cannot enforce any such condition on our substitutions, as it’s quite possible to have low com-
plexity for 𝜏𝑚𝑘 ,𝑛𝑘 all distinct (for instance, consider Sturmian subshifts, which can be generated by an
infinite sequence of distinct substitutions if the digits of its continued fraction expansion are distinct).
Nevertheless, due to the extremely simple form of 𝜏𝑚𝑘 ,𝑛𝑘 (in which both 0 and 1 are mapped to words
of the form 0𝑖1), we are able to prove discrete spectrum.

We note that indeed our substitutive structure is in some sense Pisot; the associated matrix for 𝜏𝑚,𝑛 is(
𝑚−1 1
𝑛−1 1

)
, whose eigenvalues are

√
𝑚2+4(𝑛−𝑚)±𝑚

2 . This matrix is Pisot when𝑚 < 𝑛 ≤ 2𝑚. Our Proposition
3.1 implies 𝑚 < 𝑛 ≤ 2𝑚, with the possible exception 𝑚 = 1, 𝑛 = 3. Though this substitution is not Pisot,
Proposition 3.1 implies that when it occurs, the previous substitution has 𝑛 = 𝑚+1, and the composition
of those substitutions has matrix

( 0 1
2 1

) (
𝑚−1 1
𝑚 1

)
=
(

𝑚 1
3𝑚−2 3

)
, which is always Pisot.

One of course should not expect that simply assuming each 𝜏𝑖 to be Pisot should guarantee discrete
spectrum; informally, if the second eigenvalues have moduli each less than 1 but which converge to 1
quickly, then the ‘average behavior’ will be that of a non-Pisot number. This is essentially the construction
of our example from Theorem 5.1, which not only does not have discrete spectrum but is weak mixing
(i.e., has no eigenvalue at all).

2. Definitions and preliminaries

Let A be a finite subset of Z; the full shift is the set AZ associated with the product topology. We use 𝜎
to denote the left shift homeomorphism on AZ. A subshift is a closed 𝜎-invariant subset 𝑋 ⊂ AZ. The
orbit of 𝑥 ∈ 𝑋 is the set {𝜎𝑛𝑥}𝑛∈Z. A subshift X is transitive when it is the closure of the orbit of a
single sequence x and minimal when it is the closure of the orbit of every 𝑥 ∈ 𝑋 . For a minimal subshift
X, in a slight abuse of notation, we sometimes refer to X as the orbit closure of a one-sided sequence
𝑦 ∈ AN; this simply means that X is the orbit closure of a two-sided sequence 𝑥 ∈ 𝑋 containing y.

A word is any element of A𝑛 for some 𝑛 ∈ N, referred to as its length and denoted by |𝑤 |. We denote
A∗ =

⋃
𝑛≥1 A𝑛. We represent the concatenation of words 𝑤1, 𝑤2, . . . , 𝑤𝑛 by 𝑤1𝑤2 . . . 𝑤𝑛.

The language of a subshift X on A, denoted 𝐿(𝑋), is the set of all finite words appearing as subwords
of points in X. For any 𝑛 ∈ N, we denote 𝐿𝑛 (𝑋) = 𝐿(𝑋) ∩A𝑛, the set of n-letter words in 𝐿(𝑋). For a
subshift X, the word complexity function of X is defined by 𝑝(𝑛) := |𝐿𝑛 (𝑋) |. For a subshift X and word
𝑤 ∈ 𝐿(𝑋) we denote by [𝑤] the clopen subset in X consisting of all 𝑥 ∈ 𝑋 such that 𝑥0 . . . 𝑥 |𝑤 |−1 = 𝑤.
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One way to generate subshifts is via substitutions. A substitution (sometimes called a morphism) is
a map 𝜏 : A → B∗ for finite alphabets A and B. An example is the well-known Thue–Morse substitution
{0, 1} → {0, 1}∗ given by 0 ↦→ 01 and 1 ↦→ 10.

Substitutions can be composed when viewed as homomorphisms on the monoid of words under
composition, that is, if 𝜏 : A → B∗ and 𝜌 : B → C∗, then 𝜌 ◦ 𝜏 : A → C∗ can be defined by
(𝜌 ◦ 𝜏) (𝑎) = 𝜌(𝑏1)𝜌(𝑏2) . . . 𝜌(𝑏𝑘 ), where 𝜏(𝑎) = 𝑏1 . . . 𝑏𝑘 .

When a sequence of substitutions 𝜏𝑘 : A → A∗ shares the same alphabet, and when there exists 𝑎 ∈ A
for which 𝜏𝑘 (𝑎) begins with a for all k, clearly (𝜏1 ◦ · · · ◦𝜏𝑘 ) (𝑎) is a prefix of (𝜏1 ◦ · · · ◦𝜏𝑘+1) (𝑎) for all k.
In this situation, one may then speak of the (right-infinite) limit of (𝜏1◦· · ·◦𝜏𝑘 ) (𝑎). For example, if all 𝜏𝑘
are equal to the Thue–Morse substitution and 𝑎 = 0, the limiting sequence is .0110100110010110 . . .,
and the orbit closure of this sequence is called the Thue–Morse substitution subshift.

For any subshift X, there is a convenient way to represent the n-language and possible transitions
between words in points of X by a directed graph called the Rauzy graph.

Definition 2.1. For a subshift X and 𝑛 ∈ N, the nth Rauzy graph of X is the directed graph 𝐺𝑋,𝑛 with
vertex set 𝐿𝑛 (𝑋), and directed edges from 𝑤1 . . . 𝑤𝑛 to 𝑤2 . . . 𝑤𝑛+1 for all 𝑤1 . . . 𝑤𝑛+1 ∈ 𝐿𝑛+1 (𝑋).

Example 2.2. If X is the golden mean subshift consisting of bi-infinite sequences on {0, 1} without
consecutive 1s and 𝑛 = 3, then 𝐺𝑋,3 is the following directed graph:

000

100 010

001 101

0000

0001

1001

1000

0100

0010
1010 0101

There is a natural association from bi-infinite paths on the Rauzy graph to sequences inAZ; a sequence
of vertices (𝑣𝑘 ) corresponds to the sequence 𝑥 ∈ 𝐴Z defined by 𝑥(𝑘) . . . 𝑥(𝑘 + 𝑛 − 1) = 𝑣𝑘 for all k. The
main usage of the Rauzy graph is that every point of X corresponds to a bi-infinite path in the Rauzy
graph. However, the opposite is not necessarily true; if X has restrictions/forbidden words of length
greater than 𝑛 + 1, then there may be paths in the Rauzy graph whose associated sequences are not in X.
However, when X has low word complexity function, the set of paths in the Rauzy graph is sufficiently
restrictive to give us useful information about (but not necessarily a complete description of) X.

We note that when X is transitive, 𝐺𝑋,𝑛 is strongly connected for all n, that is, there is a path between
any two vertices. Rauzy graphs are particularly useful for working with so-called left/right special words
in 𝐿(𝑋).

Definition 2.3. A word 𝑤 ∈ 𝐿(𝑋) is left-special (resp. right-special) if there exist 𝑎 ≠ 𝑏 ∈ A so that
𝑎𝑤, 𝑏𝑤 ∈ 𝐿(𝑋) (resp. 𝑤𝑎, 𝑤𝑏 ∈ 𝐿(𝑋)). A word is bispecial if it is both left- and right-special.

For a given n, the left- and right-special words in 𝐿𝑛 (𝑋) correspond to vertices of𝐺𝑋,𝑛 with multiple
incoming/outgoing edges respectively. When 𝐺𝑋,𝑛 has relatively few such vertices, large portions of
bi-infinite paths are ‘forced’ in the sense that when such a path visits a vertex which is not right-special,
there is only one choice for the following edge. Note that if X contains no right-special words of some
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length n, then any edge of 𝐺𝑋,𝑛 forces all subsequent edges, meaning that 𝐺𝑋,𝑛 has only finitely many
bi-infinite paths and X is finite. Therefore, every infinite subshift X has right-special words of every
length, and a similar argument shows that it has left-special words of every length as well.

A particularly simple case that we deal with repeatedly is when 𝑝(𝑛 + 1) − 𝑝(𝑛) = 1; this means that
𝐺𝑋,𝑛 has exactly one more edge than the number of vertices, which means that it has a single vertex
r with two outgoing edges and a single vertex ℓ with two incoming edges (ℓ and r may be the same
vertex), which correspond to the unique right- and left-special words in 𝐿𝑛 (𝑋). It’s not hard to show
that when X is transitive and 𝑝(𝑛 + 1) − 𝑝(𝑛) = 1, the structure of the Rauzy graph 𝐺𝑋,𝑛 must be a
(possibly empty) path from ℓ to r and two edge-disjoint paths from r to ℓ.

We will frequently make use of the following standard lemma, essentially contained in [MH38], for
estimating word complexity.

Lemma 2.4. Let X be a subshift on alphabet A, for all n let 𝑅𝑆𝑛 (𝑋) denote the set of right-special
words of length n in the language of X and for all right-special w, let 𝐹 (𝑤) denote the set of letters
which can follow w, that is, {𝑎 : 𝑤𝑎 ∈ 𝐿(𝑋)}. Then, for all 𝑞 > 𝑟 ,

𝑝(𝑞) = 𝑝(𝑟) +
𝑞−1∑
𝑖=𝑟

∑
𝑤 ∈𝑅𝑆𝑖 (𝑋 )

( |𝐹 (𝑤) | − 1).

Proof. Consider the map 𝑓 : 𝐿𝑟+1(𝑋) → 𝐿𝑟 (𝑋) obtained by removing the final letter, that is, 𝑓 (𝑤𝑎) =
𝑤. It’s clear that f is surjective and that | 𝑓 −1(𝑤) | = 1 for w which is not right-special and | 𝑓 −1(𝑤) | =
|𝐹 (𝑤) | for 𝑤 ∈ 𝑅𝑆𝑟 (𝑋). The result for 𝑞 = 𝑟 + 1 follows immediately, and the general case follows by
induction. �

The following corollary is immediate.

Corollary 2.5. If X is an infinite subshift and𝑇 ⊂ N denotes the set of lengths n for which |𝑅𝑆𝑛 (𝑋) | > 1,
then for all 𝑞 > 𝑟 ,

𝑝(𝑞) ≥ 𝑝(𝑟) + (𝑞 − 𝑟) + |𝑇 ∩ {𝑟, . . . , 𝑞 − 1}|.

If |𝑅𝑆𝑖 (𝑋) | ≤ 2 for all 𝑚 ≤ 𝑖 < 𝑛 and |𝐹 (𝑤) | = 2 for all right-special w with lengths in [𝑟, 𝑞), then the
inequality above is an equality.

3. Structure of subshifts with 𝐶 < 4/3

As mentioned above, our results rely on a substitutive/S-adic structure for subshifts with sufficiently
low complexity. The substitutions in question all have the same form. Namely, for all positive integers
𝑚 < 𝑛, define the substitution

𝜏𝑚,𝑛 :

{
0 ↦→ 0𝑚−11
1 ↦→ 0𝑛−11.

When 𝑚1, . . . , 𝑚𝑘 and 𝑛1, . . . , 𝑛𝑘 are understood, we use the shorthand notation

𝜌𝑘 = 𝜏𝑚1 ,𝑛1 ◦ · · · ◦ 𝜏𝑚𝑘 ,𝑛𝑘 .

Proposition 3.1. If X is an infinite transitive subshift with lim sup 𝑝 (𝑞)
𝑞 < 4

3 , then there exists a substitu-
tion 𝜋 : {0, 1} → A∗, where 𝜋(0), 𝜋(1) begin with different letters and |𝜋(0) | < |𝜋(1) | < 2|𝜋(0) | and
sequences (𝑚𝑘 ), (𝑛𝑘 ) satisfying 0 < 𝑚𝑘 < 𝑛𝑘 so that X is the orbit closure of

𝑥 (𝑚𝑘 ) , (𝑛𝑘 ) = lim
𝑘
(𝜋 ◦ 𝜏𝑚1 ,𝑛1 ◦ · · · ◦ 𝜏𝑚𝑘 ,𝑛𝑘 ) (0) = lim

𝑘
𝜋(𝜌𝑘 (0)).
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In addition,

◦ 𝑛𝑘 ≤ 2𝑚𝑘 whenever 𝑚𝑘 > 1;
◦ 𝑛𝑘 < 1.9𝑚𝑘 whenever 𝑚𝑘 > 4;
◦ 𝑛𝑘 ≤ 3 whenever 𝑚𝑘 = 1;
◦ if 𝑚𝑘+1 = 1, 𝑛𝑘+1 = 3 then 𝑛𝑘 = 𝑚𝑘 + 1; and
◦ every right-special word of length at least |𝑠(𝜋(0))𝑚1−1 |, where s is the maximal common suffix of

(𝜋(0))∞ and (𝜋(0))∞𝜋(1), is a suffix of a concatenation of 𝜋(0) and 𝜋(1).

Definition 3.2. A word v is a root of w if |𝑣 | ≤ |𝑤 | and w is a suffix of the left-infinite word 𝑣∞. The
minimal root of w is the shortest v which is a root of w.

Every word w has a unique minimal root since it is a root of itself (and all roots of w are suffixes of w).

Lemma 3.3 ([Cre22] Lemma 5.7). If w and v are words with |𝑣 | ≤ |𝑤 | such that 𝑤𝑣 has w as a suffix,
then v is a root of w.

Lemma 3.4 ([Cre22] Lemma 5.8). If 𝑢𝑣 = 𝑣𝑢, then u and v are powers of the same word, that is, there
exists a word 𝑣0 and integers 𝑡, 𝑠 > 0 such that 𝑢 = 𝑣𝑡0 and 𝑣 = 𝑣𝑠0.

Lemma 3.5. Let u and v be words with |𝑣 | < |𝑢 |. Let s be the maximal common suffix of 𝑣∞ and 𝑣∞𝑢. If
|𝑠 | ≥ |𝑣𝑢 |, then u and v are powers of the same word.

Proof. If |𝑠 | ≥ |𝑣𝑢 |, then s has 𝑣𝑢 as a suffix. Since v is a root of s, v is a root of u so 𝑢 = 𝑢′𝑣𝑡 for some
𝑡 ≥ 1 and suffix 𝑢′ of v. Then s has 𝑢′𝑣𝑡𝑣 as a suffix since that is a suffix of 𝑣∞ and |𝑠 | ≥ |𝑢′𝑣𝑡𝑣 |. Then
𝑢𝑣 is a suffix of s so 𝑢𝑣 = 𝑣𝑢 as they are both suffixes of s and have the same length so Lemma 3.4 gives
the claim. �

Lemma 3.6. Let v and u be words with |𝑣 | < |𝑢 | which are not powers of the same word and where v is
a suffix of u. Let s be the maximal common suffix of 𝑣∞ and 𝑣∞𝑢 (which must be finite by Lemma 3.5).
Then s is a suffix of any left-infinite concatenation of u and v.

Proof. By Lemma 3.5, |𝑠 | < |𝑣𝑢 | so we need only verify that s is a suffix of 𝑢𝑣𝑞 for 𝑞 ≥ 1 and of 𝑢𝑢.
Since v is a suffix of u, 𝑢𝑢 has 𝑣𝑢 as a suffix hence has s as a suffix. If |𝑠 | ≥ |𝑢 |, then v is a root of u so
𝑢 = 𝑢′𝑣𝑡 and 𝑢𝑣𝑞 = 𝑢′𝑣𝑡𝑣𝑞 is a suffix of 𝑣∞ so s is a suffix of 𝑢𝑣𝑞 . If |𝑠 | < |𝑢 |, then 𝑢 = 𝑢0𝑠

′𝑣𝑡 for some
(possibly empty) suffix 𝑠′ of v and 𝑡 ≥ 1 (as 𝑠 = 𝑠′𝑣𝑡 has v as a root and |𝑠 | ≥ |𝑣 | as v is a suffix of u).
Then 𝑢𝑣𝑞 = 𝑢0𝑠

′𝑣𝑡+𝑞 has 𝑠 = 𝑠′𝑣𝑡 as a suffix. �

Lemma 3.7. Let v and u be words and s be the maximal common suffix of 𝑣∞ and 𝑣∞𝑢. Let y and z be
suffixes of some (possibly distinct) concatenations of u and v, both of length at least |𝑠 |. Then for any
word w, the maximal common suffix of 𝑦𝑣𝑤 and 𝑧𝑢𝑤 is 𝑠𝑤.

Proof. Since y is a suffix of a concatenation of u and v, so is 𝑦𝑣. Then 𝑦𝑣 has 𝑠𝑣 as a suffix by Lemma
3.6. Likewise, 𝑧𝑢 has 𝑠𝑢 as a suffix. As s is a suffix of 𝑣∞, then so is 𝑦𝑣. Likewise, 𝑧𝑢 is a suffix of 𝑣∞𝑢.
Therefore, the maximal common suffix of 𝑦𝑣 and 𝑧𝑢 is s (as they are both at least as long as s). �

Lemma 3.8. If 𝑝(𝑞+1) − 𝑝(𝑞) = 1, then there exists a bispecial word which has length in [𝑞, 𝑞+ 𝑝(𝑞)],
has exactly two successors and is the unique right-special word of its length and also the unique left-
special word of its length.

Proof. Let w be the unique right-special word of length q (which must have exactly two successors) and
y be the unique left-special word, and write z for the label of the path from y to w in the Rauzy graph.
Then |𝑧 | ≤ 𝑝(|𝑤 |). The word 𝑦𝑧 is left-special and right-special and |𝑦𝑧 | = |𝑦 | + |𝑧 | ≤ 𝑞 + 𝑝(𝑞).

If x is a word of the same length as 𝑦𝑧 which is right-special, then x must have w as a suffix. Then
𝑥 = 𝑥0𝑤 and |𝑥0 | = |𝑧 |. Since there is only one path in the Rauzy graph ending at w of length |𝑧 | (due to
y being the unique left-special word), we have that 𝑥 = 𝑦𝑧. �
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Lemma 3.9. Let X be an infinite transitive subshift with 𝑝(𝑞) ≤ 4
3𝑞 for all sufficiently large q. Then

there exist words a and b which begin with different letters with |𝑎 | < |𝑏 | < 2|𝑎 | and 𝑝(𝑞) < 4
3𝑞 for

all 𝑞 ≥ |𝑎 | and where a is a root of b such that every 𝑥 ∈ 𝑋 can be written in exactly one way as a
concatenation of a and b. If we define s to be the maximal common suffix of 𝑎∞ and 𝑎∞𝑏, there exists
𝑡 ≥ 0 so 𝑠𝑎𝑡 is the unique right-special and left-special word of its length.

Proof. There exist infinitely many q such that 𝑝(𝑞 + 1) − 𝑝(𝑞) = 1 by Corollary 2.5. By Lemma 3.8,
there exists a bispecial word w with |𝑤 | arbitrarily large which is the unique left-special and right-special
word of its length and which has exactly two successors. We may assume 𝑝(𝑞) ≤ 4

3𝑞 for all 𝑞 ≥ |𝑤 |.
We note that by [OP19], X is infinite and minimal.

Let u and v be the shortest two return words for w (meaning 𝑤𝑢 and 𝑤𝑣 both have w as a suffix)
which will be the labels of the two paths from w to itself in the Rauzy graph 𝐺𝑋, |𝑤 | for words of length
|𝑤 |, with v being the shorter of the two. All bi-infinite words in X can be written in exactly one way as a
concatenation of v and u, as every such word must be the label of a path in the Rauzy graph (which visits
the vertex w infinitely many times by minimality of X), and the only two such paths have labels v and u.

Since |𝑢 | + |𝑣 | ≤ 𝑝(|𝑤 |) + 1 ≤ 4
3 |𝑤 | + 1, we have 2|𝑣 | ≤ 4

3 |𝑤 | + 1 so |𝑣 | ≤ 2
3 |𝑤 | +

1
2 . This is less than

|𝑤 | (since |𝑤 | > 1), and so v is a root of w by Lemma 3.3. Note that v cannot be a proper power of any
word since if 𝑣 = 𝑣𝑡0, then 𝑤𝑣0 has w as a suffix so 𝑣0 is a root of w making 𝑣0 a return word for w which
is shorter than v.

Observe that if |𝑤 | < 3|𝑣 |, then |𝑢 | ≤ 4
3 |𝑤 | + 1 − |𝑣 | < 4

3 |𝑤 | −
1
3 |𝑤 | + 1 so u is a suffix of w making v

a root of u. We write 𝑢 = 𝑢★𝑣𝑠 for some proper suffix 𝑢★ of v (which cannot be empty as u and v start
with different letters) and define 𝑎 = 𝑣 and 𝑏 = 𝑢★𝑣. Then as before, every bi-infinite word in X can be
written uniquely as a concatenation of 𝑣 = 𝑎 and 𝑢 = 𝑏𝑎𝑠−1, hence the same is true of a and b (since
𝑎 = 𝑣). Clearly, a is a root of b, and |𝑎 | < |𝑏 | < 2|𝑎 | as 0 < |𝑢★ | < |𝑎 |.

So assume from here on that |𝑤 | ≥ 3|𝑣 |.
Suppose now that for every suffix 𝑤0 of w with |𝑣 | ≤ |𝑤0 | < 2|𝑣 |, we have 𝑝(|𝑤0 | +1) − 𝑝(|𝑤0 |) ≥ 2.

Then, by Corollary 2.5, 𝑝(2|𝑣 |) = 𝑝(2|𝑣 |) − 𝑝(|𝑣 |) + 𝑝(|𝑣 |) ≥ 2(2|𝑣 | − |𝑣 |) + |𝑣 | + 1 = 3|𝑣 | + 1 so
𝑝 (2 |𝑣 |)

2 |𝑣 | > 3
2 , contradicting our hypothesis.

Therefore, there exists 𝑤0 a suffix of w with |𝑣 | ≤ |𝑤0 | < 2|𝑣 | which is the unique right-special word
of its length and it has exactly two successors.

Since 𝑤0 is a suffix of w, v is a root of 𝑤0. As there must also be a unique left-special word of the
same length as 𝑤0, 𝑤0 extends to a bispecial word 𝑤00 which is the unique left-special and right-special
word of its length and which has exactly two successors (Lemma 3.8). Now, |𝑤00 | ≤ |𝑤0 | + |𝑣 | since the
path from the left-special to the right-special vertex in the Rauzy graph for words of length |𝑤0 | must
be no longer than v (as 𝑤0𝑣 must have 𝑤0 as a suffix). Then |𝑤00 | < 2|𝑣 | + |𝑣 | = 3|𝑣 | ≤ |𝑤 | so 𝑤00 is a
proper suffix, and prefix, of w.

Let 𝑣0 and 𝑢0 be the shortest return words for 𝑤00 with 𝑣0 beginning with the same letter as v (and 𝑢0
beginning with a different letter). Then all bi-infinite words in X are concatenations of 𝑢0 and 𝑣0. Since
v is a return word for 𝑤00, v must be a concatenation of 𝑢0 and 𝑣0 which means that 𝑣0 must be a prefix
of v by virtue of sharing a common first letter. Likewise, 𝑢0 must be a prefix of u.

Since v is a suffix of w, then 𝑣𝑣0 has v as a suffix so 𝑣0 is a root of v by Lemma 3.3. Write 𝑣 = 𝑣′𝑣𝑡0
for some 𝑡 ≥ 1 and 𝑣′ a proper suffix of 𝑣0. Then 𝑣0 = 𝑣′′𝑣′ so v has 𝑣′𝑣0 = 𝑣′𝑣′′𝑣′ as a prefix. But 𝑣0
is also a prefix of v so both 𝑣′𝑣′′ and 𝑣′′𝑣′ are prefixes of v. Therefore, they are equal so by Lemma 3.4
both are powers of the same word. But then v is a power of that word and it cannot be a proper power
of any word so either 𝑣′ or 𝑣′′ is empty and so 𝑣0 = 𝑣.

If |𝑢0 | ≤ |𝑣 |, then 𝑢0 is a root of 𝑤00 hence of v. Write 𝑣 = 𝑣★𝑢𝑠0 for some proper suffix 𝑣★ of 𝑢0 (which
cannot be empty as v begins with a different letter than u) and 𝑠 ≥ 1. Taking 𝑎 = 𝑢0 and 𝑏 = 𝑣★𝑢0, then
every bi-infinite word in X is a concatenation of 𝑢0 = 𝑎 and 𝑣 = 𝑏𝑎𝑠−1. Clearly, a is a root of b and
|𝑎 | < |𝑏 | < 2|𝑎 |.

So we are left with |𝑢0 | > |𝑣 |. Here, |𝑢0 | ≤ 𝑝(|𝑤00 |) + 1 − |𝑣 | < 4
3 |𝑤00 | + 1 − 1

3 |𝑤00 | as |𝑤00 | < 3|𝑣 |.
Therefore, |𝑢0 | ≤ |𝑤00 |. So 𝑢0 is a suffix of w hence v is a root of 𝑢0. Writing 𝑢0 = 𝑢★𝑣𝑠 for some proper
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suffix 𝑢★ of v and 𝑠 ≥ 1 then taking 𝑎 = 𝑣 and 𝑏 = 𝑢★𝑣, just as before we have that every bi-infinite
word in X is a unique concatenation of 𝑣 = 𝑎 and 𝑢0 = 𝑏𝑎𝑠−1, hence of a and b. As before, clearly a is a
root of b and |𝑎 | < |𝑏 | < 2|𝑎 |.

In all cases, one of 𝑎, 𝑏 is a prefix of u and the other is a prefix of v. Since u and v begin with different
letters, a and b begin with different letters. It remains to verify the claim about the maximal common
suffix s and that a may be taken arbitrarily long.

In the case when a is a root of w (and 𝑤00 was not introduced), set 𝑤00 = 𝑤 and 𝑡 = 0. Then in all
cases, a is a root of 𝑤00 as a is either v or 𝑢0 so 𝑤00 is a suffix of 𝑎∞. In all cases, 𝑏𝑎𝑡 is the other
return word for 𝑤00 for some 𝑡 ≥ 0. Then 𝑤00𝑎

ℓ𝑏𝑎𝑡 has 𝑤00 as a suffix for all ℓ ≥ 0 so 𝑤00 is a suffix
of 𝑎∞𝑏𝑎𝑡 . Since 𝑤00 is left-special and a and 𝑏𝑎𝑡 are its two return words, the maximal common suffix
of 𝑎∞ and 𝑎∞𝑏𝑎𝑡 must be no longer than 𝑤00. Therefore, 𝑤00 = 𝑠𝑎𝑡 , where s is the maximal common
suffix of 𝑎∞ and 𝑎∞𝑏𝑎.

Let {𝑤ℓ } be a sequence of such bispecial words with |𝑤ℓ | increasing to ∞, and let {𝑎ℓ } and {𝑣ℓ } be
the corresponding a and v above. Since either 𝑎 = 𝑣 or 𝑎 = 𝑢0, and in both cases it is a root of 𝑤00, 𝑎ℓ
is a root of 𝑣ℓ .

Since 𝑤ℓ is the unique right-special word of its length, it is a suffix of 𝑤ℓ+1 and therefore 𝑣ℓ is a
suffix of 𝑣ℓ+1. If |𝑣ℓ | were bounded, then there would exist L such that 𝑣ℓ = 𝑣𝐿 for ℓ ≥ 𝐿 but then 𝑣𝐿
would be a root of 𝑤ℓ for ℓ ≥ 𝐿 so 𝑣∞𝐿 ∈ 𝑋 , a contradiction. So |𝑣ℓ | → ∞. Likewise, since 𝑎ℓ is a root
of 𝑣ℓ , if |𝑎ℓ | were bounded, then for some L we would have 𝑎∞𝐿 ∈ 𝑋 . Therefore, |𝑎ℓ | → ∞ so we may
take a and b such that for all 𝑞 ≥ |𝑎 |, we have 𝑝(𝑞) < 4

3𝑞. �

The following lemma is our main tool to recursively demonstrate the structure from Proposition 3.1.
The key is control over the lengths of the suffixes from Lemmas 3.5 and 3.6.

Lemma 3.10. Let X be an infinite transitive subshift with 𝑝 (𝑞)
𝑞 < 4

3 for 𝑞 > 𝑁 . Let u and v be words
with 𝑁 < |𝑣 | < |𝑢 | such that v is a suffix of u and v is not a prefix of u. Let s be the maximal common
suffix of 𝑣∞ and 𝑣∞𝑢, and let p be the maximal common prefix of u and v.

Assume that |𝑝 | + |𝑠 | < |𝑢 | + |𝑣 | and |𝑝 | + |𝑠 | < 3|𝑣 | and that every bi-infinite word in X can be written
as a concatenation of u and v. Then there exist 0 < 𝑚 < 𝑛 such that every concatenation of u and v
which represents a point in X has only 𝑣𝑚−1 and 𝑣𝑛−1 appearing between nearest occurrences of u and
satisfying:
◦ 𝑛 ≤ 2𝑚 whenever 𝑚 > 1;
◦ 𝑛 < 1.9𝑚 whenever 𝑚 > 4;
◦ 𝑛 ≤ 3 whenever 𝑚 = 1
and the words 𝑠𝑣𝑛−2𝑝 and 𝑠𝑣𝑚−1𝑢𝑣𝑚−1𝑝 are right-special.
Proof. For brevity, whenever we refer to a ‘concatenation’ in the following, it is a concatenation of 𝑢, 𝑣
which represents a point of X or a subword of such a point. We again note that by [OP19], X is infinite
and minimal, and so no concatenation can contain infinitely many consecutive v. Similarly, if there was
only a single number of v which may occur between nearest occurrences of u, then X would be finite,
contradicting our assumptions. So there are at least two different numbers of v which can occur between
nearest occurrences of u.

Suppose for a contradiction that 𝑢𝑣𝑥𝑢 and 𝑢𝑣𝑦𝑢 and 𝑢𝑣𝑧𝑢 all appear in some concatenations and that
𝑥 < 𝑦 < 𝑧. We may assume that x is the minimal value such that 𝑢𝑣𝑥𝑢 appears in a concatenation. Since
𝑢𝑣𝑥𝑢 and 𝑢𝑣𝑦𝑢 are necessarily preceded by 𝑣𝑥 (due to x being minimal), then 𝑣𝑥𝑢𝑣𝑥𝑢 and 𝑣𝑥𝑢𝑣𝑥𝑣 both
appear in concatenations (as 𝑦 > 𝑥). By Lemma 3.6 (as v is not a prefix of u, they cannot be powers of
the same word), s is a suffix of every left-infinite concatenation. This means that 𝑣𝑥𝑢𝑣𝑥𝑢 and 𝑣𝑥𝑢𝑣𝑥𝑣
are both preceded by s in the bi-infinite concatenations they respectively appear in, and so 𝑠𝑣𝑥𝑢𝑣𝑥 can
be followed by either u or v, meaning that 𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 is right-special (since the letters appearing after p
in u and v are distinct by maximality of p).

Likewise, 𝑣𝑥𝑢𝑣𝑦𝑢 and 𝑣𝑥𝑢𝑣𝑦𝑣 appear in some concatenations (due to 𝑧 > 𝑦) so 𝑠𝑣𝑥𝑢𝑣𝑦 𝑝 is also
right-special. By Lemma 3.7, the maximal common suffix of 𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 and 𝑠𝑣𝑥𝑢𝑣𝑦 𝑝 is 𝑠𝑣𝑥 𝑝. Therefore,
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there are at least two right-special words of length ℓ for |𝑠𝑣𝑥 𝑝 | < ℓ ≤ |𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 | (namely, the unequal
suffixes of 𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 and 𝑠𝑣𝑥𝑢𝑣𝑦 𝑝 of length ℓ). Then, since |𝑝 | + |𝑠 | < |𝑣 | + |𝑢 | < 2|𝑢 |, by Corollary 2.5

𝑝(|𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 |)
|𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 | ≥ 1 + |𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 | − |𝑠𝑣𝑥 𝑝 |

|𝑠𝑣𝑥𝑢𝑣𝑥 𝑝 | = 1 + 𝑥 |𝑣 | + |𝑢 |
|𝑝 | + |𝑠 | + 2𝑥 |𝑣 | + |𝑢 | > 1 + 𝑥 |𝑣 | + |𝑢 |

2|𝑢 | + 2𝑥 |𝑣 | + |𝑢 | .

The final expression is increasing for 𝑥 ≥ 0, hence is at least 4
3 (its value at 𝑥 = 0), contradicting our

hypothesis that 𝑝(𝑞)/𝑞 < 4
3 for 𝑞 > 𝑁 . Therefore, such 𝑥 < 𝑦 < 𝑧 cannot exist so there are only two

distinct values x and y. Writing 𝑥 = 𝑚 − 1 and 𝑦 = 𝑛 − 1 then shows that 𝑣𝑚−1 and 𝑣𝑛−1 are the only
words appearing between occurrences of u in a concatenation.

By similar reasoning as above, we observe that 𝑠𝑣𝑚−1𝑢𝑣𝑚−1𝑝 is right-special and that 𝑠𝑣𝑛−2𝑝 is also
right-special since 𝑠𝑣𝑛−1𝑢 appears in a concatenation and it has 𝑠𝑣𝑛−2𝑣 as a prefix and 𝑠𝑣𝑛−2𝑢 as a suffix.
Again, by similar reasoning as above, their maximal common suffix is 𝑠𝑣𝑚−1𝑝.

Suppose |𝑠𝑣𝑚−1𝑢𝑣𝑚−1𝑝 | ≤ |𝑠𝑣𝑛−2𝑝 |. Then there are at least two right-special words of length ℓ for
|𝑠𝑣𝑚−1𝑝 | < ℓ ≤ |𝑠𝑣𝑚−1𝑢𝑣𝑚−1𝑝 | so, by Corollary 2.5 and the fact that |𝑝 | + |𝑠 | < |𝑢 | + |𝑣 | < 2|𝑢 |,

𝑝(|𝑠𝑣𝑚−1𝑢𝑣𝑚−1𝑝 |)
|𝑠𝑣𝑚−1𝑢𝑣𝑚−1𝑝 |

≥ 1 + (𝑚 − 1) |𝑣 | + |𝑢 |
|𝑝 | + |𝑠 | + 2(𝑚 − 1) |𝑣 | + |𝑢 | > 1 + (𝑚 − 1) |𝑣 | + |𝑢 |

2(𝑚 − 1) |𝑣 | + 3|𝑢 | ≥
4
3

which contradicts our hypothesis.
So instead |𝑠𝑣𝑛−2𝑝 | < |𝑠𝑣𝑚−1𝑢𝑣𝑚−1𝑝 |. Then there are at least two right-special words of length ℓ for

|𝑠𝑣𝑚−1𝑝 | < ℓ ≤ |𝑠𝑣𝑛−2𝑝 | so, by Corollary 2.5 and the fact that |𝑝 | + |𝑠 | < 3|𝑣 |,

𝑝(|𝑠𝑣𝑛−2𝑝 |)
|𝑠𝑣𝑛−2𝑝 |

≥ 1 + (𝑛 − 𝑚 − 1) |𝑣 |
|𝑝 | + |𝑠 | + (𝑛 − 2) |𝑣 | > 1 + (𝑛 − 𝑚 − 1) |𝑣 |

3|𝑣 | + (𝑛 − 2) |𝑣 | = 1 + 𝑛 − 𝑚 − 1
𝑛 + 1

.

Consider first when 𝑚 = 1. If 𝑛 ≥ 4, then 𝑛−𝑚−1
𝑛+1 = 𝑛−2

𝑛+1 ≥ 2
5 > 1

3 which contradicts our hypothesis.
Now, consider when 𝑚 > 1. If 𝑛 ≥ 2𝑚 + 1, then 𝑛−𝑚−1

𝑛+1 ≥ 2𝑚+1−𝑚−1
2𝑚+1+1 = 𝑚

2𝑚+2 ≥ 2
2(2)+2 = 1

3
contradicting our hypothesis. So 𝑛 ≤ 2𝑚 when 𝑚 > 1.

Finally, consider when 𝑚 ≥ 5. Suppose 𝑛 ≥ 1.9𝑚. Then

𝑛 − 𝑚 − 1
𝑛 + 1

≥ 1.9𝑚 − 𝑚 − 1
1.9𝑚 + 1

=
0.9𝑚 − 1
1.9𝑚 + 1

≥ 4.5 − 1
9.5 + 1

=
1
3

contradicting our hypothesis. So 𝑛 < 1.9𝑚 whenever 𝑚 > 4. �

Proof of Proposition 3.1. We prove by induction that such sequences exist, using the notation 𝑣𝑘 :=
𝜋(𝜌𝑘−1 (0)) and 𝑢𝑘 := 𝜋(𝜌𝑘−1 (1)).

By [OP19], X is minimal. Write 𝑠𝑘 for the maximal common suffix of 𝑣∞𝑘 and 𝑣∞𝑘 𝑢𝑘 and 𝑝𝑘 for the
maximal common prefix of 𝑣𝑘 and 𝑢𝑘 .

Our inductive hypotheses are the following:

◦ all 𝑥 ∈ 𝑋 can be written as concatenations of 𝑢𝑘 and 𝑣𝑘 ;
◦ 𝑣𝑘 is a suffix of 𝑢𝑘 and is not a prefix of 𝑢𝑘 ;
◦ |𝑝𝑘 | + |𝑠𝑘 | < min(|𝑣𝑘 | + |𝑢𝑘 |, 3|𝑣𝑘 |);
◦ 𝑣𝑘 = (𝜋 ◦ 𝜏𝑚1 ,𝑛1 ◦ · · · ◦ 𝜏𝑚𝑘−1 ,𝑛𝑘−1) (0) = 𝜋(𝜌𝑘−1 (0)) and 𝑢𝑘 = (𝜋 ◦ 𝜏𝑚1 ,𝑛1 ◦ · · · ◦ 𝜏𝑚𝑘−1 ,𝑛𝑘−1) (1) =
𝜋(𝜌𝑘−1 (1)).

Since lim sup 𝑝 (𝑞)
𝑞 < 4

3 , eventually 𝑝(𝑞) < 4
3𝑞. Lemma 3.9 gives 𝑣1 and 𝑢1 with 𝑣1 a suffix of 𝑢1 and

|𝑣1 | < |𝑢1 | < 2|𝑣1 | which start with different letters such that every infinite word is a concatenation of
𝑢1 and 𝑣1. By Lemma 3.5, |𝑠1 | < |𝑣1𝑢1 | < 3|𝑣1 |. As 𝑢1 and 𝑣1 begin with different letters, 𝑝1 is empty.
Therefore, the base case is established by setting 𝜋(0) = 𝑣1 and 𝜋(1) = 𝑢1. Lemma 3.9 ensures that
𝑝(𝑞) < 4

3𝑞 for all 𝑞 ≥ |𝜋(0) |.
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Given 𝑣𝑘 and 𝑢𝑘 , by Lemma 3.10 there exist 0 < 𝑚𝑘 < 𝑛𝑘 such that every infinite word
is a concatenation of 𝑣𝑘+1 = 𝑣𝑚𝑘−1

𝑘 𝑢𝑘 and 𝑢𝑘+1 = 𝑣𝑛𝑘−1
𝑘 𝑢𝑘 . Observe that 𝑢𝑘+1 = 𝑣𝑛𝑘−1

𝑘 𝑢𝑘 =
(𝜋(𝜌𝑘−1 (0)))𝑛𝑘−1𝜋(𝜌𝑘−1 (1)) = 𝜋(𝜌𝑘−1 (0𝑛𝑘−11)) = 𝜋(𝜌𝑘−1(𝜏𝑚𝑘 ,𝑛𝑘 (1))) = 𝜋(𝜌𝑘 (1)) and similarly
𝑣𝑘+1 = 𝜋(𝜌𝑘 (0)).

Clearly, 𝑣𝑘+1 is a suffix of 𝑢𝑘+1. If 𝑣𝑘+1 were a prefix of 𝑢𝑘+1, then 𝑢𝑘 would be a prefix of 𝑣𝑛𝑘−𝑚𝑘

𝑘 𝑢𝑘

but that would make 𝑣𝑘 a prefix of 𝑢𝑘 . So 𝑣𝑘+1 is not a prefix of 𝑢𝑘+1, and 𝑝𝑘+1 = 𝑣𝑚𝑘−1
𝑘 𝑝𝑘 .

By definition, 𝑠𝑘+1 is the maximal common suffix of 𝑣∞𝑘+1 and 𝑣∞𝑘+1𝑢𝑘+1. We can rewrite these as
𝑦 = . . . 𝑢𝑘𝑣

𝑚𝑘−1
𝑘 𝑢𝑘 and 𝑧 = . . . 𝑣𝑘𝑣

𝑚𝑘−1
𝑘 𝑢𝑘 . These share a suffix of 𝑣𝑚𝑘−1

𝑘 𝑢𝑘 , so we must just find
the maximal common suffix of the portions with this removed, that is, 𝑦′ = . . . 𝑢𝑘 , a concatenation
ending with 𝑢𝑘 , and 𝑧′ = . . . 𝑣𝑘 , a concatenation ending with 𝑣𝑘 . But 𝑦′ then agrees with 𝑣∞𝑘 𝑢𝑘
on a suffix of length |𝑢𝑘 | + |𝑠𝑘 | > |𝑠𝑘 | by Lemma 3.6 and 𝑧′ agrees with 𝑣∞𝑘 on a suffix of length
|𝑣𝑘 | + |𝑠𝑘 | > |𝑠𝑘 | by Lemma 3.6, meaning that 𝑦′ and 𝑧′ have maximal common suffix 𝑠𝑘 . Therefore,
𝑠𝑘+1 = 𝑠𝑘𝑣

𝑚𝑘−1
𝑘 𝑢𝑘 = 𝑠𝑘𝑣𝑘+1. Then,

|𝑝𝑘+1 | + |𝑠𝑘+1 | = |𝑝𝑘 | + |𝑠𝑘 | + 2(𝑚𝑘 − 1) |𝑣𝑘 | + |𝑢𝑘 | < (2𝑚𝑘 − 1) |𝑣𝑘 | + 2|𝑢𝑘 | = 2|𝑣𝑘+1 | + |𝑣𝑘 |

and since |𝑣𝑘+1 | + |𝑣𝑘 | ≤ |𝑢𝑘+1 | and |𝑣𝑘 | < |𝑣𝑘+1 |, the inductive hypotheses are verified.
Lemma 3.10 gives that 𝑛𝑘 ≤ 2𝑚𝑘 when 𝑚𝑘 > 1 and 𝑛𝑘 ≤ 1.9𝑚𝑘 when 𝑚𝑘 > 4 and that 𝑛𝑘 ≤ 3

when 𝑚𝑘 = 1.
Suppose that 𝑚𝑘 = 1 and 𝑛𝑘 = 3 and 𝑛𝑘−1 ≥ 𝑚𝑘−1 + 2. By Lemma 3.10, the words 𝑠𝑘𝑣𝑘 𝑝𝑘 and

𝑠𝑘−1𝑣
𝑛𝑘−1−2
𝑘−1 𝑝𝑘 and 𝑠𝑘𝑢𝑘 𝑝𝑘 are right-special. By Lemma 3.7, the maximal common suffix of 𝑠𝑘𝑣𝑘 𝑝𝑘

and 𝑠𝑘𝑢𝑘 𝑝𝑘 is 𝑠𝑘 𝑝𝑘 . Using Lemma 3.6 and that 𝑝𝑘 = 𝑣𝑚𝑘−1−1
𝑘−1 𝑝𝑘−1, both 𝑠𝑘𝑣𝑘 𝑝𝑘 and 𝑠𝑘𝑢𝑘 𝑝𝑘 have

𝑠𝑘−1𝑢𝑘−1𝑣
𝑚𝑘−1−1
𝑘−1 𝑝𝑘−1 as a suffix. By Lemma 3.7, the maximal common suffix of either of them and

𝑠𝑘−1𝑣
𝑛𝑘−1−2
𝑘−1 𝑝𝑘−1 is then 𝑠𝑘−1𝑣

𝑚𝑘−1−1
𝑘−1 𝑝𝑘−1. Therefore, there are least |𝑠𝑘𝑣𝑘 𝑝𝑘 | + |𝑠𝑘𝑣𝑘 𝑝𝑘 | − |𝑠𝑘 𝑝𝑘 | +

|𝑠𝑘−1𝑣
𝑛𝑘−1−1
𝑘−1 𝑝𝑘−1 | − |𝑠𝑘−1𝑣

𝑚𝑘−1−1
𝑘−1 𝑝𝑘−1 | right-special words of length at most |𝑠𝑘𝑣𝑘 𝑝𝑘 |.

Since 𝑝𝑘 = 𝑣𝑚𝑘−1
𝑘−1 𝑝𝑘−1, 𝑠𝑘 = 𝑠𝑘−1𝑣𝑘 and |𝑝𝑘−1 | + |𝑠𝑘−1 | < 3|𝑣𝑘−1 |,

|𝑝𝑘 | + |𝑠𝑘 | = (𝑚𝑘−1 − 1) |𝑣𝑘−1 | + |𝑣𝑘 | + |𝑝𝑘−1 | + |𝑠𝑘−1 | < |𝑣𝑘 | + (𝑚𝑘−1 + 2) |𝑣𝑘−1 | = 2|𝑣𝑘 | − |𝑢𝑘 | + 3|𝑣𝑘−1 |.

Therefore, since 𝑛𝑘−1 ≥ 𝑚𝑘−1 + 2,

𝑝(|𝑠𝑘𝑣𝑛𝑘−2
𝑘 𝑝𝑘 |)

|𝑠𝑘𝑣𝑛𝑘−2
𝑘 𝑝𝑘 |

≥ 1 + |𝑣𝑘 | + (𝑛𝑘−1 − 𝑚𝑘−1 − 1) |𝑣𝑘−1 |
|𝑣𝑘 | + |𝑝𝑘 | + |𝑠𝑘 |

> 1 + |𝑣𝑘 | + |𝑣𝑘−1 |
3|𝑣𝑘 | − |𝑢𝑘−1 | + 3|𝑣𝑘−1 |

> 1 + 1
3

contradicting our hypothesis. So if 𝑚𝑘 = 1 and 𝑛𝑘 = 3, then 𝑛𝑘−1 = 𝑚𝑘−1 + 1.
Since 𝑠1𝑣

𝑡
1 is the unique right-special and unique left-special word of its length for some 𝑡 ≥ 0

(Lemma 3.9) and 𝑢1𝑣
𝑡
1 and 𝑣1 are the two return words for 𝑠1𝑣

𝑡
1, we have that 𝑡 ≤ 𝑚1 − 1 as 𝑢1 is always

followed by 𝑣𝑡1. Since 𝑠1𝑣
𝑡
1 is left-special, 𝑢1𝑣

𝑡 𝑠1𝑣
𝑡 must appear meaning that 𝑡 = 𝑚1 − 1. Therefore, any

right-special word of length at least |𝑠1𝑣
𝑚1−1
1 | must have 𝑠1𝑣

𝑚1−1
1 as a suffix. As the return words for 𝑠1𝑣1

are 𝑣1 and 𝑢1𝑣
𝑚1−1
1 , then every right-special word of at least that length is a suffix of a concatenation of

𝑢1 and 𝑣1.
Finally, since 𝑣𝑘 is in the language for all k, there exists a two-sided sequence containing 𝑥 (𝑚𝑘 ) , (𝑛𝑘 ) =

lim 𝑣𝑘 . Then since X is minimal, X is the orbit closure of 𝑥 (𝑚𝑘 ) , (𝑛𝑘 ) . �

Remark 3.11. In future arguments, for any subshift X satisfying the structure of Proposition 3.1, we
use the notation of the proof, that is, 𝑢𝑘 = 𝜋(𝜌𝑘−1 (1)), 𝑣𝑘 = 𝜋(𝜌𝑘−1(0)), 𝑝𝑘 is the maximal prefix of 𝑣𝑘
and 𝑢𝑘 , and 𝑠𝑘 is the maximal suffix of 𝑣∞𝑘 and 𝑣∞𝑘 𝑢𝑘 . In addition, as shown in the proof of Proposition
3.1, the sequence (𝑝𝑘 ) satisfies the recursion 𝑝𝑘+1 = 𝑣𝑚𝑘−1

𝑘 𝑝𝑘 = 𝑣𝑘 𝑝𝑘+1, the sequence (𝑠𝑘 ) satisfies the
recursion 𝑠𝑘+1 = 𝑠𝑘𝑣𝑘+1, and |𝑝𝑘 | + |𝑠𝑘 | < min(|𝑢𝑘 | + |𝑣𝑘 |, 3|𝑣𝑘 |) for all k.
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Remark 3.12. By induction on k, each substitution 𝜋 ◦ 𝜌𝑘 is uniquely decomposable, in the sense that
each 𝑥 ∈ 𝑋 can be decomposed uniquely into words (𝜋 ◦ 𝜌𝑘 ) (𝑎) for 𝑎 ∈ {0, 1}. For 𝑘 = 0, this follows
from Lemma 2.9 since 𝜋(0) = 𝑣1 and 𝜋(1) = 𝑢1 were constructed using that lemma. If 𝜋 ◦ 𝜌𝑘 is
uniquely decomposable, then every x is representable uniquely as a concatenation of (𝜋 ◦ 𝜌𝑘 ) (0) and
(𝜋 ◦ 𝜌𝑘 ) (1), and then the same must be true of (𝜋 ◦ 𝜌𝑘+1) (0) = (𝜋 ◦ 𝜌𝑘 ) (0)𝑚𝑘+1−1(𝜋 ◦ 𝜌𝑘 ) (1) and
(𝜋 ◦ 𝜌𝑘+1) (1) = (𝜋 ◦ 𝜌𝑘 ) (0)𝑛𝑘+1−1 (𝜋 ◦ 𝜌𝑘 ) (1) (since each of these contains (𝜋 ◦ 𝜌𝑘 ) (1) exactly once).

4. Subshifts with 𝐶 < 4/3 have discrete spectrum

Theorem 4.1. If X is an infinite transitive subshift with lim sup 𝑝 (𝑞)
𝑞 < 4

3 , then X is uniquely ergodic
with unique measure which has discrete spectrum.

Our proof relies on first proving exponential decay of some quantities, which will later be used to
verify discrete spectrum via so-called mean almost periodicity.

Proposition 4.2. Let X be the orbit closure of 𝑥 (𝑚𝑘 ) , (𝑛𝑘 ) , where (𝑚𝑘 ), (𝑛𝑘 ) satisfy the conclusions of
Proposition 3.1. Then there exist 𝜖𝑘 which converge to 0 exponentially so that, for every k,

(𝑛𝑘+1 + 1) |𝜋(0) |
∏𝑘

𝑖=1(𝑛𝑖 − 𝑚𝑖)
|(𝜋 ◦ 𝜌𝑘+1) (0) |

< 𝜖𝑘 .

Proof. We first set some preliminary notation. Define 𝑎1 = 1 and 𝑎𝑘 = 𝑛𝑘−1 − 𝑚𝑘−1 and 𝑏𝑘 = 𝑚𝑘

for 𝑘 > 0. Note that by Proposition 3.1, all 𝑏𝑘 and 𝑎𝑘 are positive; 𝑎𝑘+1 ≤ 𝑏𝑘 whenever 𝑏𝑘 > 1;
𝑎𝑘+1 < 0.9𝑏𝑘 whenever 𝑏𝑘 > 4; and 𝑎𝑘+1 ≤ 2 whenever 𝑏𝑘 = 1. We also define 𝑑𝑘 = | (𝜋 ◦ 𝜌𝑘 ) (0) | and
note that (𝑑𝑘 ) satisfies the recursion

𝑑𝑘+1 = 𝑏𝑘+1𝑑𝑘 + 𝑎𝑘+1𝑑𝑘−1, (4.1)

where 𝑑−1 = |𝜋(1) | − |𝜋(0) | and 𝑑0 = |𝜋(0) |.
For ease of notation, define

𝛽 𝑗 =
𝑎 𝑗+1𝑑 𝑗−1

𝑑 𝑗

and observe that, by equation (4.1),

𝛽 𝑗+1 =
𝑎 𝑗+2𝑑 𝑗

𝑑 𝑗+1
=

𝑎 𝑗+2

𝑏 𝑗+1 + 𝑎 𝑗+1
𝑑 𝑗−1
𝑑 𝑗

=
𝑎 𝑗+2

𝑏 𝑗+1 + 𝛽 𝑗
.

Note that 𝛽0 = 𝑎1𝑑−1
𝑑0

= 𝑑−1
|𝜋 (0) | . Then

|𝜋(0) |𝑎1 · · · 𝑎𝑘+1
𝑑𝑘

=
|𝜋(0) |
𝑑−1

𝑘∏
𝑗=0

𝑎 𝑗+1𝑑 𝑗−1

𝑑 𝑗
=

|𝜋(0) |
𝑑−1

𝛽0

𝑘∏
𝑗=1

𝛽 𝑗 =
𝑘∏
𝑗=1

𝛽 𝑗 . (4.2)

Claim. 0 < 𝛽 𝑗 < 2 for all 𝑗 ≥ 0.

Proof. Since 𝑎 𝑗+1 ≤ 𝑏 𝑗 + 1 for all j, 𝛽 𝑗 ≤
𝑏 𝑗+1
𝑏 𝑗+𝛽 < 1 + 1

𝑏 𝑗
≤ 2. �

Claim. If 𝑎 𝑗+1 ≤ 𝑏 𝑗 , then 𝛽 𝑗 < 1.

Proof. Since 𝛽 𝑗−1 > 0, 𝛽 𝑗 =
𝑎 𝑗+1

𝑏 𝑗+𝛽 𝑗−1
<

𝑎 𝑗+1
𝑏 𝑗

≤ 1. �

Claim. If 𝑎 𝑗+1 = 𝑏 𝑗 + 1, then at least one of 𝛽 𝑗 < 1 or 𝛽 𝑗 𝛽 𝑗−1 ≤ 1.
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Proof. When 𝑎 𝑗+1 = 2 and 𝑏 𝑗 = 1, by Proposition 3.1, 𝜏1,3 cannot occur for consecutive values so we
have 𝑎 𝑗 ≤ 𝑏 𝑗 so 𝛽 𝑗−1 ≤ 1. Since 𝛽 𝑗 = 2

1+𝛽 𝑗−1
≥ 1, we have 𝛽 𝑗 𝛽 𝑗−1 = 2 − 𝛽 𝑗 ≤ 1. �

This implies
∏𝑘

𝑗=1 𝛽 𝑗 ≤ 𝛽1 ≤ 2.
By the assumptions on (𝑚𝑘 ) and (𝑛𝑘 ), we see that 𝑎𝑘+1 ≤ 𝑏𝑘 when 𝑏𝑘 > 1 and 𝑎𝑘+1 ≤ 2 when

𝑏𝑘 = 1 and 𝑎𝑘+1 < 0.9𝑏𝑘 when 𝑏𝑘 > 4. We now break into several cases.
Case 1: If 𝑏 𝑗 > 4, then 𝛽 𝑗 < 0.9.

Proof. If 𝑏 𝑗 > 4, then, as 𝑑 𝑗 > 𝑏 𝑗𝑑 𝑗−1 by equation (4.1), 𝛽 𝑗 =
𝑎 𝑗+1𝑑 𝑗−1

𝑑 𝑗
< 0.9. �

Case 2: If 𝑎 𝑗+1 ≤ 𝑏 𝑗 ≤ 4 and 𝑏 𝑗−1 ≤ 4, then 𝛽 𝑗 < 0.96.

Proof. If 𝑎 𝑗+1 ≤ 𝑏 𝑗 ≤ 4 and 𝑏 𝑗−1 ≤ 4, then by equation (4.1),

𝑑 𝑗 = 𝑏 𝑗𝑑 𝑗−1 + 𝑎 𝑗𝑑 𝑗−2 ≤ 𝑏 𝑗𝑑 𝑗−1 + (𝑏 𝑗−1 + 1)𝑑 𝑗−2 < 𝑏 𝑗𝑑 𝑗−1 + 𝑑 𝑗−1 + 𝑑 𝑗−2 ≤ (𝑏 𝑗 + 2)𝑑 𝑗−1 ≤ 6𝑑 𝑗−1.

Then, again by equation (4.1), using that 𝑎 𝑗+1 ≤ 𝑏 𝑗 ,

𝑑 𝑗

𝑑 𝑗−1
= 𝑏 𝑗 +

𝑎 𝑗𝑑 𝑗−2

𝑑 𝑗−1
> 𝑏 𝑗 +

1
6
≥ 𝑎 𝑗+1 +

1
6
.

Therefore, since 𝑎 𝑗+1 ≤ 𝑏 𝑗 ≤ 4,

𝛽 𝑗 =
𝑎 𝑗+1𝑑 𝑗−1

𝑑 𝑗
<

𝑎 𝑗+1

𝑎 𝑗+1 + (1/6) =

(
1 + 1

6𝑎 𝑗+1

)−1
<

(
1 + 1

24

)−1
= 0.96.

�

Case 3: If 𝑎 𝑗+1 ≤ 𝑏 𝑗 ≤ 4 and 𝑏 𝑗−1 > 4, then at least one of 𝛽 𝑗 < 0.96 or 𝛽 𝑗 𝛽 𝑗−1 < 0.5 holds.

Proof. Consider when 𝑎 𝑗+1 ≤ 𝑏 𝑗 ≤ 4 and 𝑏 𝑗−1 > 4 so 𝛽 𝑗−1 < 0.96. Suppose 𝛽 𝑗 >
8
9 . Then

8
9
<

𝑎 𝑗+1

𝑏 𝑗 + 𝛽 𝑗−1
≤

𝑏 𝑗

𝑏 𝑗 + 𝛽 𝑗−1
≤ 4

4 + 𝛽 𝑗−1
,

so 8 + 2𝛽 𝑗−1 < 9 so 𝛽 𝑗−1 < 1
2 . Then 𝛽 𝑗 𝛽 𝑗−1 < 𝛽 𝑗−1 < 0.5 since 𝑎 𝑗+1 ≤ 𝑏 𝑗 implies 𝛽 𝑗 < 1. So at least

one of 𝛽 𝑗 ≤ 8
9 < 0.96 or 𝛽 𝑗 𝛽 𝑗−1 < 0.5 must hold. �

Any j where 𝑎 𝑗+1 ≤ 𝑏 𝑗 is covered by Case 1 if 𝑏 𝑗 > 4 and Case 2 or 3 if 𝑏 𝑗 ≤ 4. The only remaining
case is then 𝑎 𝑗+1 > 𝑏 𝑗 , which happens only if 𝑎 𝑗+1 = 2 and 𝑏 𝑗 = 1.
Case 4: If 𝑎 𝑗+1 = 2 and 𝑏 𝑗 = 1, then at least one of 𝛽 𝑗 𝛽 𝑗−1 <

48
49 or 𝛽 𝑗 𝛽 𝑗−1𝛽 𝑗−2 < 0.52 holds.

Proof. Consider any such j. By Proposition 3.1, 𝜏1,3 cannot occur consecutively so 𝑎 𝑗 ≤ 𝑏 𝑗−1, and so
𝑗 − 1 is in one of Cases 1–3. If 𝛽 𝑗−1 < 0.96, then

𝛽 𝑗 𝛽 𝑗−1 =
𝑎 𝑗+1

𝑏 𝑗 + 𝛽 𝑗−1
𝛽 𝑗−1 =

2𝛽 𝑗−1

1 + 𝛽 𝑗 − 1
= 1 +

𝛽 𝑗−1 − 1
𝛽 𝑗−1 + 1

< 1 + 0.96 − 1
0.96 + 1

=
48
49

.

If 𝛽 𝑗−1 ≥ 0.96, then 𝑗 − 1 must be in Case 3 and 𝛽 𝑗−1𝛽 𝑗−2 < 0.5. Then

𝛽 𝑗 𝛽 𝑗−1𝛽 𝑗−2 =
2

1 + 𝛽 𝑗−1
𝛽 𝑗−1𝛽 𝑗−2 <

1
1 + 𝛽 𝑗−1

≤ 1
1 + 0.96

< 0.52.
�
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Claim. For all 𝑘 ≥ 1,

𝑘∏
𝑗=1

𝛽 𝑗 < 2
(48
49

) 𝑘/2
.

Proof. All 𝑗 > 2 are in one of the cases above, and so at least one of the following hold: 𝛽 𝑗 < 0.96,
𝛽 𝑗 𝛽 𝑗−1 < 48

49 , or 𝛽 𝑗 𝛽 𝑗−1𝛽 𝑗−2 < 0.52. For every k, we can group the product
∏𝑘

𝑗=1 𝛽 𝑗 into products of
one, two or three consecutive terms bounded from above in this way, with the possible exception of 𝛽1

or 𝛽1𝛽2. As 0.96 <
√

48
49 and 0.52 < ( 48

49 )
3/2, and since 𝛽1𝛽2 < 1 whenever 𝛽1 > 1, this yields

𝑘∏
𝑗=1

𝛽 𝑗 < 𝛽1

(48
49

) 𝑘/2
< 2

(48
49

) 𝑘/2
.

�

Since 𝑛𝑘+1 ≤ 2𝑚𝑘+1 + 1 = 2𝑏𝑘+1 + 1, we have (𝑛𝑘+1+1)𝑑𝑘

𝑑𝑘+1
≤ (2𝑏𝑘+1+2)𝑑𝑘

𝑏𝑘+1𝑑𝑘
= 2 + 2

𝑏𝑘+1
≤ 4, and so

𝑛𝑘+1 |𝜋(0) |
∏𝑘

𝑖=1 (𝑛𝑖 − 𝑚𝑖)
𝑑𝑘+1

=
𝑛𝑘+1𝑑𝑘
𝑑𝑘+1

|𝜋(0) |𝑎1 · · · 𝑎𝑘+1
𝑑𝑘

≤ 4
𝑘∏
𝑗=1

𝛽 𝑗 < 8
(

48
49

) 𝑘/2
.

Defining 𝜖𝑘 := 8( 48
49 )

𝑘/2 completes the proof. �

Proof of Theorem 4.1. Our technique for verifying discrete spectrum of X is by using mean almost peri-
odicity, which requires a definition. The upper density of 𝐴 ⊂ N, denoted 𝑑 (𝐴), is lim sup |𝐴∩{1,...,𝑛} |

𝑛 .
It’s easy to check that upper density is subadditive, that is, 𝑑 (𝐴 ∪ 𝐵) ≤ 𝑑 (𝐴) + 𝑑 (𝐵) for every 𝐴, 𝐵.

A subshift X is mean almost periodic if for all 𝜖 > 0 and all 𝑥 ∈ 𝑋 , there exists a syndetic set S so
that for all 𝑠 ∈ 𝑆, x and 𝜎𝑠𝑥 differ on a set of locations with upper density less than 𝜖 . It is well-known
that mean almost periodicity implies discrete spectrum; see, for instance, Theorem 2.8 of [LS09].

Examples of aperiodic but mean almost periodic subshifts are given by the Sturmian subshifts and
also so-called regular Toeplitz subshifts. Since our hypotheses are satisfied by Sturmian subshifts, their
mean almost periodicity follows as a corollary of our proof.

By Proposition 3.1, X is the orbit closure of

𝑥 (𝑚𝑘 ) , (𝑛𝑘 ) = lim
𝑘→∞

(𝜋 ◦ 𝜏𝑚1 ,𝑛1 ◦ 𝜏𝑚2 ,𝑛2 ◦ · · · 𝜏𝑚𝑘 ,𝑛𝑘 ) (0) = lim
𝑘→∞

(𝜋 ◦ 𝜌𝑘 ) (0)

for some 𝜋 : {0, 1} → A∗ where 𝜋(0), 𝜋(1) begin with different letters and |𝜋(0) | < |𝜋(1) | < 2|𝜋(0) |
and some sequences (𝑚𝑘 ), (𝑛𝑘 ) satisfying 0 < 𝑚𝑘 < 𝑛𝑘 ≤ 2𝑚𝑘 or (𝑚𝑘 , 𝑛𝑘 ) = (1, 3).

We again use the notations 𝑎𝑘+1 = 𝑛𝑘 −𝑚𝑘 and 𝑑𝑘 = | (𝜋 ◦ 𝜌𝑘 ) (0) | as in the proof of Proposition 4.2.
For any 𝑘 > 0 and 𝑝 ∈ N, define the words

𝑦0,𝑘, 𝑝 = ((𝜋 ◦ 𝜌𝑘 ) (0)) 𝑝 (𝜋 ◦ 𝜌𝑘 ) (1), 𝑧0,𝑘, 𝑝 = (𝜋 ◦ 𝜌𝑘 ) (1) ((𝜋 ◦ 𝜌𝑘 ) (0)) 𝑝,
𝑦1,𝑘, 𝑝 = ((𝜋 ◦ 𝜌𝑘 ) (1)) 𝑝 (𝜋 ◦ 𝜌𝑘 ) (0), 𝑧1,𝑘, 𝑝 = (𝜋 ◦ 𝜌𝑘 ) (0) ((𝜋 ◦ 𝜌𝑘 ) (1)) 𝑝 .

We will prove the following by induction:

𝑦𝑖,𝑘, 𝑝 , 𝑧𝑖,𝑘, 𝑝 differ on fewer than 2|𝜋(1) |𝑝𝑎1 . . . 𝑎𝑘+1 locations (𝑖 ∈ {0, 1}). (4.3)

The base case 𝑘 = 0 trivially holds since the lengths of 𝑦0,0, 𝑝 , 𝑧0,0, 𝑝 , 𝑦1,0, 𝑝 , 𝑧1,0, 𝑝 are less than
2𝑝 |𝜋(1) |.

Assume now that equation (4.3) holds for some 𝑘 − 1 (and all p).
Consider first the case when 𝑛𝑘 ≤ 2𝑚𝑘 .
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Then by definition of 𝜏𝑚𝑘 ,𝑛𝑘 , if we write 𝑢 = (𝜋 ◦ 𝜌𝑘−1) (1), 𝑣 = (𝜋 ◦ 𝜌𝑘−1) (0), 𝑚 = 𝑚𝑘 , and 𝑛 = 𝑛𝑘 ,
then 𝑦0,𝑘, 𝑝 = (𝑣𝑚−1𝑢) 𝑝𝑣𝑛−1𝑢 and 𝑧0,𝑘, 𝑝 = 𝑣𝑛−1𝑢(𝑣𝑚−1𝑢) 𝑝.

Since v is a suffix of u, write 𝑢 = 𝑢′𝑣. Then, using that 𝑚 < 𝑛 ≤ 2𝑚,

𝑦0,𝑘, 𝑝 = (𝑣𝑚−1𝑢) 𝑝𝑣𝑛−1𝑢 = (𝑣𝑚−1𝑢′𝑣) 𝑝𝑣𝑚−1𝑣𝑛−𝑚𝑢 = 𝑣𝑚−1(𝑢′𝑣𝑚) 𝑝𝑣𝑛−𝑚𝑢
= 𝑣𝑚−1(𝑢′𝑣𝑛−𝑚𝑣2𝑚−𝑛) 𝑝𝑣𝑛−𝑚𝑢,

𝑧0,𝑘, 𝑝 = 𝑣𝑛−1𝑢(𝑣𝑚−1𝑢) 𝑝 = 𝑣𝑚−1𝑣𝑛−𝑚 (𝑢′𝑣𝑚) 𝑝𝑢 = 𝑣𝑚−1𝑣𝑛−𝑚 (𝑢′𝑣2𝑚−𝑛𝑣𝑛−𝑚) 𝑝𝑢
= 𝑣𝑚−1(𝑣𝑛−𝑚𝑢′𝑣2𝑚−𝑛) 𝑝𝑣𝑛−𝑚𝑢.

Since |𝑢′𝑣𝑛−𝑚 | = |𝑣𝑛−𝑚𝑢′ |, this means 𝑦0,𝑘, 𝑝 and 𝑧0,𝑘, 𝑝 differ at a number of locations equal to p times
the number of locations where 𝑢′𝑣𝑛−𝑚 and 𝑣𝑛−𝑚𝑢′ differ. Clearly, 𝑢′𝑣𝑛−𝑚 and 𝑣𝑛−𝑚𝑢′ differ on the same
number of locations as 𝑢′𝑣𝑛−𝑚𝑣 = 𝑢𝑣𝑛−𝑚 and 𝑣𝑛−𝑚𝑢′𝑣 = 𝑣𝑛−𝑚𝑢 differ. Since 𝑢𝑣𝑛−𝑚 = 𝑧0,𝑘−1,𝑛−𝑚 and
𝑣𝑛−𝑚𝑢 = 𝑦0,𝑘−1,𝑛−𝑚, the inductive hypothesis gives that they differ on fewer than 2|𝜋(1) |(𝑛−𝑚)𝑎1 · · · 𝑎𝑘
locations. Then 𝑦0,𝑘, 𝑝 and 𝑧0,𝑘, 𝑝 differ on fewer than 2|𝜋(1) |𝑝(𝑛 −𝑚)𝑎1 · · · 𝑎𝑘 locations. Since 𝑎𝑘+1 =
𝑛 − 𝑚, this proves the claim. Similarly,

𝑦1,𝑘, 𝑝 = (𝑣𝑛−1𝑢) 𝑝𝑣𝑚−1𝑢 = 𝑣𝑛−1(𝑢′𝑣𝑛) 𝑝−1𝑢′𝑣𝑚𝑢

= 𝑣𝑚−1𝑣𝑛−𝑚 (𝑢′𝑣𝑚𝑣𝑛−𝑚) 𝑝−1𝑢′𝑣𝑚𝑢 = 𝑣𝑚−1(𝑣𝑛−𝑚𝑢′𝑣𝑚) 𝑝𝑢,
𝑧1,𝑘, 𝑝 = 𝑣𝑚−1𝑢(𝑣𝑛−1𝑢) 𝑝 = 𝑣𝑚−1(𝑢′𝑣𝑛) 𝑝𝑢 = 𝑣𝑚−1 (𝑢′𝑣𝑛−𝑚𝑣𝑚) 𝑝𝑢,

so 𝑦1,𝑘, 𝑝 and 𝑧1,𝑘, 𝑝 differ on fewer than 2|𝜋(1) |𝑝𝑎1 · · · 𝑎𝑘+1 locations.
Consider now the case when 𝑛𝑘 = 3 and 𝑚𝑘 = 1. Here,

(𝜋 ◦ 𝜌𝑘 ) (0) = (𝜋 ◦ 𝜌𝑘−1) (1), (𝜋 ◦ 𝜌𝑘 ) (1) = ((𝜋 ◦ 𝜌𝑘−1) (0))2(𝜋 ◦ 𝜌𝑘−1) (1).

By Proposition 3.1, 𝑛𝑘−1 = 𝑚𝑘−1 + 1 so we have (𝜋 ◦ 𝜌𝑘−1) (1) = (𝜋 ◦ 𝜌𝑘−2) (0) (𝜋 ◦ 𝜌𝑘−1) (0).
First, consider when 𝑚𝑘−1 > 1. Here, (𝜋 ◦ 𝜌𝑘−2) (0) is a prefix of (𝜋 ◦ 𝜌𝑘−1) (0) so there are words

𝑔 = (𝜋 ◦ 𝜌𝑘−2) (0) and h such that (𝜋 ◦ 𝜌𝑘−1) (0) = 𝑔ℎ and (𝜋 ◦ 𝜌𝑘−1) (1) = 𝑔𝑔ℎ. Then (𝜋 ◦ 𝜌𝑘 ) (0) = 𝑔𝑔ℎ
and (𝜋 ◦ 𝜌𝑘 ) (1) = (𝑔ℎ)2𝑔𝑔ℎ so

𝑦0,𝑘, 𝑝 = (𝑔𝑔ℎ) 𝑝 (𝑔ℎ𝑔ℎ𝑔𝑔ℎ) = 𝑔𝑔ℎ(𝑔𝑔ℎ) 𝑝−1𝑔ℎ𝑔ℎ𝑔𝑔ℎ

𝑧0,𝑘, 𝑝 = (𝑔ℎ𝑔ℎ𝑔𝑔ℎ) (𝑔𝑔ℎ) 𝑝 = 𝑔ℎ𝑔(ℎ𝑔𝑔) 𝑝−1ℎ𝑔𝑔ℎ𝑔𝑔ℎ

which differ on two pairs of 𝑔ℎ and ℎ𝑔 and on 𝑝 − 1 pairs of 𝑔𝑔ℎ and ℎ𝑔𝑔.
Our inductive hypothesis does apply directly to 𝑔ℎ and ℎ𝑔; however, 𝑔ℎ and ℎ𝑔 differ on the

same number of letters as 𝑔𝑔ℎ = (𝜋 ◦ 𝜌𝑘−2) (0) ((𝜋 ◦ 𝜌𝑘−2) (0))𝑚𝑘−1−1 (𝜋 ◦ 𝜌𝑘−2) (1) and 𝑔ℎ𝑔 = ((𝜋 ◦
𝜌𝑘−2) (0))𝑚𝑘−1−1 (𝜋 ◦ 𝜌𝑘−2) (1) (𝜋 ◦ 𝜌𝑘−2) (0). Those words differ on the same number of letters as
(𝜋 ◦ 𝜌𝑘−2) (0) (𝜋 ◦ 𝜌𝑘−2) (1) and (𝜋 ◦ 𝜌𝑘−2) (1) (𝜋 ◦ 𝜌𝑘−2) (0), and by hypothesis they differ on fewer than
2|𝜋(1) |𝑎1 · · · 𝑎𝑘−1 locations.

Similarly, 𝑔𝑔𝑔ℎ = ((𝜋 ◦ 𝜌𝑘−2) (0))𝑚𝑘−1+1(𝜋 ◦ 𝜌𝑘−2) (1) and 𝑔ℎ𝑔𝑔 = ((𝜋 ◦ 𝜌𝑘−2) (0))𝑚𝑘−1−1(𝜋 ◦
𝜌𝑘−2) (1) ((𝜋 ◦ 𝜌𝑘−2) (0))2 differ on the same number of letters as (𝜋 ◦ 𝜌𝑘−2) (1) ((𝜋 ◦ 𝜌𝑘−2) (0))2 and
((𝜋 ◦ 𝜌𝑘−2) (0))2(𝜋 ◦ 𝜌𝑘−2) (1) which by hypothesis is fewer than 2|𝜋(1) |2𝑎1 · · · 𝑎𝑘−1 locations.

Therefore, 𝑦0,𝑘, 𝑝 and 𝑧0,𝑘, 𝑝 differ on fewer than 2 · 2|𝜋(1) |𝑎1 · · · 𝑎𝑘−1 + 2(𝑝 − 1)2|𝜋(1) |𝑎1 · · · 𝑎𝑘−1
locations. Since 𝑎𝑘 = 1 and 𝑎𝑘+1 = 2, they differ on fewer than 2|𝜋(1) |𝑝𝑎1 · · · 𝑎𝑘+1 locations. Similarly,

𝑦1,𝑘, 𝑝 = (𝑔ℎ𝑔ℎ𝑔𝑔ℎ) 𝑝𝑔𝑔ℎ = 𝑔ℎ𝑔(ℎ𝑔𝑔ℎ𝑔ℎ𝑔) 𝑝−1ℎ𝑔𝑔ℎ𝑔𝑔ℎ

𝑧1,𝑘, 𝑝 = 𝑔𝑔ℎ(𝑔ℎ𝑔ℎ𝑔𝑔ℎ) 𝑝 = 𝑔𝑔ℎ(𝑔ℎ𝑔ℎ𝑔𝑔ℎ) 𝑝−1𝑔ℎ𝑔ℎ𝑔𝑔ℎ

differ on two pairs of 𝑔ℎ and ℎ𝑔 and on 𝑝 − 1 pairs of ℎ𝑔𝑔ℎ𝑔ℎ𝑔 and 𝑔ℎ𝑔ℎ𝑔𝑔ℎ. As ℎ𝑔𝑔ℎ𝑔ℎ𝑔 and
𝑔ℎ𝑔ℎ𝑔𝑔ℎ differ on two pairs of 𝑔ℎ and ℎ𝑔, the total number of differences is 2𝑝 times the number of
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differences between 𝑔ℎ and ℎ𝑔. Since 𝑔ℎ and ℎ𝑔 differ on fewer than 2|𝜋(1) |𝑎1 · · · 𝑎𝑘−1 locations, and
since 𝑎𝑘 = 1 and 𝑎𝑘+1 = 2, 𝑦1,𝑘, 𝑝 and 𝑧1,𝑘, 𝑝 differ on fewer than 2|𝜋(1) |𝑝𝑎1 · · · 𝑎𝑘+1 locations.

Now, consider when 𝑚𝑘−1 = 1. Here, (𝜋 ◦ 𝜌𝑘−1) (0) = (𝜋 ◦ 𝜌𝑘−2) (1) so (𝜋 ◦ 𝜌𝑘−2) (0) is a suffix
of (𝜋 ◦ 𝜌𝑘−1) (1). So there are words 𝑔 = (𝜋 ◦ 𝜌𝑘−2) (0) and h such that (𝜋 ◦ 𝜌𝑘−1) (0) = ℎ𝑔. Then
(𝜋 ◦ 𝜌𝑘 ) (0) = 𝑔ℎ𝑔 and (𝜋 ◦ 𝜌𝑘 ) (1) = (ℎ𝑔)2𝑔ℎ𝑔 so

𝑦0,𝑘, 𝑝 = (𝑔ℎ𝑔) 𝑝ℎ𝑔ℎ𝑔𝑔ℎ𝑔 = 𝑔ℎ(𝑔𝑔ℎ) 𝑝−1𝑔ℎ𝑔ℎ𝑔𝑔ℎ𝑔

𝑧0,𝑘, 𝑝 = ℎ𝑔ℎ𝑔𝑔ℎ𝑔(𝑔ℎ𝑔) 𝑝 = ℎ𝑔(ℎ𝑔𝑔) 𝑝−1ℎ𝑔𝑔ℎ𝑔𝑔ℎ𝑔

which differ on two pairs of 𝑔ℎ and ℎ𝑔 and on 𝑝 − 1 pairs of 𝑔𝑔ℎ and ℎ𝑔𝑔. Since 𝑔𝑔ℎ𝑔 = (𝜋 ◦
𝜌𝑘−2) (0)2(𝜋 ◦ 𝜌𝑘−1) (0) = (𝜋 ◦ 𝜌𝑘−2) (0)2(𝜋 ◦ 𝜌𝑘−2) (1) and ℎ𝑔𝑔𝑔 = (𝜋 ◦ 𝜌𝑘−2) (1) ((𝜋 ◦ 𝜌𝑘−2) (0))2

by hypothesis they differ on fewer than 2|𝜋(1) |2𝑎1 · · · 𝑎𝑘−1 locations. Then, as above, 𝑦0,𝑘, 𝑝 and 𝑧0,𝑘, 𝑝
differ on fewer than 2|𝜋(1) |𝑝𝑎1 · · · 𝑎𝑘+1 locations. Similarly,

𝑦1,𝑘, 𝑝 = (ℎ𝑔ℎ𝑔𝑔ℎ𝑔) 𝑝𝑔ℎ𝑔 = ℎ𝑔(ℎ𝑔𝑔ℎ𝑔ℎ𝑔) 𝑝−1ℎ𝑔𝑔ℎ𝑔𝑔ℎ𝑔

𝑧1,𝑘, 𝑝 = 𝑔ℎ𝑔(ℎ𝑔ℎ𝑔𝑔ℎ𝑔) 𝑝 = 𝑔ℎ(𝑔ℎ𝑔ℎ𝑔𝑔ℎ) 𝑝−1𝑔ℎ𝑔ℎ𝑔𝑔ℎ𝑔

differ on 2𝑝 pairs of 𝑔ℎ and ℎ𝑔 so 𝑦1,𝑘, 𝑝 and 𝑧1,𝑘, 𝑝 differ on fewer than 2|𝜋(1) |𝑝𝑎1 · · · 𝑎𝑘+1 locations.
We will now prove that X is mean almost periodic. Fix any k, and as before, define 𝑢 = (𝜋 ◦ 𝜌𝑘−1) (1),

𝑣 = (𝜋 ◦ 𝜌𝑘−1) (0), 𝑚 = 𝑚𝑘 , and 𝑛 = 𝑛𝑘 . Choose any 𝑦 ∈ 𝑋; by minimality of X, y can be written as a
bi-infinite concatenation of the words (𝜋 ◦ 𝜌𝑘 ) (0) = 𝑣𝑚−1𝑢 and (𝜋 ◦ 𝜌𝑘 ) (1) = 𝑣𝑛−1𝑢. We may assume
without loss of generality that y contains 𝑣𝑚−1𝑢 starting at the origin, since any syndetic set S as in the
definition of mean almost periodicity for y also works for any shift of y. Since 𝑑𝑘 = |𝑣𝑚−1𝑢 |, let us write

𝑦 = . . . .𝑣𝑚−1𝑢𝑣𝑖1−1𝑢𝑣𝑖2−1𝑢 . . .

𝜎𝑑𝑘 𝑦 = . . . .𝑣𝑖1−1𝑢𝑣𝑖2−1𝑢 . . . ,

where each 𝑖𝑘 is either m or n. We can rewrite as

𝑦 = . . . .𝑣𝑚−1(𝑢𝑣𝑖1−𝑚)𝑣𝑚−1(𝑢𝑣𝑖2−𝑚)𝑣𝑚−1 . . .

𝜎𝑑𝑘 𝑦 = . . . .𝑣𝑚−1(𝑣𝑖1−𝑚𝑢)𝑣𝑚−1(𝑣𝑖2−𝑚𝑢)𝑣𝑚−1 . . .

The words inside parentheses are unequal exactly when 𝑖 𝑗 = 𝑛, in which case they are the pair 𝑢𝑣𝑛−𝑚,
𝑣𝑛−𝑚𝑢. Since the lengths of 𝑢𝑣𝑛−𝑚 and 𝑣𝑛−𝑚𝑢 are the same, this means that the only differences in y
and 𝜎𝑑𝑘 𝑦 occur within pairs 𝑢𝑣𝑛−𝑚, 𝑣𝑛−𝑚𝑢. By equation (4.3), the number of differences in any such
pair is bounded from above by 2|𝜋(1) |(𝑛−𝑚)𝑎1 . . . 𝑎𝑘 = 2|𝜋(1) |𝑎1 . . . 𝑎𝑘+1. When y is partitioned into
its level-(𝑘 + 1) words (𝜋 ◦ 𝜌𝑘+1) (0) and (𝜋 ◦ 𝜌𝑘+1) (1) (and 𝜎𝑑𝑘 is partitioned at the same locations),
each partitioned segment contains exactly one such pair 𝑢𝑣𝑛−𝑚, 𝑣𝑛−𝑚𝑢. Since each such segment has
length at least | (𝜋 ◦ 𝜌𝑘+1) (0) | = 𝑑𝑘+1,

𝑑
(
{𝑡 : 𝑦(𝑡) ≠ (𝜎𝑑𝑘 𝑦) (𝑡)}

)
≤ 2|𝜋(1) |𝑎1 . . . 𝑎𝑘+1

𝑑𝑘+1
.

For ease of notation, we define 𝐷𝑞 = {𝑡 : 𝑦(𝑡) ≠ 𝑦(𝑡 + 𝑞)} for every q; by the above,

𝑑 (𝐷𝑑𝑘 ) ≤
2|𝜋(1) |𝑎1 . . . 𝑎𝑘𝑎𝑘+1

𝑑𝑘+1
. (4.4)
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Now, fix any k and consider the set

𝑆𝑘 :=

{
𝑟∑
𝑖=𝑘

𝑝𝑖𝑑𝑖 : 𝑟 > 𝑘, 0 ≤ 𝑝𝑖 ≤ 𝑛𝑖+1 + 1

}
.

We claim that 𝑆𝑘 is syndetic. To see this, note that 𝑛𝑖+1𝑑𝑖 > 𝑑𝑖+1 for all i since 𝑑𝑖+1 = 𝑚𝑖+1𝑑𝑖 + (𝑛𝑖 −
𝑚𝑖)𝑑𝑖−1 ≤ 𝑚𝑖+1𝑑𝑖 + (𝑚𝑖 + 1)𝑑𝑖−1 < 𝑚𝑖+1𝑑𝑖 + 𝑑𝑖 + 𝑑𝑖−1 ≤ (𝑚𝑖+1 + 2)𝑑𝑖 ≤ (𝑛𝑖+1 + 1)𝑑𝑖 , and so a simple
greedy algorithm shows that for all 𝑀 ∈ N, there exists 𝑠 ∈ 𝑆𝑘 with 𝑀 ≤ 𝑠 < 𝑀 + 𝑑𝑘 .

Finally, choose any 𝑠 =
∑𝑟

𝑖=𝑘 𝑝𝑖𝑑𝑖 ∈ 𝑆𝑘 . For any ℓ1, ℓ2 ∈ N, 𝐷ℓ1+ℓ2 ⊂ 𝐷ℓ1 ∪(𝐷ℓ2 −ℓ1) since 𝑡 ∈ 𝐷ℓ1+ℓ2

implies at least one of 𝑦(𝑡) ≠ 𝑦(𝑡 + ℓ1) or 𝑦(𝑡 + ℓ1) ≠ 𝑦(𝑡 + ℓ1 + ℓ2), and so 𝑑 (𝐷ℓ1+ℓ2) ≤ 𝑑 (𝐷ℓ1 ) + 𝑑 (𝐷ℓ2 ).
Using this repeatedly implies

𝑑 (𝐷𝑠) = 𝑑
(
𝐷∑𝑟

𝑖=𝑘 𝑝𝑖𝑑𝑖

)
≤

𝑟∑
𝑖=𝑘

𝑝𝑖𝑑 (𝐷𝑑𝑖 ) ≤
𝑟∑
𝑖=𝑘

2|𝜋(1) |𝑛𝑖+1𝑎1 . . . 𝑎𝑖+1
𝑑𝑖+1

.

Proposition 4.2 implies that (𝑛𝑖+1+1) |𝜋 (0) |𝑎1 · · ·𝑎𝑖+1
𝑑𝑖+1

< 𝜖𝑖 for a sequence 𝜖𝑖 which is exponentially decaying.
Then 𝑑 (𝐷𝑠) <

∑𝑟
𝑖=𝑘

2 |𝜋 (1) |
|𝜋 (0) | 𝜖𝑖 . Since (𝜖𝑖) is summable, the right-hand side becomes arbitrarily small as

𝑘 → ∞, and so X is mean almost periodic, and therefore has discrete spectrum. �

Remark 4.3. We remark that in fact this proof yields an explicit formula for an eigenvalue of X. Namely,
define a sequence (𝑐𝑘 ) by 𝑐−1 = 1, 𝑐0 = 0 and the same recursion 𝑐𝑘+1 = 𝑏𝑘+1𝑐𝑘 + 𝑎𝑘+1𝑐𝑘−1. Basic
continued fraction theory implies that 𝑐𝑘

𝑑𝑘
approaches a limit 𝛼, and that for all k,

���� 𝑐𝑘𝑑𝑘 − 𝛼

���� <
���� 𝑐𝑘𝑑𝑘 − 𝑐𝑘+1

𝑑𝑘+1

���� = |𝜋(0) |𝑎1 . . . 𝑎𝑘+1
𝑑𝑘𝑑𝑘+1

=
|𝜋(0) |

∏𝑘
𝑖=1(𝑛𝑖 − 𝑚𝑖)

𝑑𝑘𝑑𝑘+1
.

Therefore, the distance from 𝑑𝑘𝛼 to the nearest integer is less than |𝜋 (0) |
∏𝑘

𝑖=1 (𝑛𝑖−𝑚𝑖)
𝑑𝑘+1

, which decays
exponentially by Proposition 4.2. If we define 𝜆 = 𝑒2𝜋𝑖𝛼, then 𝜆𝑑𝑘 = 𝜆 | (𝜋◦𝜌𝑘 ) (0) | approaches 1 with
exponential rate. By definition, | (𝜋 ◦ 𝜌𝑘 ) (1) | = 𝑑𝑘 + (𝑛𝑘 −𝑚𝑘 )𝑑𝑘−1. The distance from (𝑛𝑘 −𝑚𝑘 )𝑑𝑘−1𝛼

to the nearest integer is less than 𝑛𝑘 |𝜋 (0) |
∏𝑘−1

𝑖=1 (𝑛𝑖−𝑚𝑖)
𝑑𝑘

, which again decays exponentially by Proposition
4.2. Therefore, 𝜆 | (𝜋◦𝜌𝑘 ) (1) | approaches 1 with exponential rate as well.

From this, an essentially identical argument to that of Host from [Hos86] (see also pp. 170–171
from [Que10]) shows that 𝜆 is an eigenvalue (in fact a continuous one). (His argument was for a single
substitution 𝜏, but the construction can be done virtually without change with 𝜏𝑘 replaced by 𝜋 ◦ 𝜌𝑘 .)

We can even represent 𝛼 (and therefore 𝜆) in terms of generalized continued fractions. If we defined
an alternate sequence (𝑒𝑘 ) by the same recursion with 𝑒−1 = 0 and 𝑒0 = 1, then 𝑐𝑘

𝑒𝑘
is just the kth

convergent to the generalized continued fraction

𝛽 =
𝑎1

𝑏1 +
𝑎2

𝑏2 +
𝑎3

𝑏3 +
. . .

=
1

𝑚1 +
𝑛1 − 𝑚1

𝑚2 +
𝑛2 − 𝑚2

𝑚3 +
. . .

.

In particular, 𝑐𝑘
𝑒𝑘

→ 𝛽. Since 𝑐−1 = 1, 𝑐0 = 0, 𝑒−1 = 0, 𝑒1 = 1 and 𝑐𝑘 , 𝑑𝑘 and 𝑒𝑘 are all defined by the
same (linear) recursion, 𝑑𝑘 = 𝑑−1𝑐𝑘 + 𝑑0𝑒𝑘 for all k. Then, as 𝑑−1 = |𝜋(1) | − |𝜋(0) | and 𝑑0 = |𝜋(0) |,

𝛼 = lim
𝑐𝑘
𝑑𝑘

= lim
(
𝑑−1 + 𝑑0

( 𝑒𝑘
𝑐𝑘

− 1
))−1

= (𝑑−1 + 𝑑0(𝛽−1 − 1))−1 =
𝛽

|𝜋(1) |𝛽 + |𝜋(0) |(1 − 𝛽) .

Therefore, the eigenvalue 𝜆 can be written as exp
(
2𝜋𝑖

(
𝛽

|𝜋 (1) |𝛽+|𝜋 (0) | (1−𝛽)

))
.
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5. A weak mixing subshift with 𝐶 = 3/2

Theorem 5.1. There exists an infinite transitive subshift X which is uniquely ergodic, has unique measure
which is weak mixing and for which lim sup 𝑝 (𝑞)

𝑞 = 3
2 .

The complexity estimates in Theorem 5.1 will follow from a general formula for word complexity of
subshifts with the structure from Proposition 3.1, which may be of independent interest.

Proposition 5.2. Let X be the orbit closure of 𝑥 (𝑚𝑘 ) , (𝑛𝑘 ) for 𝜋 and (𝜏𝑚𝑘 ,𝑛𝑘 ) satisfying the conclusions
of Proposition 3.1. Then there exists a constant K such that for 𝑘 ≥ 2,

𝑝(𝑞) =
{
𝑞 +

∑𝑘
𝑗=2 (𝑛 𝑗 − 𝑚 𝑗 − 1) |𝑣 𝑗 | + 𝐾 if |𝑠𝑘𝑣𝑛𝑘−2

𝑘 𝑝𝑘 | ≤ 𝑞 ≤ |𝑠𝑘+1𝑣
𝑚𝑘+1−1
𝑘+1 𝑝𝑘+1 |

2𝑞 − |𝑠𝑘𝑣𝑚𝑘−1
𝑘 𝑝𝑘 | +

∑𝑘−1
𝑗=2 (𝑛 𝑗 − 𝑚 𝑗 − 1) |𝑣 𝑗 | + 𝐾 if |𝑠𝑘𝑣𝑚𝑘−1

𝑘 𝑝𝑘 | ≤ 𝑞 ≤ |𝑠𝑘𝑣𝑛𝑘−2
𝑘 𝑝𝑘 |.

Proof. We claim first that the words 𝑝∞ := lim 𝑠𝑘 𝑝𝑘 = lim 𝑠1𝑣2 · · · 𝑣𝑘𝑣𝑚𝑘−1
𝑘 𝑣𝑚𝑘−1−1

𝑘−1 · · · 𝑣𝑚1−1
1 and

𝑠𝑘𝑣
𝑛𝑘−2
𝑘 𝑝𝑘 for 𝑘 > 0 are right-special.

Since 𝑣𝑘+1 = 𝑣𝑚𝑘−1
𝑘 𝑢𝑘 and 𝑢𝑘+1 = 𝑣𝑛𝑘−1

𝑘 𝑢𝑘 , 𝑝𝑘+1 = 𝑣𝑚𝑘−1
𝑘 𝑝𝑘 . By induction, then 𝑝𝑘+1 =

𝑣𝑚𝑘−1
𝑘 · · · 𝑣𝑚1−1

1 as 𝑝1 is empty. By Lemma 3.6, 𝑠𝑘 𝑝𝑘 is a suffix of 𝑠𝑘+1𝑝𝑘+1 = 𝑠𝑘𝑣
𝑚𝑘−1
𝑘 𝑢𝑘𝑣

𝑚𝑘−1
𝑘 𝑝𝑘 . As

|𝑠𝑘+1 | > |𝑠𝑘 |, this shows 𝑝∞ exists and is left-infinite.
By definition of 𝑝𝑘 as the maximal common prefix, 𝑝𝑘𝜋(0) and 𝑝𝑘𝜋(1) are both in the language

since each of 𝑢𝑘 and 𝑣𝑘 must have one of them as a prefix and they cannot have the same one. So 𝑝𝑘 is
right-special for each k (as 𝜋(0) and 𝜋(1) begin with different letters) hence 𝑝∞ is right-special. That
𝑠𝑘𝑣

𝑛𝑘−2
𝑘 𝑝𝑘 is right-special follows from Lemma 3.10.

Next, we claim that every right-special word is a suffix of 𝑝∞ or of 𝑠𝑘𝑣𝑛𝑘−2
𝑘 𝑝𝑘 for some 𝑘 > 0.

Since every right-special word of length at least |𝑠1𝑣
𝑚1−1
1 | is a suffix of a concatenation of 𝑢1 and 𝑣1,

any right-special word with 𝑠2𝑝2 = 𝑠1𝑣
𝑚1−1
1 𝑢1𝑣

𝑚1−1
1 as a suffix is of the form 𝑥𝑢1𝑣

𝑚1−1
1 , where x is a

suffix of a concatenation of 𝑢1 and 𝑣1. If x were not a suffix of a concatenation of 𝑣2 and 𝑢2, then 𝑢1𝑣
𝑟
1𝑢1

for 𝑟 ≠ 𝑚1 − 1, 𝑛1 − 1 must appear somewhere in x but this is impossible by definition of 𝜏𝑚1 ,𝑛1 . So
every right-special word with 𝑠2𝑝2 as a suffix is of the form 𝑥𝑝2, where x is a suffix of a concatenation
of 𝑣2 and 𝑢2.

Assume that any word with 𝑠𝑘 𝑝𝑘 as a suffix is necessarily of the form 𝑥𝑝𝑘 , where x is a concatenation
of 𝑢𝑘 and 𝑣𝑘 . Let w be a word which has 𝑠𝑘+1𝑝𝑘+1 as a suffix. Since 𝑠𝑘+1𝑝𝑘+1 = 𝑠𝑘𝑣𝑘+1𝑣

𝑚𝑘−1
𝑘 𝑝𝑘 which

has 𝑠𝑘 𝑝𝑘 as a suffix, 𝑤 = 𝑥𝑣𝑘+1𝑣
𝑚𝑘−1
𝑘 𝑝𝑘 , where x is a suffix of a concatenation of 𝑢𝑘 and 𝑣𝑘 . If x were

not a suffix of a concatenation of 𝑢𝑘+1 and 𝑣𝑘+1, then somewhere in 𝑥𝑣𝑘+ there must appear 𝑢𝑘𝑣𝑟𝑘𝑢𝑘 for
𝑟 ≠ 𝑛𝑘 −1, 𝑚𝑘 −1 or 𝑣𝑡𝑘 for 𝑡 > 𝑛𝑘 −1. But this is impossible by definition of 𝜏𝑚𝑘 ,𝑛𝑘 . By induction, then
for all k, any word with suffix 𝑠𝑘 𝑝𝑘 is of the form 𝑥𝑝𝑘 , where x is a suffix of a concatenation of 𝑢𝑘 and 𝑣𝑘 .

Since 𝑣𝑘 is a suffix of 𝑢𝑘 for 𝑘 > 1, write 𝑢𝑘 = 𝑢′𝑘𝑣
ℓ𝑘
𝑘 for ℓ𝑘 ≥ 1 maximal. Note that 𝑠𝑘 has 𝑣ℓ𝑘𝑘 as a

suffix.
Let w be a right-special word with |𝑤 | ≥ |𝑠1𝑝1 |. Take 𝑘 ≥ 1 maximal so that w has 𝑠𝑘 𝑝𝑘 as a suffix.

By the above, 𝑤 = 𝑥𝑝𝑘 is where x is a suffix of a concatenation of 𝑢𝑘 and 𝑣𝑘 in any left-infinite word.
Choose 𝑡 ≥ 0 maximal so that 𝑣𝑡𝑘 𝑝𝑘 is a suffix of w.

Suppose w is not a suffix of 𝑠𝑘𝑣𝑡−ℓ𝑘𝑘 𝑝𝑘 . Then 𝑢𝑘𝑣
𝑡−ℓ𝑘
𝑘 𝑝𝑘 must be right-special since all letters to

the left of 𝑠𝑘 are forced to come from 𝑢𝑘 by maximality of ℓ𝑘 . As the 𝑝𝑘 must appear as a prefix of
both 𝑣𝑘 and 𝑢𝑘 , then 𝑢𝑘𝑣

𝑡−ℓ𝑘
𝑘 𝑢𝑘 and 𝑢𝑘𝑣

𝑡−ℓ𝑘
𝑘 𝑣𝑘 are in the language so 𝑡 − ℓ𝑘 = 𝑚𝑘 − 1. But then w has

𝑣𝑚𝑘−1
𝑘 𝑝𝑘 = 𝑝𝑘+1 as a suffix, contradicting the maximality of k.

So w is a suffix of 𝑠𝑘𝑣𝑡−ℓ𝑘𝑘 𝑝𝑘 . Suppose 𝑡 − ℓ𝑘 ≥ 𝑛𝑘 − 1. Then w has 𝑣𝑛𝑘−1+ℓ𝑘
𝑘 𝑝𝑘 as a suffix. As w is

right-special, this requires 𝑣𝑛𝑘−1+ℓ𝑘
𝑘 𝑣𝑘 be in the language. But that is only possible if 𝑢𝑘 has 𝑣ℓ𝑘+1

𝑘 as a
suffix, contradicting the maximality of ℓ𝑘 .

So 𝑡 − ℓ𝑘 ≤ 𝑛𝑘 − 2. Then w, being a suffix of 𝑠𝑘𝑣𝑡−ℓ𝑘𝑘 𝑝𝑘 , is a suffix of 𝑠𝑘𝑣𝑛𝑘−2
𝑘 𝑝𝑘 .
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Finally, we establish the complexity function is as claimed. Since 𝑝∞ has 𝑠𝑘+1𝑝𝑘+1 = 𝑠𝑘𝑣𝑘+1𝑣
𝑚𝑘−1
𝑘 𝑝𝑘

as a suffix, by Lemma 3.6, it has 𝑠𝑘𝑢𝑘𝑣𝑚𝑘−1
𝑘 𝑝𝑘 as a suffix. By Lemma 3.7, the maximal common suffix

of 𝑝∞ and 𝑠𝑘𝑣
𝑛𝑘−2
𝑘 𝑝𝑘 is then 𝑠𝑘𝑣

𝑚𝑘−1
𝑘 𝑝𝑘 . Likewise the maximal common suffix of 𝑠𝑘𝑣𝑛𝑘−2

𝑘 𝑝𝑘 and
𝑠𝑘′𝑣

𝑛𝑘′−2
𝑘′ 𝑝𝑘′ for 𝑘 ′ > 𝑘 is 𝑠𝑘𝑣𝑚𝑘−1

𝑘 𝑝𝑘 as 𝑣𝑘+1 has 𝑢𝑘 as a suffix. Therefore, each 𝑠𝑘𝑣
𝑛𝑘−2
𝑘 𝑝𝑘 provides

(𝑛𝑘 − 2− (𝑚𝑘 − 1)) |𝑣𝑘 | right-special words (with lengths in (|𝑠𝑘𝑣𝑚𝑘−1
𝑘 𝑝𝑘 |, |𝑠𝑘𝑣𝑛𝑘−2

𝑘 𝑝𝑘 |]) which are not
suffixes of 𝑝∞. Set 𝐾 = 𝑝(|𝑠2𝑝2 |) − |𝑠2𝑝2 | and the claim follows. �

Proof of Theorem 5.1. Define any increasing (𝑛𝑘 ), (𝑚𝑘 ) so that 𝑛𝑘 = 2𝑚𝑘 for all k, 𝑚1 = 1, and the
sum

∑
𝑘 (𝑛𝑘 )−1 < ∞. Then define 𝜋 to be the identity, define 𝜏𝑚𝑘 ,𝑛𝑘 , 𝜌𝑘 , 𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘 , 𝑑𝑘 as in the proof

of Proposition 4.2, and note that 𝑎𝑘+1 = 𝑛𝑘 − 𝑚𝑘 = 𝑚𝑘 = 𝑏𝑘 for all k and
∑

𝑘 (𝑏𝑘 )−1 < ∞. Just as
before, 𝑑𝑘 = |𝜌𝑘 (0) | for all k, and we wish to impose the additional condition that 𝑑𝑘 is prime for every
𝑘 > 1. This is easily achieved via induction. First, 𝑑0 = 𝑑1 = 1, so 𝑑2 = 𝑏2𝑑1 + 𝑎2𝑑0 = 𝑚2 + 1, which
can clearly be chosen prime. Then, assume that 𝑑𝑘 is prime, and recall that 𝑑𝑘+1 = 𝑏𝑘+1𝑑𝑘 + 𝑎𝑘+1𝑑𝑘−1.
Both 𝑎𝑘+1 = 𝑏𝑘 and 𝑑𝑘−1 are positive and less than the prime 𝑑𝑘 (since 𝑑𝑘 = 𝑏𝑘𝑑𝑘−1 + 𝑎𝑘𝑑𝑘−2 and
𝑑𝑘−2 is positive for 𝑘 > 1), meaning that 𝑑𝑘 and 𝑎𝑘+1𝑑𝑘−1 are positive and coprime. Then by Dirichlet’s
theorem, there exist infinitely many choices of 𝑏𝑘+1 so that 𝑑𝑘+1 is prime. As long as the sequence (𝑏𝑘 )
is chosen large enough at each step, we will maintain the condition

∑
𝑘 (𝑏𝑘 )−1 < ∞.

Let X be the orbit closure of 𝑥 (𝑚𝑘 ) , (𝑛𝑘 ) . X is minimal by construction, so by [Bos92], X is uniquely
ergodic with unique measure 𝜇.

Suppose for a contradiction that X is not weak mixing, and so there is an eigenvalue 𝜆 ≠ 1 with
measurable eigenfunction f. Our method is again based on the Host’s arguments from [Hos86], where
he showed that the existence of an eigenfunction can be used to obtain Diophantine conditions involving
the lengths of substitution words, which can be viewed as heights of Rokhlin towers.

One can define Rokhlin towers by 𝐵𝑘 = [𝜌𝑘 (0)], ℎ𝑘 = |𝜌𝑘 (0) | and 𝑇𝑘 =
⋃ℎ𝑘−1

𝑗=0 𝜎 𝑗𝐵𝑘 ; since
𝑚𝑘 , 𝑛𝑘 → ∞, 𝜇(𝑇𝑘 ) → 1. By Remark 3.12, X is uniquely decomposable so the levels of the towers are
disjoint. Then, for each k, define

𝑓𝑘 (𝑥) =
ℎ𝑘−1∑
𝑗=0

1
𝜇(𝐵𝑘 )

( ∫
𝜎 𝑗𝐵𝑘

𝑓 𝑑𝜇
)
1𝜎 𝑗𝐵𝑘

(𝑥),

that is, 𝑓𝑘 (𝑥) = (𝜇(𝐵𝑘 ))−1(
∫
𝜎 𝑗𝐵𝑘

𝑓 𝑑𝜇) for 𝑥 ∈ 𝜎 𝑗𝐵𝑘 and 𝑓𝑘 (𝑥) = 0 for 𝑥 ∉ 𝑇𝑘 .
By the Lebesgue differentiation theorem, as 𝜇(𝑇𝑘 ) → 1 and 𝜇(𝜎 𝑗𝐵𝑘 ) → 0, 𝑓𝑘 converge almost

everywhere to f.
Observe that 𝜎𝑑𝑘 = 𝜎 |𝜌𝑘 (0) | takes every occurrence of 𝜌𝑘 (0) to an occurrence of 𝜌𝑘 (0) except for

those which are immediately prior to an occurrence of 𝜌𝑘 (1) in some 𝜌𝑘+1(0) or 𝜌𝑘+1(1). Then for all
𝑡 > 0, 𝜎𝑑𝑘+𝑡 takes all occurrences of 𝜌𝑘 (0) appearing in a 𝜌𝑘+𝑡 (0) to an occurrence of 𝜌𝑘 (0) except
possibly for those appearing in a 𝜌𝑘+𝑡 (0) immediately prior to a 𝜌𝑘+𝑡 (1).

Let {𝑖𝑘 } be any sequence such that 0 < 𝑖𝑘 < 0.5(𝑚𝑘+1 − 1). Then as above, for all 𝑡 > 0, 𝜎𝑖𝑘+𝑡𝑑𝑘+𝑡

takes all occurrences of 𝜌𝑘 (0) in a 𝜌𝑘+𝑡 (0) to an occurrence of 𝜌𝑘 (0) except possibly for those appearing
in a 𝜌𝑘+𝑡 (0) less than 𝑖𝑘+𝑡 occurrences before a 𝜌𝑘+𝑡 (1) in some 𝜌𝑘+𝑡+1(0) or 𝜌𝑘+𝑡+1(1). We also note
that since 𝑛𝑘+𝑡+1 = 2𝑚𝑘+𝑡+1, at least one-third of the 𝜌𝑘 (0) appearing in any 𝑥 ∈ 𝑋 are part of some
𝜌𝑘+𝑡 (0). Therefore,

𝜇(𝜎𝑖𝑘+𝑡𝑑𝑘+𝑡 [𝜌𝑘 (0)] ∩ [𝜌𝑘 (0)]) ≥
𝑚𝑘+𝑡 − 1 − 𝑖𝑘+𝑡

𝑚𝑘+𝑡 − 1

(
1
3
𝜇([𝜌𝑘 (0)])

)

so, since 𝑖𝑘+𝑡 < 0.5(𝑚𝑘+𝑡 − 1),

𝜇(𝜎𝑖𝑘+𝑡𝑑𝑘+𝑡 (𝜎 𝑗𝐵𝑘 ) ∩ (𝜎 𝑗𝐵𝑘 )) >
1
6
𝜇(𝜎 𝑗𝐵𝑘 ).
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Then 𝑓𝑘 (𝜎𝑖𝑘+𝑡𝑑𝑘+𝑡 𝑥) = 𝑓𝑘 (𝑥) for a set of measure at least 1
6 𝜇(𝑇𝑘 ). Since 𝑓𝑘 → 𝑓 almost everywhere and

𝜇(𝑇𝑘 ) → 1, there is then a positive measure set such that for any sufficiently small 𝜖 > 0 and almost
every x in the set, there exists k so that for all t, | 𝑓 (𝜎𝑖𝑘+𝑡𝑑𝑘+𝑡 𝑥) − 𝑓 (𝑥) | < 𝜖 . Therefore, 𝜆𝑖𝑘𝑑𝑘 → 1.

We will prove that this is impossible. Define 𝑟 ∈ (0, 1) by 𝜆 = 𝑒2𝜋𝑖𝑟 ; then 〈𝑖𝑘𝑑𝑘𝑟〉 → 0 whenever
0 < 𝑖𝑘 < 0.5(𝑚𝑘+1 − 1), which implies that for large enough k (say 𝑘 ≥ 𝑘0), 〈𝑑𝑘𝑟〉 < 0.05(𝑚𝑘+1 − 1)−1.
Clearly, r cannot be rational since all 𝑑𝑘 are 1 or prime. Since 5𝑛𝑘+1 = 10𝑚𝑘+1 < 20(𝑚𝑘+1 − 1),
for 𝑘 ≥ 𝑘0, 〈𝑑𝑘𝑟〉 < 0.2(𝑛𝑘+1)−1. This implies that for all 𝑘 ≥ 𝑘0, there exists 𝑐′𝑘 ∈ Z so that���𝑟 − 𝑐′𝑘

𝑑𝑘

��� < 0.2(𝑑𝑘𝑛𝑘+1)−1 < 0.2(𝑑𝑘+1)−1. (Recall that 𝑑𝑘+1 = 𝑏𝑘+1𝑑𝑘 +𝑎𝑘+1𝑑𝑘−1 < 2𝑏𝑘+1𝑑𝑘 = 𝑛𝑘+1𝑑𝑘 .)
We will prove the following: for all 𝑘 > 𝑘0,

𝑐′𝑘+1 = 𝑏𝑘+1𝑐
′
𝑘 + 𝑎𝑘+1𝑐

′
𝑘−1. (5.1)

Assume that 𝑘 > 𝑘0, and denote the right-hand side of equation (5.1) by 𝑐′′𝑘+1. Then,
����𝑟 − 𝑐′𝑘

𝑑𝑘

���� < 0.2(𝑑𝑘+1)−1 and
����𝑟 − 𝑐′𝑘−1

𝑑𝑘−1

���� < 0.2(𝑑𝑘 )−1, (5.2)

and so ����𝑑𝑘+1𝑟 − 𝑐′𝑘
𝑑𝑘+1
𝑑𝑘

���� < 0.2. (5.3)

We can simplify����𝑐′𝑘 𝑑𝑘+1
𝑑𝑘

− 𝑐′′𝑘+1

���� =
����𝑐′𝑘

(
𝑏𝑘+1 +

𝑎𝑘+1𝑑𝑘−1
𝑑𝑘

)
− 𝑏𝑘+1𝑐

′
𝑘 − 𝑎𝑘+1𝑐

′
𝑘−1

���� =
����𝑐′𝑘𝑎𝑘+1

𝑑𝑘−1
𝑑𝑘

− 𝑎𝑘+1𝑐
′
𝑘−1

����. (5.4)

By the second inequality in equation (5.2),

��𝑎𝑘+1𝑑𝑘−1𝑟 − 𝑎𝑘+1𝑐
′
𝑘−1

�� < 0.2𝑎𝑘+1𝑑𝑘−1
𝑑𝑘

=
0.2𝑏𝑘𝑑𝑘−1

𝑑𝑘
< 0.2. (5.5)

Similarly, by the first inequality in equation (5.2),����𝑎𝑘+1𝑑𝑘−1𝑟 − 𝑐′𝑘𝑎𝑘+1
𝑑𝑘−1
𝑑𝑘

���� < 0.2𝑎𝑘+1𝑑𝑘−1
𝑑𝑘+1

=
0.2𝑏𝑘𝑑𝑘−1

𝑑𝑘+1
< 0.2. (5.6)

Therefore, by the triangle inequality and equations 5.4–5.6,����𝑐′𝑘 𝑑𝑘+1
𝑑𝑘

− 𝑐′′𝑘+1

���� < 0.4.

Combining with equation (5.3) via the triangle inequality yields��𝑑𝑘+1𝑟 − 𝑐′′𝑘+1
�� < 0.6. (5.7)

Recall that by definition,����𝑟 − 𝑐′𝑘+1
𝑑𝑘+1

���� < 0.2(𝑑𝑘+2)−1, and so
��𝑑𝑘+1𝑟 − 𝑐′𝑘+1

�� < 0.2
𝑑𝑘+1
𝑑𝑘+2

< 0.2. (5.8)

Finally, equations (5.7) and (5.8) imply that 𝑐′𝑘+1 = 𝑐′′𝑘+1 (since they are both integers), completing the
proof that equation (5.1) holds for 𝑘 > 𝑘0.
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Since r is irrational and 𝑐′𝑘
𝑑𝑘

→ 𝑟 , we may also assume without loss of generality (by increasing 𝑘0)

that
𝑐′𝑘0
𝑑𝑘0

≠
𝑐′1+𝑘0
𝑑1+𝑘0

. Then, it is easily proved by induction that for all 𝑘 > 𝑘0,

���� 𝑐
′
𝑘

𝑑𝑘
−
𝑐′𝑘+1
𝑑𝑘+1

���� = |𝑐′1+𝑘0
𝑑𝑘0 − 𝑐′𝑘0

𝑑1+𝑘0 |
𝑎1+𝑘0 . . . 𝑎𝑘+1

𝑑𝑘𝑑𝑘+1
.

We abbreviate 𝑄 = |𝑐′1+𝑘0
𝑑𝑘0 − 𝑐′𝑘0

𝑑1+𝑘0 | and note that 𝑄 ≠ 0 by the assumption that
𝑐′𝑘0
𝑑𝑘0

≠
𝑐1+𝑘0
𝑑1+𝑘0

. We
can now bound the distance from above using that 𝑎 𝑗+1𝑑 𝑗−1 ≤ 𝑑 𝑗 :

���� 𝑐
′
𝑘

𝑑𝑘
−
𝑐′𝑘+1
𝑑𝑘+1

���� = 𝑄𝑎1+𝑘0 . . . 𝑎𝑘+1

𝑑𝑘𝑑𝑘+1
=

𝑄

𝑑𝑘0−1𝑑𝑘+1

𝑘∏
𝑗=𝑘0

𝑎 𝑗+1𝑑 𝑗−1

𝑑 𝑗
>

𝑄

𝑑𝑘0−1𝑑𝑘+1

∞∏
𝑗=𝑘0

𝑎 𝑗+1𝑑 𝑗−1

𝑑 𝑗
. (5.9)

Note that

𝑑 𝑗

𝑎 𝑗+1𝑑 𝑗−1
=

𝑏 𝑗

𝑎 𝑗+1
+

𝑎 𝑗𝑑 𝑗−2

𝑎 𝑗+1𝑑 𝑗−1
≤

𝑏 𝑗

𝑎 𝑗+1
+
𝑏 𝑗−1𝑑 𝑗−2

𝑎 𝑗+1𝑑 𝑗−1
<
𝑏 𝑗 + 1
𝑎 𝑗+1

<
𝑏 𝑗

𝑎 𝑗+1 − 1
=

𝑏 𝑗

𝑏 𝑗 − 1
=
(
1 − 𝑏−1

𝑗

)−1
.

Therefore, the product
∏∞

𝑗=𝑘0

𝑎 𝑗+1𝑑 𝑗−1
𝑑 𝑗

is greater than
∏∞

𝑗=𝑘0

(
1 − 1

𝑏 𝑗

)
, which converges to a positive limit

L by the assumption that
∑
𝑏−1
𝑘 < ∞. Combining with equation (5.9) yields that there exists a positive

constant 𝐾 = 𝑄𝐿
𝑑𝑘0−1

so that for all 𝑘 > 𝑘0,

���� 𝑐
′
𝑘

𝑑𝑘
−
𝑐′𝑘+1
𝑑𝑘+1

���� > 𝐾

𝑑𝑘+1
. (5.10)

However, recall that |𝑟 − 𝑐′𝑘
𝑑𝑘
| < 0.2(𝑑𝑘𝑛𝑘+1)−1 meaning |𝑟𝑑𝑘+1𝑛𝑘+1 − 𝑐′𝑘𝑛𝑘+1 | < 0.2 so 𝑐′𝑘𝑛𝑘+1 is

the closest integer to 𝑟𝑑𝑘+1𝑛𝑘+1. Since 〈0.25𝑛𝑘+1𝑑𝑘𝑟〉 → 0, this implies there exists 𝑘1 > 𝑘0 such
that |𝑟𝑑𝑘+1𝑛𝑘+1 − 𝑐′𝑘𝑛𝑘+1 | < 0.5𝐾 . Then |𝑟 − 𝑐′𝑘

𝑑𝑘
| < 0.5𝐾 (𝑛𝑘+1𝑑𝑘 )−1. Since 𝑑𝑘+1 < 𝑛𝑘+1𝑑𝑘 , then

|𝑟 − 𝑐′𝑘
𝑑𝑘
| < 0.5𝐾 (𝑑𝑘+1)−1. Then for 𝑘 > 𝑘1,

����𝑟 − 𝑐′𝑘
𝑑𝑘

���� < 0.5𝐾 (𝑑𝑘+1)−1 and
����𝑟 − 𝑐′𝑘+1

𝑑𝑘+1

���� < 0.5𝐾 (𝑑𝑘+2)−1 < 0.5𝐾 (𝑑𝑘+1)−1,

which contradicts equation (5.10) by the triangle inequality. Therefore, our original assumption is false
and X is weak mixing.

It remains only to show that the complexity function satisfies the claimed bounds. Since |𝑝1 | = 0 and
by Remark 3.11, 𝑝𝑘+1 = 𝑣𝑚𝑘−1

𝑘 𝑝𝑘 , we have |𝑝𝑘 | =
∑𝑘−1

𝑗=1 (𝑚 𝑗 − 1) |𝑣 𝑗 | and therefore, since 𝑛 𝑗 −𝑚 𝑗 = 𝑚 𝑗 ,

𝑘∑
𝑗=1

(𝑛 𝑗 − 𝑚 𝑗 − 1) |𝑣 𝑗 | =
𝑘∑
𝑗=1

(𝑚 𝑗 − 1) |𝑣 𝑗 | = (𝑚𝑘 − 1) |𝑣𝑘 | + |𝑝𝑘 |.

By Proposition 5.2, then

𝑝(|𝑠𝑘𝑣2𝑚𝑘−2
𝑘 𝑝𝑘 |) = |𝑠𝑘𝑣2(𝑚𝑘−1)

𝑘 𝑝𝑘 | + (𝑚𝑘 − 1) |𝑣𝑘 | + |𝑝𝑘 | + 𝐾 = 1.5|𝑠𝑘𝑣2𝑚𝑘−2
𝑘 𝑝𝑘 | − 0.5(|𝑠𝑘 | − |𝑝𝑘 |) + 𝐾.

Since |𝑝𝑘 | + |𝑠𝑘 | < 3|𝑣𝑘 | and 𝑚𝑘 → ∞, lim 𝑝 ( |𝑠𝑘 𝑣
2𝑚𝑘−2
𝑘

𝑝𝑘 |)
|𝑠𝑘 𝑣

2𝑚𝑘−2
𝑘

𝑝𝑘 |
= 1.5. Proposition 5.2 implies that the

limsup of 𝑝 (𝑞)
𝑞 is achieved along some subsequence of |𝑠𝑘𝑣𝑛𝑘−2

𝑘 𝑝𝑘 |, so lim sup 𝑝 (𝑞)
𝑞 = 1.5. �
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Remark 5.3. The examples in Theorem 5.1 also satisfy 𝑝(𝑞) − 1.5𝑞 → −∞ and lim inf 𝑝 (𝑞)
𝑞 = 1. For

any 𝑓 (𝑞) → ∞, such a subshift exists which also satisfies 𝑝(𝑞) < 𝑞 + 𝑓 (𝑞) infinitely often.

Proof. By Remark 3.11, 𝑠𝑘+1 = 𝑠𝑘𝑣𝑘+1, so we have |𝑠𝑘 | − |𝑝𝑘 | ≤ |𝑠𝑘 | − |𝑣𝑘 | = |𝑠𝑘−1 | → ∞ so
𝑝(𝑞) − 1.5𝑞 → −∞. By Proposition 5.2,

𝑝(|𝑣𝑚𝑘−1
𝑘 𝑝𝑘 |) = |𝑣𝑚𝑘−1

𝑘 𝑝𝑘 | +
𝑘−1∑
𝑗=1

(𝑛 𝑗 − 𝑚 𝑗 − 1) |𝑣 𝑗 | + 𝐾 = |𝑣𝑚𝑘−1
𝑘 𝑝𝑘 | + |𝑝𝑘 | + 𝐾

and |𝑝𝑘 | < 3|𝑣𝑘 | so since 𝑚𝑘 → ∞, lim inf 𝑝 (𝑞)
𝑞 = 1. Now, let 𝑓 (𝑞) → ∞ be arbitrary. For all k, if 𝑣𝑘

and 𝑝𝑘 are given, we can choose 𝑏𝑘 = 𝑚𝑘 large enough so that 𝑓 ((𝑚𝑘 − 1) |𝑣𝑘 | + |𝑝𝑘 |) > |𝑝𝑘 | + 𝐾 ,
which implies that 𝑝(|𝑣𝑚𝑘−1

𝑘 𝑝𝑘 |) < |𝑣𝑚𝑘−1
𝑘 𝑝𝑘 | + 𝑓 (|𝑣𝑚𝑘−1

𝑘 𝑝𝑘 |). �
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