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ON WARING’S PROBLEM:
THREE CUBES AND A MINICUBE

JÖRG BRÜDERN and TREVOR D. WOOLEY

Abstract. We establish that almost all natural numbers n are the sum of

four cubes of positive integers, one of which is no larger than n5/36. The proof

makes use of an estimate for a certain eighth moment of cubic exponential

sums, restricted to minor arcs only, of independent interest.

§1. Introduction

It was shown by Davenport [6] in 1939 that almost all natural numbers
are the sum of four positive integral cubes, and it is now known that when
N is large, the number of positive integers not exceeding N that fail to
be thus represented is slightly smaller than N37/42 (see [11], [3], [4], [16],
and [17] for the most recent developments). Since integers congruent to 4
modulo 9 are never the sum of three cubes, this conclusion cannot be refined
to one involving fewer summands. A formal application of the circle method
predicts an asymptotic formula for the number of representations as the sum
of four positive cubes, and this would imply that all large integers are thus
represented. Indeed, the same heuristic argument suggests that the fourth
cube is almost redundant, in that it may be replaced by a cube from a sparse
sequence without impairing such conclusions. The purpose of this article is
to investigate representations by sums of four positive cubes, one of which
is small.

When n is a natural number and 0 < θ ≤ 1/3, we denote by rθ(n) the
number of representations of n in the form

(1.1) n = x3
1 + x3

2 + x3
3 + x3

4,
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with x1, x2, x3, x4 natural numbers satisfying x4 ≤ nθ. As intimated above,
one anticipates that rθ(n) ∼ Γ(4/3)3S(n)nθ, where S(n) is the familiar sin-
gular series associated with sums of four cubes. We recall in this context that
S(n) � 1 (see, e.g., [14, Section 4.6, Exercise 3]), and hence it is expected
that rθ(n) ≥ 1 when n is large. We are able to confirm this expectation for
values of θ rather smaller than 1/7, at least, for almost all n.

Theorem 1.1. When θ ≥ 5/36, one has rθ(n) ≥ 1 for almost all n.

The methods of this article are capable of showing that the conclusion of
this theorem remains valid when θ is slightly smaller than 0.13884, whereas
5/36 > 0.13888. For comparison, it is apparent that whenever n is repre-
sented in the shape (1.1), then xi ≤ n1/3 (1 ≤ i ≤ 4), and so the conclusion
is trivial for θ ≥ 1/3. One may interpret Theorem 1.1 as asserting that
almost all large integers possess a (formal) representation as the sum of at
most 3.417 positive cubes. Meanwhile, [5, Theorem 1] shows that almost all
large integers not congruent to 5 modulo 9 are the sum of three positive
integral cubes and a sixth power, a conclusion tantamount to one involving
3.5 cubes.

In Section 6, we show that the anticipated asymptotic formula holds
almost always for sums of three cubes and a minicube.

Theorem 1.2. Suppose that 1/4 < θ ≤ 1/3. Then, for almost all n, one
has

rθ(n) = Γ
(4

3

)3
S(n)nθ + O

(
nθ(logn)−1

)
.

A conclusion equivalent to this theorem in the unrestricted situation with
θ = 1/3 can be extracted from Vaughan [11, Theorem 3] by incorporat-
ing refinements due to Boklan [1]. We remark that it is unnecessary to
restrict the minicube implicit in the representation of n in Theorem 1.2 to
be bounded by a pure power nθ, and that this hypothesis may be removed
with some technical elaboration of our basic argument.

We prove Theorems 1.1 and 1.2 using the Hardy-Littlewood method,
beginning in Section 2 with some auxiliary mean value estimates. In Sec-
tion 3, we establish an upper bound for a certain eighth moment of cubic
exponential sums restricted to minor arcs, an estimate of independent inter-
est (see Theorem 3.1 for details). We lay the foundations for an application
of the circle method in Section 4, deriving a lower bound for the contribu-
tion of the major arcs. Then, in Section 5, we apply Bessel’s inequality to
relate the exceptional set to a minor arc estimate. Following two pruning
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WARING’S PROBLEM FOR CUBES 61

processes, the proof of Theorem 1.1 is complete. Although complicated by
the limited availability of full-length generating functions to be applied in
the analysis of the major arcs, the proof of Theorem 1.2 in Section 6 is
essentially routine. Finally, in Section 7, we briefly discuss the representa-
tion of large natural numbers as the sum of seven positive integral cubes,
one of which is restricted to be a minicube.

Throughout, we reserve the letter ε to denote a sufficiently small positive
number, and we use P to denote a positive number sufficiently large in terms
of ε. The implicit constants in Vinogradov’s well-known notation � and �
will depend at most on ε, unless otherwise indicated. Whenever ε appears
in a statement, either implicitly or explicitly, we assert that the statement
holds for each ε > 0. Note that the “value” of ε may consequently change
from statement to statement. Finally, throughout this article, a variable
denoted by the letter p should be interpreted as denoting a prime number
congruent to 2 modulo 3.

§2. Catalytic lemmata

As is to be expected when considering problems in which one or more
variables are shortened, mean values involving diminishing ranges play a
prominent role in the arguments that follow. We collect together these basic
estimates in this section, and we begin now by introducing the cast of expo-
nential sums. We take P to be our basic parameter, a large real number,
and then take Q to be an auxiliary parameter with 1 ≤ Q ≤ P , to be chosen
in due course. Next, we define

(2.1) f(α) =
∑

P<x≤2P

e(αx3) and g(α) =
∑

Q<y≤2Q

e(αy3),

where, here and throughout, we write e(z) for e2πiz . Also, with η fixed to
be a sufficiently small positive number, we define the set of Xη-smooth
numbers not exceeding X by

A(X) =
{
n ∈ [1,X] ∩ Z : � prime and �

∣∣ n ⇒ � ≤ Xη
}
.

We then take R to be a positive number with R ≤ Q, and we put

h(α) =
∑

z∈ A(R)

e(αz3).
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We record for future reference the estimate

(2.2)
∫ 1

0
|h(α)|6 dα � R13/4−τ ,

which holds for any positive number τ with τ −1 > 852 + 16
√

2833 =
1703.6 . . . , as a consequence of [17, Theorem 1.2].

Our purpose in this section is to record estimates for the three mean
values

T1 =
∫ 1

0
|f(α)2g(α)2h(α)6| dα,(2.3)

T2 =
∫ 1

0
|f(α)2g(α)4| dα,(2.4)

T3 =
∫ 1

0
|f(α)g(α)h(α)|2 dα,(2.5)

of use in our subsequent deliberations. We begin with an analysis of T1 via
an auxiliary estimate.

Lemma 2.1. Whenever R ≤ Q2/3, one has∫ 1

0
|g(α)2h(α)6| dα � QR13/4−τ .

Proof. On considering the underlying diophantine equation, the mean
value in question counts the number of integral solutions of the equation

(2.6) y3
1 − y3

2 = z3
1 − z3

2 + z3
3 − z3

4 + z3
5 − z3

6 ,

with

(2.7) Q < y1, y2 ≤ 2Q and zi ∈ A(R) (1 ≤ i ≤ 6).

When y1 > y2, the left-hand side of this equation exceeds 3Q2, whereas the
right-hand side is always smaller than 3R3. Since R3 ≤ Q2, we conclude that
all solutions y,z of (2.6) satisfy y1 = y2, whence∫ 1

0
|g(α)2h(α)6| dα ≤ Q

∫ 1

0
|h(α)|6 dα.

The desired conclusion now follows from (2.2).
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Lemma 2.2. Suppose that Q = P 5/6 and that P 4/11 ≤ R ≤ P 14/33−τ/6.
Then one has

T1 � P 1+εQR13/4−τ .

Proof. By considering the diophantine equation underlying the mean
value (2.3), we find that T1 counts the number of integral solutions of the
equation

(2.8) x3
1 − x3

2 = y3
1 − y3

2 + z3
1 − z3

2 + z3
3 − z3

4 + z3
5 − z3

6 ,

with P < x1, x2 ≤ 2P , and y,z as in (2.7). On making use of Lemma 2.1,
one discerns that the diagonal contribution I0, arising from those solutions
of (2.8) counted by T1 in which x1 = x2, satisfies

(2.9) I0 � PQR13/4−τ .

For the remaining solutions, it suffices by symmetry to consider the situation
wherein x1 > x2. On substituting h = x1 − x2, one deduces from (2.8) that

3hP 2 < (2Q)3 + 3R3 < 9P 5/2,

whence h < 3P 1/2. Consequently, a consideration of the underlying diophan-
tine equation reveals that the contribution of such solutions is at most

(2.10) I1 =
∫ 1

0
Ψ(α)|g(α)2h(α)6| dα,

where
Ψ(α) =

∑
1≤h<3P 1/2

∑
P<x≤2P

e
(
αh(3x2 + 3xh + h2)

)
.

We estimate the integral (2.10) by using the Hardy-Littlewood method.
When a ∈ Z and q ∈ N, define the auxiliary major arcs N(q, a) by putting

N(q, a) =
{
α ∈ [0,1) : |qα − a| ≤ PQ−3

}
,

and then take N to be the union of the arcs N(q, a) with 0 ≤ a ≤ q ≤ P and
(a, q) = 1. Next, define Υ(α) for α ∈ [0,1) by taking

Υ(α) = (q + Q3|qα − a|)−1,

when α ∈ N(q, a) ⊆ N, and otherwise by putting Υ(α) = 0. Then, as a conse-
quence of the lemma in [10] combined with a standard transference principle
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(see [14, Section 2.8, Exercise 2]), one finds that whenever a ∈ Z and q ∈ N

satisfy (a, q) = 1 and |α − a/q| ≤ q−2, one has

Ψ(α) � P 3/2+ε
(
(q + Q3|qα − a|)−1 + P −1 + (q + Q3|qα − a|)P −5/2

)1/2
.

Hence, on applying Dirichlet’s approximation theorem and recalling that
Q = P 5/6, one swiftly arrives at the estimate

Ψ(α) � P 3/2+εΥ(α)1/2 + P 1+ε,

valid uniformly for α ∈ [0,1). Substituting this upper bound into (2.10), and
again applying Lemma 2.1, we conclude that

(2.11) I1 � P 1+εQR13/4−τ + P 3/2+εI2,

where

(2.12) I2 =
∫ 1

0
Υ(α)1/2|g(α)2h(α)6| dα.

Next, given a natural number q, we define q1 to be the largest integer
whose cube divides q, and we then put q0 = q/q3

1 . The function κ(q) defined
by taking κ(q) = q

−1/2
0 q−1

1 is multiplicative. For future use, we define the
function g+(α) for α ∈ [0,1) by putting

(2.13) g+(α) = qκ(q)QΥ(α),

when α ∈ N(q, a) ⊆ N, and otherwise by taking g+(α) = 0. On referring to
[14, Theorem 4.1 and Lemmas 4.3, 4.4, 4.5, and 6.2], one readily confirms
that the estimate

(2.14) g(α) � P εg+(α) + P 1/2+ε

holds uniformly for α ∈ N. Substituting this bound into (2.12), we deduce
that

(2.15) I2 � P 1/2+εI3 + P εI4,

where

(2.16) I3 =
∫ 1

0
Υ(α)1/2|g(α)h(α)6| dα
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and

(2.17) I4 =
∫ 1

0
Υ(α)1/2|g+(α)g(α)h(α)6| dα.

Our investigation of I3 begins with the application of [2, Lemma 2]. By
hypothesis, we have R ≥ P 4/11, and thus we are led via (2.2) to the bound

(2.18)
∫ 1

0
Υ(α)|h(α)|6 dα � Qε−3

(
P

∫ 1

0
|h(α)|6 dα + R6

)
� Qε−3R6.

Applying Schwarz’s inequality to (2.16), and then applying Lemma 2.1, we
therefore see that

I3 ≤
(∫ 1

0
Υ(α)|h(α)|6 dα

)1/2(∫ 1

0
|g(α)2h(α)6| dα

)1/2

(2.19)
� (Qε−3R6)1/2(QR13/4−τ )1/2.

We turn our attention next to I4. On recalling (2.12), a trivial estimate
for h(α) in combination with an application of Hölder’s inequality conveys
us from (2.17) to the bound

I4 ≤
(
R6

∫ 1

0
g+(α)4 dα

)1/4(∫ 1

0
Υ(α)|h(α)|6 dα

)1/4
I

1/2
2 .

In view of our definition (2.13), a routine computation confirms that∫ 1

0
g+(α)4 dα � P εQ.

Consequently, on recalling (2.18), we obtain the upper bound

I4 � P εQ−1/2R3I
1/2
2 .

Again making use of the hypothesis R ≥ P 4/11, we therefore see from (2.15)
and (2.19) that

I2 � P 1/2+εQ−1R37/8−τ/2 + P εQ−1R6 � P εQ−1R6.

We substitute this estimate into (2.11) to obtain

I1 � P 1+εQR13/4−τ + P 3/2+εQ−1R6.

A modest computation confirms that the first term here dominates under
the hypothesis that R ≤ P 14/33−τ/6, and thus the conclusion of the lemma
follows by reference to (2.9).
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We next supply an estimate for T2 by combining routine diminishing
ranges arguments.

Lemma 2.3. When 1 ≤ Q ≤ P , one has

T2 � P ε(PQ2 + P −1Q9/2).

Moreover, provided that P 4/5 ≤ Q ≤ P , one has

T2 � P ε(PQ2 + P −3/2Q5).

In particular, when 1 ≤ Q ≤ P 5/6, one has T2 � P 1+εQ2.

Proof. Write M = PQ−1 and H = PM −3. Then the argument leading to
[10, equation (4)] takes us from (2.4) to the estimate

T2 � P 1+εQ2 +
∫ 1

0
Φ(α)|g(α)|4 dα,

where
Φ(α) =

∑
1≤h≤6H

∑
P<x≤2P

e
(
αh(3x2 + 3xh + h2)

)
.

A simple modification of the familiar proof of Hua’s lemma (see, e.g., the
argument of [16, page 438]) shows that∫ 1

0
|Φ(α)|4 dα � H3P 2+ε.

Thus, by applying Hölder’s inequality in combination with Hua’s lemma
(see [14, Lemma 2.5]), we deduce that

T2 � P 1+εQ2 +
(∫ 1

0
|Φ(α)|4 dα

)1/4(∫ 1

0
|g(α)|8 dα

)1/4(∫ 1

0
|g(α)|4 dα

)1/2

� P 1+εQ2 + P ε(H3P 2)1/4(Q5)1/4(Q2)1/2

� P ε(PQ2 + P −1Q9/2).

This confirms the first conclusion of the lemma.
Suppose next that P 4/5 ≤ Q ≤ P . In this situation, the argument of the

lemma in [10] shows that when α ∈ R, a ∈ Z, and q ∈ N satisfy |α − a/q| ≤
q−2 and (a, q) = 1, then

Φ(α) � P ε(HPq−1/2 + HP 1/2 + H1/2q1/2).
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Thus, following the argument of [10, pages 19, 20], we see that

T2 � P 1+εQ2 + P 1/2+εHQ2 + P ε
∑

1≤q≤P

(HPQq−5/6 + P 2q−1/2)

� P 1+εQ2 + P 1/2+εHQ2(P 2/3Q−1 + M5P −1 + 1).

When P 4/5 ≤ Q ≤ P , we therefore conclude that

T2 � P 1+εQ2 + P 1/2+εHQ2,

an estimate that yields the second conclusion of the lemma.
The final assertion of the lemma follows from the first when Q ≤ P 4/5,

and from the second when P 4/5 ≤ Q ≤ P 5/6.

We finish this section by swiftly disposing of the mean value T3.

Lemma 2.4. Suppose that R ≤ Q ≤ P 5/6. Then one has

T3 � P 1+εQR.

Proof. Since R ≤ Q ≤ P 5/6, if we first apply Schwarz’s inequality to (2.5)
and then make use of the final estimate of Lemma 2.3, we obtain

T3 ≤
(∫ 1

0
|f(α)2g(α)4| dα

)1/2(∫ 1

0
|f(α)2h(α)4| dα

)1/2

� P ε(PQ2)1/2(PR2)1/2.

The desired conclusion follows.

§3. An auxiliary minor arc estimate

An active ingredient in our argument is an auxiliary minor arc estimate
derived by analytic differencing. This section is devoted to the proof of an
estimate for a certain eighth moment of cubic exponential sums that has
arisen in a weaker form in the earlier work of Vaughan [13]. We must first
introduce some notation. Let P be a large real number, and let Y be a real
number with P 1/8 ≤ Y ≤ P 1/7. Also, when X and Z are positive numbers,
define

A ∗(X,Z) =
{
n ∈ Z ∩ [1,X] : � prime and �

∣∣ n ⇒ � ≤ Zη
}
,
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and put B(X,Z) = A ∗(2X,Z) \ A ∗(X,Z). Note that A(X) = A∗(X,X).
Define the exponential sums kp(α) = kp(α;Y ) and K(α) = K(α;Y ) by
(3.1)
kp(α;Y ) =

∑
w∈ B(P/p,2P/Y )

e(αw3) and K(α;Y ) =
∑

Y <p≤2Y

kp(p3α;Y ).

Also, write

(3.2) fp(α) =
∑

P<x≤2P
(x,p)=1

e(αx3) and lp(α) =
∑

P/p<u≤2P/p

e(αu3).

We next introduce a set of major and minor arcs suitable for our analysis.
When X is a real parameter with 1 ≤ X ≤ P 3/2, we define

M(q, a;X) =
{
α ∈ [0,1) : |qα − a| ≤ XP −3

}
and we then take M(X) to be the union of the arcs M(q, a;X) with 0 ≤ a ≤
q ≤ X and (a, q) = 1. We then put m(X) = [0,1) \ M(X).

The key theorem of this section provides a bound for the eighth moment

(3.3) T(Y ) =
∫

m(PY 3)
|f(α)2K(α)6| dα.

Theorem 3.1. Whenever P 1/8 ≤ Y ≤ P 1/7, one has

T(Y ) � P 19/4Y −3/4(P/Y )ε−τ + P 9/2+εY.

We note that Vaughan [13] has analyzed the mean value (3.3) in the spe-
cial case Y = P 1/8. In this restricted situation, the antepenultimate display
of [13, Section 5] supplies a bound similar to that given by Theorem 3.1,
though weaker by a factor exceeding Y 1/2. The estimate supplied by our
theorem matches in strength the bounds made available, by the interwoven
arrangements of generating functions, applied in the arguments leading to
the sharpest available estimates for the exceptional set in Waring’s problem
for sums of four cubes (see [4]). The latter arguments fail to capture the
expected number of solutions, since the generating functions applied do not
have full density, a deficiency that is absent from the bound summarized
below in Corollary 3.2.
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Proof. Our argument involves a careful consideration of the possible prime
factors implicit in the generating functions K(α) that are common to the
exponential sums f(α) lying within the mean value in question. It is con-
venient throughout to write m = m(PY 3). Furthermore, within this proof,
summations over the variable p will denote sums over prime numbers p with
p ≡ 2 (mod 3) and Y < p ≤ 2Y .

On recalling (3.2), we see that for any prime number p, one has

(3.4) f(α) = fp(α) + lp(p3α).

Consequently, it follows from (3.1) that

f(α)2K(α) =
∑

p

f(α)2kp(p3α)

�
∑

p

(
|fp(α)2kp(p3α)| + |lp(p3α)2kp(p3α)|

)
.

On substituting the latter relation into (3.3), we find that

(3.5) T(Y ) � T1 + T2,

where

(3.6) T1 =
∫

m

|K(α)|5
∑

p

|fp(α)2kp(p3α)| dα

and

(3.7) T2 =
∫

m

|K(α)|5
∑

p

|lp(p3α)2kp(p3α)| dα.

An application of Hölder’s inequality reveals that
∑

p

|fp(α)2kp(p3α)| ≤
(∑

p

|fp(α)2kp(p3α)6|
)1/6(∑

p

|fp(α)|2
)5/6

.

Applying Hölder’s inequality a second time, we derive from (3.6) the bound

(3.8) T1 ≤ T
1/6
3 T

5/6
4 ,

where

(3.9) T3 =
∑

p

∫
m

|fp(α)2kp(p3α)6| dα
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and
T4 =

∫
m

|K(α)|6
∑

p

|fp(α)|2 dα.

We return to the consideration of T3 later in the proof, for this is the central
object of our attention. So far as T4 is concerned, we may make use again
of (3.4) to deduce that

(3.10) T4 � T5 + T6,

where
T5 =

∑
p

∫
m

|f(α)2K(α)6| dα

and

(3.11) T6 =
∫

m

|K(α)|6
∑

p

|lp(p3α)|2 dα.

In view of (3.3), one has T5 � Y T(Y ). In addition, when Y < p ≤ 2Y ,
the discussion surrounding [13, equation (34)] supplies the estimate

(3.12) sup
α∈m

|lp(p3α)| � (P/p)3/4+ε,

and, on considering the underlying diophantine equations, [5, Lemma 2]
delivers the bound

(3.13)
∫ 1

0
|K(α)|6 dα � P 3+εY 2.

We therefore deduce from (3.11) that

T6 � P 3/2+εY −1/2

∫ 1

0
|K(α)|6 dα � P 9/2+εY 3/2.

Thus, on substituting this together with our earlier estimate for T5 into
(3.10), we obtain the upper bound

(3.14) T4 � Y
(
T(Y ) + P 9/2+εY 1/2

)
.

We turn our attention next to T2, first applying Cauchy’s inequality to
obtain∑

p

|lp(p3α)2kp(p3α)| ≤
(∑

p

|lp(p3α)|4
)1/2(∑

p

|kp(p3α)|2
)1/2

.
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Substituting into (3.7) and recalling (3.12), we discover that

T2 � P 3/2+εY −1

∫ 1

0
|K(α)|5

(∑
p

|kp(p3α)|2
)1/2

dα.

An application of Hölder’s inequality therefore reveals that

T2 � P 3/2+εY −1
(∫ 1

0
|K(α)|6 dα

)1/2
T

1/2
7 ,

where

T7 =
∫ 1

0
|K(α)|4

∑
p

|kp(p3α)|2 dα.

On considering the underlying diophantine equations, one sees that∫ 1

0
|K(α)|4

∑
p

|kp(p3α)|2 dα �
∫ 1

0
|K(α)|6 dα,

and hence it follows from (3.13) that

(3.15) T2 � P ε(P 3/2Y −1)(P 3Y 2) = P 9/2+εY.

We now substitute (3.8), (3.14), and (3.15) into (3.5) to obtain the upper
bound

T(Y ) � P 9/2+εY + (Y 5T3)1/6T(Y )5/6 + (Y 5T3)1/6(P 9/2+εY 1/2)5/6.

We therefore have

T(Y ) � P 9/2+εY + Y 5T3 + (Y 5T3)1/6(P 9/2+εY 1/2)5/6

(3.16)
� P 9/2+εY + Y 5T3.

Write

(3.17) k∗(α) = max
Y <p≤2Y

|kp(α)|.

Then by applying [5, Lemma 4], we deduce from (3.9) that

T3 � P 3/2+εY −5/2

∫ 1

0
k∗(α)6 dα.
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The Carleson-Hunt theorem (see [8, Theorem 1]), in combination with (2.2)
above, shows that

∫ 1

0
k∗(α)6 dα �

∫ 1

0

∣∣∣ ∑
w∈ A(2P/Y )

e(αw3)
∣∣∣6 dα � (P/Y )13/4−τ ,

and thus we see that

T3 � P 19/4Y −23/4(P/Y )ε−τ .

The proof of Theorem 3.1 is completed by substituting this estimate into
(3.16).

It is convenient to have available a variant of Theorem 3.1 that facilitates
simplifications in associated major arc analyses. We first introduce some
additional notation. Put J = [(1/2)τ logP ], and define the exponential sum

(3.18) K̃(α) =
J∑

j=1

K(α; 2−jY )

and the mean value

(3.19) T̃(Y ) =
∫

m(PY 3)
|f(α)2K̃(α)6| dα.

Corollary 3.2. Whenever P 1/8+τ/2 ≤ Y ≤ P 1/7, one has

T̃(Y ) � P 19/4−τ/2Y −3/4 + P 9/2+εY.

Proof. An application of Hölder’s inequality leads from (3.18) to the
bound ∫

m(PY 3)
|f(α)2K̃(α)6| dα � (logP )6 max

1≤j≤J
T(2−jY ).

The desired conclusion now follows from Theorem 3.1 with a modicum of
computation.

§4. The application of the circle method

Having equipped ourselves with the tools required in our application of
the Hardy-Littlewood method, our goal in this section is to engineer the
framework required for the application of Bessel’s inequality to the problem
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of estimating the exceptional set at hand. Let N be a large positive number,
and write

P = (N/4)1/3, Q = P 5/6, Y = P 11/79, and L = (logP )1/10.

We consider a parameter θ with 0 ≤ θ ≤ 1/3, write φ = 3θ, and fix R = P φ.
In addition, we put J = [(1/2)τ logP ], as in the previous section. Define
ρ(n) = ρθ(n) to be the number of integral representations of n in the form

n = x3 + (pw)3 + y3 + z3,

with
P < x ≤ 2P, Q < y ≤ 2Q, z ∈ A(R),

2−jY < p ≤ 21−jY, and w ∈ B(P/p,21+jP/Y ) (1 ≤ j ≤ J).

Our goal is to establish that, when 362/869 ≤ φ ≤ 14/33 − τ/6, then for
almost all values of n with N < n ≤ 2N , one has ρθ(n) � nθ−1/18. Since
rθ(n) ≥ ρθ(n), the conclusion of Theorem 1.1 follows by summing over
dyadic intervals.

Next, given a measurable set B ⊆ [0,1), we define

(4.1) ρ(n;B) =
∫

B

f(α)K̃(α)g(α)h(α)e(−nα)dα.

By orthogonality, one then has ρθ(n) = ρ(n; [0,1)). We estimate the latter
quantity by means of the circle method. Our argument involves two pruning
steps, and we therefore introduce various classes of arcs to facilitate the
analysis. First, when a ∈ Z, q ∈ N, and (a, q) = 1, we put

P(q, a) =
{
α ∈ [0,1) : |α − a/q| ≤ LN −1

}
.

We then define P to be the union of the arcs P(q, a) with 0 ≤ a ≤ q ≤ L and
(a, q) = 1, and we write p = [0,1) \ P. Next, in the notation introduced in the
previous section prior to the statement of Theorem 3.1, when 1 ≤ X ≤ P 3/2,
we define K(X) = M(2X) \ M(X). In addition, we write

m = m(PY 3), V = M(PY 3) \ M(P 6/5), and U = M(P 6/5) \ P.

Finally, it is convenient for future reference to introduce the generating
functions

(4.2) S(q, a) =
q∑

r=1

e(ar3/q) and v(β) =
∫ 2P

P
e(βγ3)dγ.
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Lemma 4.1. One has ρ(n;P) � nθ−1/18 for all integers n satisfying N <

n ≤ 2N , with at most O(NL−1/16) possible exceptions.

Proof. By [14, Theorem 4.1], when a ∈ Z, q ∈ N, and β ∈ R, one has

(4.3) f(β + a/q) − q−1S(q, a)v(β) � q1/2+ε(1 + P 3|β|)1/2.

Hence, when α ∈ P(q, a) ⊆ P, one sees that

f(α) − q−1S(q, a)v(α − a/q) � L1+ε.

Also, on examining the Taylor expansion of e(βγ3), one finds in like manner
that when α ∈ P(q, a) ⊆ P, then

g(α) − q−1S(q, a)g(0) � LQ4P −3 � Q1/2.

Similarly, it follows from [15, Lemma 8.5] that for α ∈ P(q, a) ⊆ P, one has

h(α) − q−1S(q, a)h(0) � RL−5,

and that when 1 ≤ j ≤ J and 2−jY < p ≤ 21−jY , there exists a positive
number c, depending only on η, such that

kp(p3α; 2−jY ) − cq−1S(q, ap3)
∫ 2P/p

P/p
e
(
p3γ3(α − a/q)

)
dγ � Pp−1L−5.

We note that when 2−JY < p ≤ Y and q ≤ L, one has p � q, and so one
may apply a change of variables to show that S(q, ap3) = S(q, a). Following
another change of variables, one sees that

K̃(α) −
∑

2−JY <p≤Y

c(pq)−1S(q, a)v(α − a/q) � PL−5.

The prime number theorem in arithmetic progressions implies that

∑
2−JY <p≤Y

p−1 =
1
2

log
( logY

log(2−JY )

)
+ O

( 1
logY

)
,

and thus we deduce that

K̃(α) − Cq−1S(q, a)v(α − a/q) � PL−5,
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where
C =

c

2
log

( 22
22 − (79 log 2)τ

)
> 0.

Next, write

(4.4) T (q, a) = q−4S(q, a)4 and u(β) = Cv(β)2g(0)h(0).

Then, from the above approximations, one discerns that for α ∈ P(q, a) ⊆ P,
one has

f(α)K̃(α)g(α)h(α) − T (q, a)u(α − a/q) � P 2QRL−5.

Since the measure of P is O(L3N −1), from (4.1) we reach the formula

(4.5) ρ(n;P) = S(n;L)J (n;L) + O(P 2QRN −1L−2),

where

(4.6) S(n;L) =
∑

1≤q≤L

A(q,n),

in which we have written

A(q,n) =
q∑

a=1
(a,q)=1

T (q, a)e(−na/q)

and

J (n;L) =
∫ L/N

−L/N
u(β)e(−βn)dβ.

The expression S(n;L) is a partial sum of the familiar singular series

(4.7) S(n) =
∞∑

q=1

A(q,n)

associated with sums of four cubes. The standard theory of singular series
establishes that the series S(n) converges absolutely and satisfies 1 � S(n) �
(log logn)4 (see [14, Theorem 4.3] and [9, equation (1.3)]). Moreover, on
recalling the notation introduced prior to (2.13), we find from [14, Lem-
mas 2.11 and 4.7] that A(q,n) � q1/2+εκ(q)4(q,n). We therefore deduce
that

∑
N<n≤2N

|S(n) − S(n;L)| ≤
∑

N<n≤2N

∞∑
q=1

(q/L)1/8|A(q,n)|
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� L−1/8
∞∑

q=1

q2/3κ(q)4
∑
d|q

∑
N<n≤2N
(q,n)=d

(q,n)

� NL−1/8
∞∑

q=1

q2/3κ(q)4d(q),

where d(q) denotes the number of distinct divisors of q. The final sum over
q converges, since

∞∑
q=1

q2/3κ(q)4d(q) =
∏

	 prime

(
1 + 2�−4/3 + O(�−2)

)
� 1,

and hence the inequality |S(n) − S(n;L)| > L−1/16 can hold for at most
O(NL−1/16) integers n with N < n ≤ 2N . In particular, one may conclude
that |S(n;L)| � 1 for all integers n satisfying N < n ≤ 2N , with at most
O(NL−1/16) possible exceptions.

Integration by parts, meanwhile, confirms the estimate

(4.8) v(β) � P (1 + P 3|β|)−1,

and hence one has

(4.9) u(β) � P 2QR(1 + P 3|β|)−2.

It follows that

J (n;L) −
∫ ∞

− ∞
u(β)e(−βn)dβ � P 2QRN −1L−1.

The last integral here converges absolutely, in view of (4.9). It may therefore
be evaluated by following a standard treatment, such as that described in [7,
pages 21, 22]. The result is that when N < n ≤ 2N , the integral is bounded
below by c0P

2QRN −1, where c0 is a certain positive absolute constant. For
the same values of n, it follows that

J (n;L) � P 2QRN −1.

On collecting these lower bounds within (4.5), we conclude that one has

ρ(n;P) � P 2QRN −1 � nθ−1/18

for all integers n satisfying N < n ≤ 2N , with at most O(NL−1/16) possible
exceptions. This completes the proof of the lemma.
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In Section 5 below, we show that when 362/869 ≤ φ ≤ 14/33 − τ/6, then

(4.10)
∑

N<n≤2N

|ρ(n;p)|2 � N2θ+8/9L−1/8,

so that |ρ(n;p)| � nθ−1/18(logn)−1/200 for almost all natural numbers n

with N < n ≤ 2N . Granted this conclusion, it follows from Lemma 4.1 that
for almost all such n, one has

ρθ(n) = ρ(n;P) + ρ(n;p) � nθ−1/18.

The conclusion of Theorem 1.1 follows on recalling that rθ(n) ≥ ρθ(n) and
then summing over dyadic intervals.

§5. The minor arc contribution

We derive (4.10) by applying Bessel’s inequality, although several pruning
operations are required.

Lemma 5.1. Provided that 362/869 ≤ φ ≤ 14/33 − τ/6, one has∑
N<n≤2N

|ρ(n;m)|2 � N2θ+8/9L−10.

Proof. By Bessel’s inequality, it follows from (4.1) that

∑
N<n≤2N

|ρ(n;m)|2 ≤
∫

m

|f(α)K̃(α)g(α)h(α)|2 dα.

An application of Hölder’s inequality therefore yields the upper bound∑
N<n≤2N

|ρ(n;m)|2 ≤ T
1/3
1 T

1/3
2 T̃(Y )1/3,

where T1, T2, and T̃(Y ) are respectively given by (2.3), (2.4), and (3.19).
Hence, by appealing to Lemmas 2.2 and 2.3 and Corollary 3.2, we arrive at
the estimate∑

N<n≤2N

|ρ(n;m)|2 � P ε(PQR13/4−τ )1/3(PQ2)1/3(P 19/4−τ/2Y −3/4)1/3

� P 9/4−τ/6+εQR13/12−τ/3Y −1/4.
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A modest computation now reveals that the conclusion of the lemma holds
provided that

P 37/12R13/12Y −1/4 ≤ P 8/3R2,

as is guaranteed whenever R ≥ P 5/11Y −3/11. Consequently, whenever φ ≥
5/11 − 3/79 = 362/869, the conclusion of the lemma follows.

We now come to the first pruning step.

Lemma 5.2. Provided that 362/869 ≤ φ ≤ 14/33 − τ/6, one has∑
N<n≤2N

|ρ(n;V)|2 � N2θ+8/9L−10.

Proof. We begin by estimating the contribution arising from the set
K(X). By Bessel’s inequality, it follows from (4.1) that when 1 ≤ X ≤ PY 3,
one has

(5.1)
∑

N<n≤2N

∣∣ρ(
n;K(X)

)∣∣2 ≤ I0,

where

(5.2) I0 =
∫

K(X)
|f(α)K̃(α)g(α)h(α)|2 dα.

When X ≥ P 6/5, it is a consequence of (4.3), together with (4.8) and [14,
Theorem 4.2], that

sup
α∈K(X)

|f(α)| � PX−1/3 + X1/2+ε � X1/2+ε.

Under the same hypotheses on X , therefore, an application of Hölder’s
inequality leads from (5.2) to the estimate

I0 � X1/6+ε

∫
K(X)

|f(α)|5/3|K̃(α)g(α)h(α)|2 dα

(5.3)

≤ T
1/3
1 T

1/6
2 (X1/2+εI1)1/3

(∫ 1

0
|K̃(α)2g(α)4| dα

)1/6
,

where T1 and T2 are given by (2.3) and (2.4), and

(5.4) I1 =
∫

K(X)
|f(α)2K̃(α)5| dα.
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But on considering the diophantine equation underlying (2.4), and noting
(2.1), (3.1), and (3.18), we find that

T2 ≥
∫ 1

0
|K̃(α)2g(α)4| dα,

and so (5.3) becomes

(5.5) I0 � T
1/3
1 T

1/3
2 (X1/2+εI1)1/3.

The expression I1 has been examined already in the course of the proof
of [5, Theorem 3], although in that treatment the focus is on the situation
wherein X = PY 3. A careful examination of that argument reveals that
whenever P 6/5 ≤ X ≤ PY 3, one has the estimate

(5.6)
∫

K(X)
|f(α)2K(α)5| dα � P 4+λY −1−λ(PY 3/X)1/2,

in which we have written λ = 3/34 − τ/4. The validity of this claim requires
a few words of justification. First, the estimates in [5, pages 28, 29] remain
valid provided only that X > 8Y 3(P/Y )3/4, as is guaranteed whenever X ≥
P 6/5 and Y ≤ P 1/7 (see the discussion prior to [5, equation (5.10)]). Thus,
the estimate (5.6) follows from a satisfactory modification of the proof of [5,
Lemma 4], and in this proof the set n now becomes the set of α ∈ [0,1) with
the property that whenever q is a natural number with ‖qα‖ ≤ XY −3Q−3,
then one has q > XY −3. In this lemma, we put S(α) = k∗(α)5, with k∗(α)
defined as in (3.17). Now, in the notation of [5], one finds at the top of
page 27 that the estimate

sup
α∈n

( ∑
1≤h≤H

|F (αh,γ;h)|2
)

� HP 1+ε(PY 3/X)

holds uniformly in γ. Likewise, provided that X ≥ Y 6, one finds that

sup
α∈n

( ∑
1≤h≤H

|Gh(αh3, ±γh)|2
)

� P εHY.

Thus, on checking the argument in [11, pages 155 and 156], one concludes
from the argument of the proof of [5, Lemma 4] together with [5, Section 5]
that ∫

K(X)
|f(α)2K(α)5| dα � P 3/2+εY 3/2(PY 3/X)1/2

∫ 1

0
k∗(α)5 dα.
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An application of the Carleson-Hunt theorem [8] in combination with [17,
Theorem 1.2] reveals that∫ 1

0
k∗(α)5 dα �

∫ 1

0

∣∣∣ ∑
w∈ A(2P/Y )

e(αw3)
∣∣∣5 dα � (P/Y )44/17−2τ/7,

and the conclusion (5.6) follows at once.
An application of Hölder’s inequality establishes that

|K̃(α)|5 � (logP )5 max
1≤j≤J

|K(α; 2−jY )|5,

and so we deduce from (5.4) and (5.6) that

I1 � (logP )5 max
1≤j≤J

∫
K(X)

|f(α)2K(α; 2−jY )5| dα

(5.7)
� P 4+λ+εY −1−λ(PY 3/X)1/2.

Substituting (5.7) into (5.5) along with the conclusions of Lemmas 2.2 and
2.3, we find that

I0 � P ε(PQR13/4−τ )1/3(PQ2)1/3(P 9/2+λY 1/2−λ)1/3.

Therefore, provided that P 6/5 ≤ X ≤ PY 3, we deduce that

I0 � P 13/6+λ/3+εQR13/12−τ/3Y 1/6−λ/3 � P 3+λ/3R13/12−τ/4Y 1/6−λ/3.

Since Y = P 11/79, we obtain I0 � PQ2R2−τ/4Δ, where

Δ = P 37/102R−11/12Y 7/51 = (P 362/869R−1)11/12.

Thus, whenever R ≥ P φ and P 6/5 ≤ X ≤ PY 3, one finds from (5.1) that∑
N<n≤2N

∣∣ρ(
n;K(X)

)∣∣2 � N2θ+8/9R−τ/4.

The conclusion of the lemma now follows by summing over dyadic intervals
covering the range P 6/5 ≤ X ≤ PY 3 for the parameter X , and then recalling
the definition of φ.

Lemma 5.3. Provided that 362/869 ≤ φ ≤ 14/33 − τ/6, one has∑
N<n≤2N

|ρ(n;U)|2 � N2θ+8/9L−1/8.
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Proof. By Bessel’s inequality, it follows from (4.1) that

(5.8)
∑

N<n≤2N

|ρ(n;U)|2 ≤ J0,

where
J0 =

∫
U

|f(α)K̃(α)g(α)h(α)|2 dα.

We define the function f ∗(α) for α ∈ [0,1) by putting

(5.9) f ∗(α) = q−1S(q, a)v(α − a/q),

when α ∈ M(q, a;P 6/5) ⊆ M(P 6/5), and otherwise by taking f ∗(α) = 0.
Referring once again to (4.3), and noting that U ⊆ M(P 6/5), we find that
when α ∈ U, one has

f(α) − f ∗(α) � P 3/5+ε,

whence
J0 � P 6/5+εJ1 + J2,

where

J1 =
∫ 1

0
|K̃(α)g(α)h(α)|2 dα

and

(5.10) J2 =
∫

U

|f ∗(α)K̃(α)g(α)h(α)|2 dα.

But on considering the underlying diophantine equations, it follows from
(2.5) that J1 ≤ T3, and hence Lemma 2.4 implies that

(5.11) J0 � P 11/5+εQR + J2.

Write

v0(β) =
∫ 2Q

Q
e(βγ3)dγ,

and define the function g∗(α) for α ∈ [0,1) by taking

g∗(α) = q−1S(q, a)v0(α − a/q),

when α ∈ M(q, a;P 6/5) ⊆ M(P 6/5), and otherwise by setting g∗(α) = 0.
Then it follows from [14, Theorem 4.1] that when α ∈ M(P 6/5), one has

g(α) − g∗(α) � P 3/5+ε.
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On making use of this estimate within (5.10), we see that

(5.12) J2 � P 6/5+εJ3 + J4,

where

(5.13) J3 =
∫

U

|f ∗(α)K̃(α)h(α)|2 dα

and

(5.14) J4 =
∫

U

|f ∗(α)g∗(α)K̃(α)h(α)|2 dα.

Next define Ω(α) for α ∈ [0,1) by taking

Ω(α) = (q + P 3|qα − a|)−1,

when α ∈ M(q, a;P 6/5) ⊆ M(P 6/5), and otherwise by putting Ω(α) = 0.
Then an inspection of (5.9) leads from (4.8) and [14, Theorem 4.2] to the
bound

f ∗(α) � PΩ(α)1/3 � P 6/5Ω(α)1/2.

On substituting this estimate into (5.13) and applying [2, Lemma 2], we
deduce that

J3 � P 12/5+ε

∫
M(P 6/5)

Ω(α)|K̃(α)h(α)|2 dα

� P ε−3/5
(
P 6/5

∫ 1

0
|K̃(α)h(α)|2 dα + P 2R2

)
.

A diminishing ranges argument akin to that establishing Lemma 2.1 there-
fore shows that whenever P 1/5 ≤ R ≤ P 2/3, one has

(5.15) J3 � P ε−3/5(P 11/5R + P 2R2) � P 7/5+εR2.

Following the argument that led to the relation (2.14), one finds that
when α ∈ M(q, a;P 6/5) ⊆ M(P 6/5), one has

g∗(α) � Qqεκ(q) and f ∗(α) � Pq1+εκ(q)Ω(α).

Consequently, under the same conditions on α, one has

f ∗(α)g∗(α) � PQq1+εκ(q)2Ω(α) � PQΩ(α)1/2.
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In particular, whenever α ∈ U, one has f ∗(α)g∗(α) � PQL−1/2. An appli-
cation of Hölder’s inequality therefore leads from (5.14) to the estimate

(5.16) J4 � h(0)2(PQL−1/2)1/4J 1/4
5 J 3/4

6 ,

where

J5 =
∫ 1

0
|K̃(α)|8 dα and J6 =

∫
U

|f ∗(α)g∗(α)|7/3 dα.

From [11, Theorem 2], one finds that J5 � P 5. Meanwhile, a direct com-
putation reveals that

J6 � (PQ)7/3
( ∞∑

q=1

q1+εκ(q)14/3
)∫ ∞

− ∞
(1 + P 3|β|)−7/3 dβ

� (PQ)7/3P −3.

Thus, it follows from (5.16) that

(5.17) J4 � R2(PQL−1/2)1/4(P 5)1/4
(
(PQ)7/3P −3

)3/4 � PQ2R2L−1/8.

On combining (5.17) with (5.12) and (5.15) and then resubstituting into
(5.11), we see that

J0 � P 11/5+εQR + P 13/5+εR2 + PQ2R2L−1/8 � PQ2R2L−1/8,

and the conclusion of the lemma now follows from (5.8).

The estimate (4.10) is obtained by combining the conclusions of Lemmas
5.1, 5.2, and 5.3. We have p ⊆ m ∪ U ∪ V, and so

∑
N<n≤2N

|ρ(n;p)|2 �
∑

N<n≤2N

(
|ρ(n;m)|2 + |ρ(n;U)|2 + |ρ(n;V)|2

)

� N2θ+8/9(L−10 + L−1/8).

In view of the concluding remarks of Section 4, the proof of Theorem 1.1 is
now complete.
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§6. The asymptotic formula for sums of four cubes

Our objective in this section is the proof of Theorem 1.2. Experts will find
the argument straightforward, though there are some technical irritations.
We begin by adjusting some of our earlier notation in order to fit the circum-
stances at hand. Let N be a large positive number, and write P = (N/4)1/3

and L = (logP )100. We consider a parameter θ with 0 ≤ θ < 1/3, and we
take R to be a number with N θ ≤ R ≤ (2N)θ. Define σ(n) = σθ(n) to be
the number of integral representations of n in the form

(6.1) n = x3
1 + x3

2 + x3
3 + y3,

with xi ∈ N (i = 1,2,3) and 1 ≤ y ≤ R. Notice that when N < n ≤ 2N , then
given any representation of n in the shape (6.1), one has

1 ≤ xi ≤ (2N)1/3 (i = 1,2,3) and max
1≤i≤3

xi > (N/4)1/3.

Thus,
1 ≤ xi ≤ 2P (i = 1,2,3) and max

1≤i≤3
xi > P.

We define

F (α) =
∑

1≤x≤2P

e(αx3), F0(α) =
∑

1≤y≤P

e(αy3),

and
G(α) =

∑
1≤z≤R

e(αz3).

Then, given a measurable set B ⊆ [0,1), we define

(6.2) σ(n;B) =
∫

B

(
F (α)3 − F0(α)3

)
G(α)e(−nα)dα.

Notice that by orthogonality, one has σθ(n) = σ(n; [0,1)) whenever N <

n ≤ 2N . Next we define the set of arcs P as in Section 4, and we take
N = M(P 3/4) and n = [0,1) \ N. Finally, we recall the familiar singular
series S(n) associated with sums of four cubes defined above in (4.7).

Lemma 6.1. One has

σ(n;P) = Γ
(4

3

)3
S(n)R + O(RL−1/16)

for all integers n satisfying N < n ≤ 2N , with at most O(NL−1/16) possible
exceptions.
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Proof. Write

w0(β) =
∫ P

0
e(βγ3)dγ, w1(β) =

∫ 2P

0
e(βγ3)dγ,

w2(β) =
∫ R

0
e(βγ3)dγ.

Also, define the functions F ∗(α), F ∗
0 (α), and G∗(α) for α ∈ [0,1) by putting

F ∗(α) = q−1S(q, a)w1(β), F ∗
0 (α) = q−1S(q, a)w0(β),

and
G∗(α) = q−1S(q, a)w2(β),

when α ∈ P(q, a) ⊆ P, and otherwise set each function to be zero. Then as
a consequence of [14, Theorem 4.1], when α ∈ P one has

F (α) − F ∗(α) � L1/2+ε, F0(α) − F ∗
0 (α) � L1/2+ε,

and
G(α) − G∗(α) � L1/2+ε.

Now define T (q, a) as in (4.4), and put

W (β) =
(
w1(β)3 − w0(β)3

)
w2(β).

Then we see that for α ∈ P(q, a) ⊆ P, one has(
F (α)3 − F0(α)3

)
G(α) − T (q, a)W (α − a/q) � P 3L1/2+ε.

Since the measure of P is O(L3N −1), we deduce from (6.2) that

(6.3) σ(n;P) − S(n;L)J0(n;L) � L7/2+ε,

where S(n;L) is defined as in (4.6), and

J0(n;L) =
∫ L/N

−L/N
W (β)e(−βn)dβ.

The series S(n;L) has already been considered during the course of the
proof of Lemma 4.1. In particular, it follows that for all integers n with
N < n ≤ 2N , one has

|S(n;L) − S(n)| ≤ L−1/16,
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with at most O(NL−1/16) possible exceptions. In addition, for all natural
numbers n, one has 1 � S(n) � (log logn)4. Note that the former conclu-
sion is robust to the adjustment in our definition of L. Next, recall definition
(4.2). Then we see that

W (β) =
(
(v(β) + w0(β))3 − w0(β)3

)
w2(β)

=
(
v(β)3 + 3v(β)2w0(β) + 3v(β)w0(β)2

)
w2(β).

Then by (4.8) and the bound w0(β) � P (1 + P 3|β|)−1/3 that follows from
[14, Theorem 7.3], we see that

W (β) � P 3R(1 + P 3|β|)−5/3.

Consequently, one has

J0(n;L) −
∫ ∞

− ∞
W (β)e(−βn)dβ � P 3RN −1L−2/3.

The last integral may be evaluated in a standard manner (see [7, pages 21,
22]). Thus we see that when N < n ≤ 2N , one has

J0(n;L) = Γ
(4

3

)3
R + O(RL−2/3)

(compare the discussion in [18, Section 4]). On substituting these estimates
into (6.3), we find that

σ(n;P) = Γ
(4

3

)3
S(n)R + O(RL−1/16)

for all integers n satisfying N < n ≤ 2N , with at most O(NL−1/16) possible
exceptions. The conclusion of the lemma follows.

Lemma 6.2. Provided that 1/4 < θ < 1/3, one has∑
N<n≤2N

|σ(n;p)|2 � NR2Lε−1/3.

Proof. An application of Bessel’s inequality leads from (6.2) to the upper
bound ∑

N<n≤2N

|σ(n;p)|2 �
∑

N<n≤2N

|σ(n;n)|2 +
∑

N<n≤2N

|σ(n;N \ P)|2

(6.4)
≤ Ξ(n) + Ξ(N \ P),
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where for a measurable set B, we write

Ξ(B) =
∫

B

∣∣(F (α)3 − F0(α)3
)
G(α)

∣∣2 dα.

It follows from (2.1) that∫
n

∣∣(F (α)3 − F0(α)3
)
G(α)

∣∣2 dα �
∫

n

|f(α)G(α)|2
(

|F (α)|4 + |F0(α)|4
)
dα,

and so an application of Hölder’s inequality reveals that

Ξ(n) �
(
sup
α∈n

|f(α)|
)
(K1 + K2)1/2K1/2

3 ,

where

K1 =
∫ 1

0
|F (α)|8 dα, K2 =

∫ 1

0
|F0(α)|8 dα,

and

K3 =
∫ 1

0
|f(α)2G(α)4| dα.

But a modified version of Weyl’s inequality (see, e.g., [11, Lemma 1]) con-
firms that

sup
α∈n

|f(α)| � P 3/4+ε.

Thus, on recalling Lemma 2.3 and applying Hua’s lemma (see, e.g., [14,
Lemma 2.5]), one finds that

Ξ(n) � P 3/4+ε(P 5)1/2(PR2 + P −1R9/2)1/2

(6.5)
� P 3+εR2

(
P 3/4R−1 + (R/P )1/4

)
.

It remains to estimate the contribution arising from the set of arcs N \ P.
Here one may appeal to standard major arc technology (see [12, Lemma 5.1])
to show that

Ξ(N \ P) �
∑

1≤z1,z2≤R

∫
N\P

|F (α)|6e
(
α(z3

1 − z3
2)

)
dα

+
∑

1≤z1,z2≤R

∫
N\P

|F0(α)|6e
(
α(z3

1 − z3
2)

)
dα(6.6)

� P 3R2Lε−1/3.
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On substituting (6.5) and (6.6) into (6.4), we therefore deduce that∑
N<n≤2N

|σ(n;p)|2 � P 3R2Lε−1/3 + P 3+εR2
(
P 3/4R−1 + (R/P )1/4

)
.

Consequently, when 1/4 < θ < 1/3, the conclusion of the lemma follows on
recalling that R = P 3θ.

We finish this section with the proof of Theorem 1.2. Observe first that
when θ = 1/3, the desired conclusion is an immediate consequence of [11,
Theorem 3], provided that one makes use of the refinement to be found
in the main theorem of Boklan [1]. We assume henceforth, therefore, that
1/4 < θ < 1/3. When N θ ≤ R ≤ (2N)θ, with θ in the latter range, it follows
from Lemma 6.2 that∑

N<n≤N+N/(logN)2

|σ(n;p)|2 � P 3R2(logN)−6.

It follows, in particular, that |σ(n;p)| � R(logN)−1 for all integers n with
N < n ≤ N +N(logN)−2, with at most O(N(logN)−4) exceptions. In com-
bination with the conclusion of Lemma 6.1, this shows that

σθ(n) = σ
(
n; [0,1)

)
= Γ

(4
3

)3
S(n)R + O

(
R(logN)−1

)
for all n with N < n ≤ N +N(logN)−2, with at most O(N(logN)−4) excep-
tions. Given an interval of the latter type for n, one has

nθ = N θ + O
(
N θ(logN)−2

)
.

There is therefore a positive constant A with the property that

N θ < nθ ≤ N θ + AN θ(logN)−2.

Taking R to be first N θ, and then N θ + AN θ(logN)−2, we see that

rθ(n) = Γ
(4

3

)3
S(n)N θ + O

(
N θ(logN)−1

)
,

whence
rθ(n) = Γ

(4
3

)3
S(n)nθ + O

(
nθ(logn)−1

)
,

for all n with N < n ≤ N + N(logN)−2, with at most O(N(logN)−4)
exceptions. On summing over the O((logN)3) intervals of this type that
cover [1,2N ], we find that the total number of exceptions encountered is
O(N(logN)−1), whence the conclusion of Theorem 1.2 follows also when
1/4 < θ < 1/3.
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§7. Sums of six cubes and a minicube

Thus far, our conclusions have been of almost-all type. We now briefly
discuss the proof of the following theorem.

Theorem 7.1. All large natural numbers n are the sum of seven cubes
of positive integers, one of which is no larger than n43/168.

We require a simple lemma.

Lemma 7.2. Let Nθ(X) denote the number of integers n with 1 ≤ n ≤ X

that are the sum of three cubes of natural numbers, one of which is at most
nθ. Then whenever 0 ≤ θ ≤ 5/18, one has

Nθ(X) � X5/8+θ+τ/9.

Proof. Write P = (X/20)1/3 and R = (X/20)θ. Also, let ν(n) denote the
number of solutions of the equation

n = x3
1 + x3

2 + y3,

with xi ∈ B(P,P ) and 1 ≤ y ≤ R. Then by Cauchy’s inequality, one has

(7.1) Nθ(X) ≥
∑

X/10≤n≤X
ν(n)≥1

1 ≥
( ∑

X/10≤n≤X

ν(n)
)2( ∑

1≤n≤X

ν(n)2
)−1

.

Observe that

(7.2)
∑

X/10≤n≤X

ν(n) � P 2R.

Also, in view of the underlying diophantine equation, one has

∑
1≤n≤X

ν(n)2 ≤
∫ 1

0
|F (α)4G(α)2| dα,

where we have written

F (α) =
∑

x∈ B(P,P )

e(αx3).

By Schwarz’s inequality, we obtain∫ 1

0
|F (α)4G(α)2| dα ≤

(∫ 1

0
|F (α)|6 dα

)1/2(∫ 1

0
|F (α)2G(α)4| dα

)1/2
.
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90 J. BRÜDERN AND T. D. WOOLEY

The first integral may be estimated via (2.2), and the second by means of
Lemma 2.3. Thus we deduce that when θ ≤ 5/18, one has

(7.3)
∑

1≤n≤X

ν(n)2 � (P 13/4−τ )1/2(P 1+εR2)1/2.

Finally, on substituting (7.2) and (7.3) into (7.1), we conclude that

Nθ(X) � (P 2R)2(P 17/8−τ/3R)−1 � P 15/8+τ/3R,

thereby completing the proof of the lemma.

Next, let X be a sufficiently large positive number, and consider an integer
n with X ≤ n ≤ 2X . By Lemma 7.2, at least X5/8+θ+τ/9 of the integers m

with 1 ≤ m ≤ X are the sum of three cubes of natural numbers, one of which
is at most mθ ≤ nθ. But all the integers n − m, with 1 ≤ m ≤ X , are the
sum of four cubes of natural numbers, with at most O(X37/42) exceptions
(see [17, Theorem 1.3]). Thus, provided that X5/8+θ+τ/9 > X37/42, then for
at least one value of m with 1 ≤ m ≤ X , one finds that m is the sum of
three cubes of natural numbers, one at most nθ, and n − m is the sum of
four positive integral cubes, whence n is the sum of six positive integral
cubes and a minicube at most nθ. The conclusion of Theorem 7.1 follows
on observing that the above condition is satisfied whenever θ ≥ 43/168.
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