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Abstract

We define equivariant completion of a G-complex and define residually finite C-spaces. We show that the
group of G-homotopy classes of G-homotopy self equivalences of a finite, residually finite G-complex,
is residually finite. This generalizes some results of Roitberg.
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1. Introduction

The notion of profinite completion in group theory is well understood and it is well
known that profinite completion of a group is residually finite. The notion of profinite
completion of Sullivan [8] in homotopy theory motivated Roitberg to introduce the
notion of residual finiteness in the homotopy category [7]. He showed that the profinite
completion of a path connected CW-complex is residually finite [7, Theorem 1 (a)].
He further showed that for a finite CW-complex X which is residually finite, £(X),
the pointed homotopy classes of self homotopy equivalences is residually finite [7,
Theorem 3]. This is the homotopy theoretic analogue of the well-known result of
Baumslag that the automorphism group of a finitely generated residually finite group
is residually finite. The aim of this paper is to prove equivariant versions of the above
results of Roitberg.

Let G be a finite group and GJtf denote the category of G-path connected G-
CW-complexes (which we abbreviate to G-complexes) with base point. All maps
and homotopies are based. Following Sullivan, we define the profinite completion
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Xc of a G-complex X (for equivariant completion, generalizing the non equivariant
completion of Bousfield-Kan, see [3]). We also introduce the notion of residual
finiteness for G-spaces and show that for any X e GJff, the profinite completion XG

is residually finite. Let &G(X) denote the group of G-homotopy classes of equivariant
homotopy self equivalences of X. One of the main results of the paper is

THEOREM 1.1. Let X € GJf? be finite. Assume that X is residually finite. Then
is a residually finite group.

Recall that a theorem of Sullivan [9] and Wilkerson [11] says that if X is a nilpotent
finite complex, then <o(X) is commensurable with ân arithmetic group and hence, is
finitely presented. Thus if X is a finite, nilpotent complex which is also residually
finite, then £(X) being residually finite and finitely presented, is Hopfian. The
equivariant analogue of the Sullivan-Wilkerson theorem is proved in [10]. We use this
to prove

THEOREM 1.2. IfX e GJP is finite and nilpotent, then £G{X) is Hopfian.

Convention Throughout, G will denote a finite group and all spaces, maps and
homotopies are based and 'X e GJff is finite' is meant that X is a finite G-CW-
complex.

2. Equivariant completion and residual finiteness

Recall that a space F is totally finite if the homotopy groups nn(F),n > 1 are finite
and if in addition there exists a positive integer n0 such that nn(F) — 0 for n > n0. A
space is of finite type if all its homotopy groups are finitely generated.

A G-space X is totally finite if for every subgroup H of G, the H fixed point set
X" is totally finite.

DEFINITION 2.1. A G-space X is residually finite if for any finite G-complex W
and a, fi e [ W, X]G, a ^ ft there exists a G-map / : X -*• Z with Z totally finite
such that/.(a) ^ / , ( /3) where/, : [W, X]G ->• [W, Z]c is the map induced b y / .

A G-map / : X —>• Y between G-spaces is a ^-monomorphism if for every finite
W 6 Gjf the induced map/ , : [W, X]G -*• [W, Y]G is a monomorphism.

Here is an example of a residually finite space.

EXAMPLE 2.2. LetX = 5 ' v 5 ' . Then X can be given the structure of a 22-complex
as follows. X has one 0-cell of the type 22/22 and one l-cell of the type Z2/e. X
can then be readily recognized as an equivariant Eilenberg-MacLane space K(k, 1)
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where A. is the Ol2-group k(!2/e) = F2, the free group of rank two, and k(l2/Z2) is
the trivial group. We claim that X is residually finite as 22-space. First note that if W
is a finite G-complex then

[W, K(k, l ) ] c £ HomOs(7r1(W0, A.).

(This is true more generally [6]). Now let a, P e [ W, K(k, 1)]G be such that a ^ p.
Then clearly a(I2/e) £ P(l2/e) : ni(We) -» X(l2/e). Since F2 is residually finite
there exists a finite group F and a homomorphism /M : k(Z2/e) —• F such that
ixoa(!2/e) £ ixoP(I2/e). Define an OG-group A.'by k'(!2/e) = F and k'(I2/l2) to
be the trivial group. Then, the map /x : A. -> k' defined by 11Q.2Ie) = /A and IX(12/22)

being the trivial homomorphism, defines a natural transformation. This gives rise to
a G-map/i : £(A., 1) -> Jf(A.\ 1) of equivariant Eilenberg-MacLane spaces. Clearly
ht(a) £ ht(P). Observe that K(k', 1) is totally finite. Note that X is not nilpotent as
a 22-space (compare Proposition 2.9).

PROPOSITION 2.3. IfX is residually finite as a G-space, then XG is residually finite.

PROOF. Let a, P e [ W, Xc], a £ p with W a finite CW-complex. Then endowing
W with the trivial G-action, a, P can be considered as elements of [W, X]G and it
is easy to see that a ^ p, as elements of [W, X]G. Hence there is a totally finite
G-space Z and a G-map/ : X —*• Z, such that,/*(a) ^ f*(P). Then, it follows that
/?(<*) *fG(P). •

We can now construct a G-space X which is residually finite, if one forgets the
group action but is not residually finite when considered as a G-space.

EXAMPLE 2.4. Let G = I2. Let / : Q -» 1 denote the only homomorphism
between the additive group of rationals and the integers. This map is then realized
as a map/ : K(Q, 1) ->• S1 of Eilenberg-MacLane spaces. Consider the OG-space
T, defined by, T(G/G) = K(Q, 1) and T{G/e) = S\ with all structure maps as
the identity, except the map 7(2) : 7(G/G) -» T(G/e), which equals/. Then, by
the Elmendorf construction [2], there exists a G-space C7, such that, CT has the
homotopy type of S\ whereas CT° has the homotopy type of K(Q., 1). Corollary 1
of [7] shows that CTG is not residually finite, but the underlying space of the G-space
CT, is clearly residually finite. It follows from the above proposition that, CT is not
residually finite, as a G-space.

We now turn to the definition of equivariant completion. Recall [4, Theorem 3.1,
page 134] that, a contravariant functor from GJ4? to the category of sets, is repre-
sentable, if and only if, it satisfies the Brown's axioms (the wedge and the Mayer-
Vietoris axioms). A functor satisfying the wedge and the Mayer-Vietoris axioms will
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be called a Brownian functor. A compact Brownian functor is a Brownian functor
taking values in compact Hausdorff spaces.

We shall need the following two properties of compact Brownian functors.

(1) Suppose k' is a contravariant functor defined on the subcategory of G3V consist-
ing of finite G-complexes taking values in compact Hausdorff spaces. Suppose that
k' satisfies the Brown's axioms, whenever they make sense. Then, there is a unique
extension of k' to a compact Brownian functor k, defined by, k(X) = inv lima k'(Xa),
where the inverse limit is over the finite G-subcomplexes Xa of X.

(2) The arbitrary inverse limit of compact Brownian functors, over a small filtering
category, is a compact Brownian functor. N

The proofs of both these facts are analogous to the nonequivariant case [8, page 36]
and are therefore omitted. We shall use the above properties of compact Brownian
functors to introduce equivariant completion as follows.

Step 1 For X e GJif, let &x denote the category whose objects are G-maps X -»• F
with F a totally finite G-space and morphisms are homotopy commutative diagrams.

LEMMA 2.5. &x is a small filtering category.

PROOF. Recall ([8]) that, to show that the category &x is small filtering we need
to check the smallness, the directedness of &x and the essential uniqueness of maps
in &x. The first condition is clear since we can replace &x by an equivalent small
category, by picking a representative from each G-homotopy type of F's. The second
property is also clear as given objects fx:X-*F\ and f2 : X —> F2 in &x we can
imbed them in fx x f2 : X —*• F, x F2. The essential uniqueness of maps in &x

follows from the co-equalizer construction in equivariant homotopy theory, which is
given by a suitable pushout diagram [4, page 39]. Explicitly, for two morphisms from
n' : X —> F' to n : X —> F in &x given by G-maps f\,f2 : F' —> F, consider the
G-space

[(p,x) € F' x F':p(0) =fi(x),p(l)=f2(x)}

with diagonal action, where the G-action on F' is induced by the action on F. Let
F" be the component of the above G-space containing the base point, the base point
being the constant path at the base point of F in the first factor and the base point of
F' in the second factor. Then, as in the non-equivariant case [4, page 40], we have an
exact sequence

> jv,(F")H -* n,(F')H -+ n,(FH) - + . . . ,

for every subgroup H of G. From this exact sequence it follows that F" is a totally
finite G-space. Now, one gets the required co-equalizer by using a G-homotopy from
f[on'tof2on'. •
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Step 2 Let Z e G3^C be finite and F a totally finite G-space. Then by equiv-
ariant obstruction theory [1], it is easy to see that, the homotopy set [Z, F]c is
finite. This yields a contravariant functor defined on the sub category of GJt? con-
sisting of finite G-complexes and taking values in compact Hausdorff spaces. A
direct verification shows that this functor satisfies the Brown's axioms whenever they
make sense. Then by property (1), we get a compact Brownian functor defined by
SF(Y) = invlima[Ta, F]c — [Y, F]G, where the inverse limit is taken over the finite
G-subcomplexes of Y.

From Step 1 and Step 2 we get a functor on &x which assigns to each object
n : X —>• F, the compact Brownian functor SF obtained as in Step 2. By property (2)
of compact Brownian functors inv l i m ^ SF is again a compact Brownian functor,
which assigns, to each Y e GJf, the compact Hausdorff space invlim^x[T, F ] G .
Therefore, by Brown's representation theorem [4, Theorem 3.1, page 134], there
exists a space XG in GJf such that for every G-complex Y there is a bijection

[ y , * c ] c < — • i n v l i m ^ J K , F]G.

DEFINITION 2.6. The space Xc is called the equivariant profinite completion of X.

Clearly, Xc comes equipped with a G-map i : X ->• Xc, which is determined by
the objects of &x and is called the completion map.

We now prove an important property of equivariant completion. First recall that a
G-space X is nilpotent if every fixed point set is nilpotent. An equivariant Postnikov
decomposition for a G-space B consists of G-maps an : B -*• Bn and rn+l : Bn+i —>
Bn, n > 0 such that Bo is a point and an induces an isomorphism n^iB) -*• 7r^(Sn)
for q < n, rn+ian+i — an, and rn+i is the G-fibration over a K(nJ1+i(B), n + 2) by
a map kn+2 : Bn —> /T(7rn+1(B), n + 2). On passage to //-fixed points, a Postnikov
system for B gives a Postnikov system for BH. Moreover, every nilpotent G-space
admits a Postnikov decomposition [4, 2].

PROPOSITION 2.7 (Hasse principle). Let Y e G3V be finite and B € GJ4? be a
nilpotent space of finite type. Iff,g : Y —*• B are G-maps such that i of is
G-homotopic to i o g, then f is G-homotopic to g.

PROOF. The proof is by induction over the stages in the equivariant Postnikov
system of B and is parallel to the nonequivariant case. Let K -*• Bn+i —*• Bn be a part
of the equivariant Postnikov decomposition of B (see [4, 2]), where K = K{n_, n + 1)
and7r = n_n+\(Bn+\)- Suppose/„ : Y ->• Bn and / n + 1 : Y -*• Bn+i are the G-maps
constructed from / . Now consider the G-fibration

Map(r, K) - • Map(r, Bn+l) -4 Map(y, Bn)
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with the obvious action on the function spaces so that

We then have an ordinary fibration

Mapc(K, K) -> Mapc(y, Bn+1) -4 MapG(F, Bn).

Consider the homotopy exact sequence of the above fibration

• • • -* 7r,(Mapc(r, Bn),fn) -* 7ro(MapG(y, K),fm+l)

f^ ^0(MapG(K, Bn+i),fn+l) A 7ro(MapG(y, Bn),fn).

Note that 7ro(MapG(r, K),fH+l) = HG
+l(Y;n) where HG

+l(Y;n) denotes the Bredon
cbhomology group with coefficients in the 0G-group n_ [1]. Here fn+l denotes the
map given by the action of HG

+[(Y, JT) on (fn+i) € 7ro(MapG(T, K),fn+i) obtained
by equivariant obstruction theory [5]. Clearly, the image / = l{fn+\) is the isotropy
subgroup of the point (fn+\) and the map r collapses the orbits of the action of
HG

+[(Y,n). Thus we get an exact sequence

0 -> /(/n + 1) -> HG
+i(Y,K) -* orbit(/n+I) -> 0.

We proceed as in the non-equivariant case and repeat the above argument for maps
into completions BG, to get a ladder whose top row being the above exact sequence,
the base row being the exact sequence

0 -* /(/»+,) -»• Hn
G

+l(Y, n) - • orbit(/n+1) ^ 0,

and with induced maps c0 : /(/„+,) - • / ( / n + 1) ,c : HG
+\Y,n) - • Hc

+l(Y,n)
and c\ : orbit(/n+i) -+ orbit(/n+i). Here, the OG-group n_ is defined by the group
completion nj^G/ H) = n_(G/H). Also note that by property (1) of compact Brownian
functor the map c : HG

+i(Y, n_) -> HG
+1(Y, n),isa finite completion. With this at

our disposal the rest of the proof is exactly similar to the non-equivariant case. •

Equivariant completion yields, as in the nonequivariant case ([7, Theorem 1]),
examples of residually finite spaces.

PROPOSITION 2.8. IfX e GJt°, then XG is residually finite.

Suppose that / : X —> Y is a G-map with Y residually finite. If / is a F-
monomorphism, then X is residually finite. The Hasse principle implies that if
X e GJf is nilpotent and of finite type, then the completion map i : X -*• XG is a
F-monomorphism. Both these facts put together imply

PROPOSITION 2.9. / / X e GJf? is nilpotent and of finite type, then X is residually
finite.
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3. Proof of the main theorem

In this section we prove our main theorem which gives a sufficient condition for the
group <OG(X) to be Hopfian. The main step in proving this (as in the non-equivariant
case) is showing that, under suitable conditions, the group &G(X) is residually finite.

DEFINITION 3.1. Let [/] : X -» Y be a morphism in GJ^C. f is said to represent
an epimorphism in GJ4? if for any two maps a, ft : Y -> Z in GJff, a o / is
G-homotopic to p of implies a is G-homotopic to p.

Suppose that X and Yo are in GJf? and [X, Y0]G = { [ / . ] , . . . . [/,]}. Define
Y = Yo x • • • x Yo with r factors. Then Y is a G-complex with the diagonal G
action. Consider the G-map / : X -> Y by / = (fu . . . , / , ) . Let M(Y) denote
the monoid of equivariant self homotopy equivalences of Y preserving the base point.
Each element of the symmetric group Sr induces a self map of the G-space Y by
permuting its coordinates. This gives an embedding of Sr into M(Y).

LEMMA 3.2. With the above notation, if e : X —> X represents an epimorphism in
G3V, then e determines a unique a e Sr C M(T) such that f o e is G-homotopic to
oof. The assignment e H* a induces a monoid homomorphism \j/ : E(X) —> Sr c
M(T), where E(X) is the monoid ofequivariant selfepimorphisms of the G-space X.

PROOF OF THEOREM 1.1. Let 9 € ^dX), 9 ^ id. We shall exhibit a homomor-
phism rj : <pG(X) ->• F with F a finite group such that r)(9) £ id. Since X is residually
finite, we have a map f : X -*• Y0of with Yo totally finite such that f*(9) ^ f,(id).
Since X is finite and Y" is totally finite one observes using equivariant obstruction
theory [1] that the equivariant homotopy set [X, Y0]G is finite. Thus by Lemma 3.2
there is a r > 1 and a a € Sr c M(Y0) such t ha t / o 0 is G-homotopic to CT of and
/„(#) ^ ft{id). Hence o ^ 1. Now the monoid homomorphism i/r : E(X) -> 5r

of Lemma 3.2 restricted to M(X) induces a group homomorphism rj : &C(X) —> Sr

such that r](9) ^ id. This completes the proof. D

PROOF OF THEOREM 1.2. Recall that by Proposition 2.9, X is residually finite. Thus
£G(X) is a residually finite group. Moreover it follows from the work of Triantafillou
[10, Theorem 1.2] that £G(X) is commensurable with an arithmetic subgroup of
^b(X0), where Xo is the equivariant rationalisation of X. Thus &G(X) is finitely
generated. The theorem now follows as finitely generated residually finite groups are
Hopfian. This completes the proof. •

There are situations where it is not difficult to recognize the group S'G(X) as being
residually finite.
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EXAMPLE 3.3. Let A be an Oc-group. Let n > 1. If n > 1, then k is abelian. Then
if k has the property that k(G/H) is finitely generated residually finite group for all
subgroups H, then it is not difficult to see that <?c W is residually finite where X is
the equivariant Eilenberg-MacLane space K(k, n).

EXAMPLE 3.4. As another example, suppose that X e GJif is a finite nilpotent
space such that for any G-homotopy equivalence / : X —> X which is not G-
homotopic to identity, there exists a subgroup H of G such tha t / H : X" -> XH is not
homotopic to the identity. Then &C{X) is residually finite (compare Proposition 3.5).

We end with the following N

PROPOSITION 3.5. Suppose X e GJff is a finite and nilpotent. Further assume that
for each subgroup H.KofG

(1) [XK,XH]isagroupand
(2) [X K, ft" X " ] is trivial for n>\.

Then £G(X) is residually finite.

PROOF. First note that for every subgroup H of G, X H is nilpotent of finite type and
hence X" is residually finite [7]. Now let [f] e &G(X) such that [f] ^ [id]. Then
there exists a subgroup H of G such that [f H] ^ [id], otherwise, by [2, Theorem 3],
the natural family {[/"]} would correspond to id : X —> X and this would mean
/ ~ G id. The group &(XH) is residually finite by [7, Theorem 3]. Using the obvious
homomorphism <£°G(X) —*• &(XH) one sees that the group &G(X) is also residually
finite. This completes the proof. •

COROLLARY 3.6. Suppose X e GJf is a finite and nilpotent. Moreover suppose
that the G-action on X is free outside the base point. Then &G(X) is residually finite.

EXAMPLE 3.7. Let X = S2 v S2. Then X can be given a 22-complex structure by
interchanging the copies of S2. Then X satisfies the hypothesis of the corollary and
hence gG(X) is residually finite. It is easy to see that this group is non-zero.
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