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Abstract

We define equivariant completion of a G-complex and define residually finite G-spaces. We show that the
group of G-homotopy classes of G-homotopy self equivalences of a finite, residually finite G-complex,
is residually finite. This generalizes some results of Roitberg.
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1. Introduction

The notion of profinite completion in group theory is well understood and it is well
known that profinite completion of a group is residually finite. The notion of profinite
completion of Sullivan [8] in homotopy theory motivated Roitberg to introduce the
notion of residual finiteness in the homotopy category [7]. He showed that the profinite
completion of a path connected CW-complex is residually finite [7, Theorem 1 (a)].
He further showed that for a finiig CW-complex X which is residually finite, £(X),
the pointed homotopy classes of self homotopy equivalences is residually finite [7,
Theorem 3]. This is the homotopy theoretic analogue of the well-known result of
Baumslag that the automorphism group of a finitely generated residually finite group
is residually finite. The aim of this paper is to prove equivariant versions of the above
results of Roitberg.

Let G be a finite group and G5 denote the category of G-path connected G-
CW-complexes (which we abbreviate to G-complexes) with base point. All maps
and homotopies are based. Following Sullivan, we define the profinite completion
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Xcofa G-complex X (for equivariant completion, generalizing the non equivariant
completion of Bousfield-Kan, see [3]). We also introduce the notion of residual
finiteness for G-spaces and show that for any X € GJ#, the profinite completion X
is residually finite. Let £(X) denote the group of G-homotopy classes of equivariant
homotopy self equivalences of X. One of the main results of the paper is

THEOREM 1.1. Let X € GH# be finite. Assume that X is residually finite. Then
&¢(X) is a residually finite group.

Recall that a theorem of Sullivan [9] and Wilkerson [11] says that if X is a nilpotent
finite complex, then &(X) is commensurable with [ arithmetic group and hence, is
finitely presented. Thus if X is a finite, nilpotent complex which is also residually
finite, then &(X) being residually finite and finitely presented, is Hopfian. The
equivariant analogue of the Sullivan-Wilkerson theorem is proved in [10]. We use this
to prove

THEOREM 1.2. If X € GJ# is finite and nilpotent, then £5(X) is Hopfian.

Convention Throughout, G will denote a finite group and all spaces, maps and
homotopies are based and ‘X € GJ# is finite’ is meant that X is a finite G-CW-
complex.

2. Equivariant completion and residual finiteness

Recall that a space F is totally finite if the homotopy groups 7, (F), n > 1 are finite
and if in addition there exists a positive integer ng such that 7,(F) = 0 forn > ny. A
space is of finite type if all its homotopy groups are finitely generated.

A G-space X is totally finite if for every subgroup H of G, the H fixed point set
X* is totally finite.

DEFINITION 2.1. A G-space X is residually finite if for any finite G-complex W
and o, B € [W, X5, a # B there exists a G-map f : X — Z with Z totally finite
such that f,(a) # f.(B) where f, : [W, X]g — [W, Z]; is the map induced by f .

A G-map f : X — Y between G-spaces is a F-monomorphism if for every finite
W € G the induced map f, : [W, X]g — [W, Y]; is a monomorphism.
Here is an example of a residually finite space.

EXAMPLE 2.2. Let X = S'v S'. Then X can be given the structure of a Z,-complex
as follows. X has one O-cell of the type Z,/Z, and one 1-cell of the type Z,/e. X
can then be readily recognized as an equivariant Eilenberg-MacLane space K(A, 1)
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where A is the Oz,-group A(Z,/e) = F3, the free group of rank two, and A(Z,/Z,) is
the trivial group. We claim that X is residually finite as Z,-space. First note that if W
is a finite G-complex then

[W, K(A, ]¢ = Homg, (z, (W), ).

(This is true more generally [6]). Now let a, 8 € [W, K(A, 1)]; be such that ¢ # B.
Then clearly a(Z,/e) # B(Z,y/e) : 11 (W*¢) — A(Z»/e). Since F; is residually finite
there exists a finite group F and a homomorphism u : A(Z;/e) — F such that
poa(Z,/e) # uopB(Z,/e). Define an Og-group A’ by A'(Z,/e) = F and X' (Z,/Z,) to
be the trivial group. Then, the map u : A — X’ defined by w(Z,/e) = p and u(Z,/Z,)
being the trivial homomorphism, defines a natural transformation. This gives rise to
aG-map h: K(x,1) - K(A', 1) of equivariant Eilenberg-MacLane spaces. Clearly
h.(a) # h,(B). Observe that K (1A', 1) is totally finite. Note that X is not nilpotent as
a Z,-space (compare Proposition 2.9).

PROPOSITION 2.3. If X is residually finite as a G-space, then X € is residually finite.

PROOF. Leta, B € [W, X©], a # B with W a finite CW-complex. Then endowing
W with the trivial G-action, «, 8 can be considered as elements of [W, X]; and it
is easy to see that @ # B, as elements of [W, X];. Hence there is a totally finite
G-space Z anda G-map f : X — Z, such that, f.(«) # f.(B8). Then, it follows that

fE@) # fOB). a

We can now construct a G-space X which is residually finite, if one forgets the
group action but is not residually finite when considered as a G-space.

EXAMPLE 2.4. Let G = Z,. Let f : @ — Z denote the only homomorphism
between the additive group of rationals and the integers. This map is then realized
asamap f : K(Q, 1) > S' of Eilenberg-MacLane spaces. Consider the Og-space
T, defined by, T(G/G) = K(Q, 1) and T(G/e) = S', with all structure maps as
the identity, except the map T(& : T(G/G) — T(G/e), which equals f. Then, by
the Elmendorf construction [2], there exists a G-space CT, such that, CT has the
homotopy type of S', whereas CT° has the homotopy type of K(Q, 1). Corollary 1
of [7] shows that C T is not residually finite, but the underlying space of the G-space
CT, is clearly residually finite. It follows from the above proposition that, CT is not
residually finite, as a G-space.

We now turn to the definition of equivariant completion. Recall [4, Theorem 3.1,
page 134] that, a contravariant functor from GJ¢ to the category of sets, is repre-
sentable, if and only if, it satisfies the Brown’s axioms (the wedge and the Mayer-
Vietoris axioms). A functor satisfying the wedge and the Mayer-Vietoris axioms will
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be called a Brownian functor. A compact Brownian functor is a Brownian functor
taking values in compact Hausdorff spaces.
We shall need the following two properties of compact Brownian functors.

(1) Suppose k' is a contravariant functor defined on the subcategory of G consist-
ing of finite G-complexes taking values in compact Hausdorff spaces. Suppose that
k' satisfies the Brown’s axioms, whenever they make sense. Then, there is a unique
extension of &’ to a compact Brownian functor &, defined by, k(X) = invlim, &'(X,),
where the inverse limit is over the finite G-subcomplexes X, of X.

(2) The arbitrary inverse limit of compact Brownian functors, over a small filtering
category, is a compact Brownian functor. \

The proofs of both these facts are analogous to the nonequivariant case [8, page 36]
and are therefore omitted. We shall use the above properties of compact Brownian
functors to introduce equivariant completion as follows.

Stepl For X € G4, let Fx denote the category whose objects are G-maps X — F
with F a totally finite G-space and morphisms are homotopy commutative diagrams.

LEMMA 2.5. Fy is a small filtering category.

PROOF. Recall ([8]) that, to show that the category Fy is small filtering we need
to check the smallness, the directedness of #x and the essential uniqueness of maps
in #x. The first condition is clear since we can replace #x by an equivalent small
category, by picking a representative from each G-homotopy type of F’s. The second
property is also clear as given objects f, : X — F, and f, : X —» F, in #x we can
imbed them in f; x f; : X — F, x F,. The essential uniqueness of maps in Fy
follows from the co-equalizer construction in equivariant homotopy theory, which is
given by a suitable pushout diagram [4, page 39]. Explicitly, for two morphisms from
7':X —> Ftorn:X — Fin %y given by G-maps f,, f, : F' — F, consider the
G-space

{(p.x) € F' x F': p(0) = f1(x), p(1) = f2(x))
with diagonal action, where the G-action on F' is induced by the action on F. Let
F" be the component of the above G-space containing the base point, the base point
being the constant path at the base point of F in the first factor and the base point of
F" in the second factor. Then, as in the non-equivariant case [4, page 40], we have an
exact sequence
s 7 (FY > m(FY > m(FP)y — ...,

for every subgroup H of G. From this exact sequence it follows that F” is a totally
finite G-space. Now, one gets the required co-equalizer by using a G-homotopy from
fiom'to from'. O
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Step 2 Let Z € GS# be finite and F a totally finite G-space. Then by equiv-
ariant obstruction theory [1], it is easy to see that, the homotopy set {Z, Fl; is
finite. This yields a contravariant functor defined on the sub category of GJ¢ con-
sisting of finite G-complexes and taking values in compact Hausdorff spaces. A
direct verification shows that this functor satisfies the Brown’s axioms whenever they
make sense. Then by property (1), we get a compact Brownian functor defined by
Sr(Y) =invlim,[Y,, Fls; = [Y, Flg, where the inverse limit is taken over the finite
G-subcomplexes of Y.

From Step 1 and Step 2 we get a functor on Fx which assigns to each object
m : X — F, the compact Brownian functor Sy obtained as in Step 2. By property (2)
of compact Brownian functors invlimg, Sr is again a compact Brownian functor,
which assigns, to each Y € GJ#, the compact Hausdorff space invlimg, [Y, Flg.
Therefore, by Brown’s representation theorem [4, Theorem 3.1, page 134], there
exists a space X in GH# such that for every G-complex Y there is a bijection

(Y, X6l «—> invlimg, Y, Flg.

DEFINITION 2.6. The space X is called the equivariant profinite completion of X .

Clearly, X comes equipped witha G-map i : X — X 6, which is determined by
the objects of Fx and is called the completion map.

We now prove an important property of equivariant completion. First recall that a
G-space X is nilpotent if every fixed point set is nilpotent. An equivariant Postnikov
decomposition for a G-space B consists of G-maps«, : B — B, and r,,,, : B,y —
B,, n > 0 such that By is a point and &, induces an isomorphism L(B) - zr_q(B,,)
for g < n, r.10,y = a,, and r,,, is the G-fibration over a K(z,,,,(B), n + 2) by
amap k"t : B, > K(m,,,(B),n+2). On passage to H-fixed points, a Postnikov
system for B gives a Postnikov system for BY. Moreover, every nilpotent G-space
admits a Postnikov decomposition [4, 2].

PROPOSITION 2.7 (Hasse pringiple). Let Y € GJI¥ be finite and B € GJI€ be a
nilpotent space of finite type. If f,g : Y — B are G-maps such that i o f is
G-homotopic to i o g, then [ is G-homotopic to g.

PROOF. The proof is by induction over the stages in the equivariant Postnikov
system of B and is parallel to the nonequivariant case. Let K — B,,, — B, be a part
of the equivariant Postnikov decomposition of B (see [4, 2]), where K = K(zr,n+1)
andm =7, ,(B,41). Suppose f, : ¥ — B, and f,;, : ¥ — B,,, are the G-maps
constructed from f. Now consider the G-fibration

Map(Y, K) — Map(¥, B,,;) - Map(Y, B,)
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with the obvious action on the function spaces so that
Map(¥, B,+1)¢ = Mapg(Y, Buy).
We then have an ordinary fibration
Mapg (Y, K) — Maps(Y, B,,1) = Mapg(Y, B,).
Consider the homotopy exact sequence of the above fibration

-+ = m(Mapg(Y, B,), fr) = moe(Mapg (Y, K), fus1)

fi;l ITo(MapG(Y, Bn+l)7 fn+l) _r) ”ﬂgMapG(Y’ B")’f").

Note that 7o(Map; (Y, K), fay1) = HE'(Y; ) where H*' (Y; ) denotes the Bredon
cohomology group with coefficients in the Og-group 7 [1]. Here f,,, denotes the
map given by the action of Hg“(Y, ) on (f,41) € mp(Maps(Y, K), fu+1) obtained
by equivariant obstruction theory [5]. Clearly, the image I = I(f,41) is the isotropy
subgroup of the point (f,;;) and the map r collapses the orbits of the action of
HZ*'(Y, ). Thus we get an exact sequence

0= I(fos1) = HZ'(Y, ) - orbit(f,1) > 0.

We proceed as in the non-equivariant case and repeat the above argument for maps
into completions Bg, to get a ladder whose top row being the above exact sequence,
the base row being the exact sequence

0 — I(frr1) = HEN(Y, ) — orbit(f) = 0,

and with induced maps ¢y : I (fa1) = I(fas1), ¢ @ HE'W(Y,m) — HE(Y, #)
and ¢ : orbit(f,41) — orbit(f:,+.). Here, the Og-group 7 is defined by the group
completionz(G/H) = l(/G/\H). Also note that by property (1) of compact Brownian
functor the map ¢ : HZY'(Y, m) — HZ'(Y, #), is a finite completion. With this at
our disposal the rest of the proof is exactly similar to the non-equivariant case. a

Equivariant completion yields, as in the nonequivariant case ([7, Theorem 1}),
examples of residually finite spaces.

PROPOSITION 2.8. If X € G, then X is residually finite.

Suppose that f : X — Y is a G-map with Y residually finite. If f is a -
monomorphism, then X is residually finite. The Hasse principle implies that if
X € GJ# is nilpotent and of finite type, then the completion map i : X — Xcisa
F-monomorphism. Both these facts put together imply

PROPOSITION 2.9. If X € GJA# is nilpotent and of finite type, then X is residually
finite.
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3. Proof of the main theorem

In this section we prove our main theorem which gives a sufficient condition for the
group &¢(X) to be Hopfian. The main step in proving this (as in the non-equivariant
case) is showing that, under suitable conditions, the group &5(X) is residually finite.

DEFINITION 3.1. Let [f]: X — Y be a morphism in GS#. f is said to represent
an epimorphism in G if for any two maps o, 8 : ¥ — Z in G, ao f is
G-homotopic to B o f implies & is G-homotopic to 8.

Suppose that X and Y, are in GS¥ and [X, Yol¢ = {[fil...., [f,]}. Define
Y = ¥y x --- x ¥, with r factors. Then Y is a G-complex with the diagonal G
action. Consider the G-map f : X — Y by f = (f1,...,f,). Let M(Y) denote
the monoid of equivariant self homotopy equivalences of Y preserving the base point.
Each element of the symmetric group S, induces a self map of the G-space Y by
permuting its coordinates. This gives an embedding of S, into M (Y).

LEMMA 3.2. With the above notation, if e : X — X represents an epimorphism in
G, then e determines a unique o € S, € M(T) such that f o e is G-homotopic to

o o f. The assignment e — o induces a monoid homomorphism ¥ : E(X) — S, C
M(T), where E(X) is the monoid of equivariant self epimorphisms of the G-space X.

PROOF OF THEOREM 1.1. Let 6 € &:(X), 6 # id. We shall exhibit a homomor-
phism 7 : £6(X) — F with F afinite group such that n(8) # id. Since X isresidually
finite, we have amap f : X — Y, of with ¥, totally finite such that f,(8) # f.(id).
Since X is finite and Y is totally finite one observes using equivariant obstruction
theory [1] that the equivariant homotopy set [ X, Yy]¢ is finite. Thus by Lemma 3.2
thereisar > landa o € §, € M(Y,) such that f o 6 is G-homotopic to o o f and
f«(8) # f.(id). Hence 0 # 1. Now the monoid homomorphism ¢ : E(X) — §,
of Lemma 3.2 restricted to M (X)) induces a group homomorphism 7 : é5(X) — S,

such that n(0) # id. This completes the proof. O

PROOF OF THEOREM 1.2. Recall that by Proposition 2.9, X is residually finite. Thus
66(X) is aresidually finite group. Moreover it follows from the work of Triantafillou
[10, Theorem 1.2] that £G(X) is commensurable with an arithmetic subgroup of
6:(Xo), where X, is the equivariant rationalisation of X. Thus &¢(X) is finitely
generated. The theorem now follows as finitely generated residually finite groups are
Hopfian. This completes the proof. O

There are situations where it is not difficult to recognize the group &5(X) as being
residually finite.
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EXAMPLE 3.3. Let A be an Og-group. Letn > 1. If n > 1, then A is abelian. Then
if A has the property that A(G/H) is finitely generated residually finite group for all
subgroups H, then it is not difficult to see that &;(X) is residually finite where X is
the equivariant Eilenberg-MacLane space K (A, n).

EXAMPLE 3.4. As another example, suppose that X € GJ % is a finite nilpotent
space such that for any G-homotopy equivalence f : X — X which is not G-
homotopic to identity, there exists a subgroup H of G suchthat f ¥ : X# — XH isnot
homotopic to the identity. Then &(X) is residually finite (compare Proposition 3.5).

We end with the following <

PROPOSITION 3.5. Suppose X € GF is a finite and nilpotent. Further assume that
for each subgroup H, K of G
(1) [XX,X")isagroup and
(2) [XX,Q"X"]is trivial forn > 1.
Then (X)) is residually finite.

PROOF. First note that for every subgroup H of G, X" is nilpotent of finite type and
hence X* is residually finite [7]. Now let [f ] € &6(X) such that [f ] # [id]. Then
there exists a subgroup H of G such that [f ] # [id], otherwise, by [2, Theorem 3],
the natural family {[f #]} would correspond to id : X — X and this would mean
f =~¢ id. The group &(X") is residually finite by [7, Theorem 3]. Using the obvious
homomorphism &;(X) — &(X") one sees that the group &;(X) is also residually
finite. This completes the proof. 0

COROLLARY 3.6. Suppose X € GJ3 is a finite and nilpotent. Moreover suppose
that the G-action on X is free outside the base point. Then Eg(X) is residually finite.

EXAMPLE 3.7. Let X = S? v 2. Then X can be given a Z,-complex structure by
interchanging the copies of S2. Then X satisfies the hypothesis of the corollary and
hence &;(X) is residually finite. It is easy to see that this group is non-zero.
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