
ART ICLE

Pride and Probability

Francesca Zaffora Blando

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
Email: fzaffora@andrew.cmu.edu

(Received 22 April 2023; revised 11 September 2023; accepted 13 December 2023; first published online
26 January 2024)

Abstract

Bayesian agents, argues Belot, are orgulous: they believe in inductive success even when
guaranteed to fail on a topologically typical collection of data streams. Here we shed light
on how pervasive this phenomenon is. We identify several classes of inductive problems for
which Bayesian convergence to the truth is topologically typical. However, we also show
that, for all sufficiently complex classes, there are inductive problems for which
convergence is topologically atypical. Last, we identify specific topologically typical
collections of data streams, observing which guarantees convergence to the truth across all
problems from certain natural classes of effective inductive problems.

1 Introduction
Convergence-to-the-truth theorems are a staple of Bayesian epistemology: their use
in philosophy, especially in debates concerning the tenability of subjective
Bayesianism, dates back to the work of Savage (1954) and Edwards, Lindman, and
Savage (1963). In a nutshell, these results establish that, in a wide array of learning
scenarios, Bayesian agents expect their future credences to align with the truth
almost surely as the evidence accumulates.

Rather than seeing convergence-to-the-truth results as an asset of the Bayesian
framework, a number of authors take them to be the Achilles heel of Bayesianism (see
Glymour 1980; Earman 1992; Kelly 1996; Belot 2013). Most recently, Belot (2013)
argued that, because of these theorems, Bayesian reasoners are plagued by a
pernicious type of epistemic immodesty. By the very nature of the Bayesian
framework, Bayesian agents are barred from acknowledging that, for certain learning
problems, failure, rather than success, is the typical outcome of inquiry—where,
crucially, the notion of typicality on which Belot’s argument relies is topological
rather than measure-theoretic (or probabilistic). There are learning problems for
which a Bayesian agent’s success set (the collection of data streams along which
convergence to the truth occurs) is topologically atypical or “small”; yet, as a
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consequence of said convergence-to-the-truth results, the agent must nonetheless
assign probability one to this set.1

It is well known that measure-theoretic and topological typicality often come
apart (see Oxtoby 1980). Belot’s goal is to draw attention to the fact that this
dichotomy occurs in contexts that he takes to be especially problematic due to their
“obvious epistemological interest” (Belot 2013, 499, note 43): in particular,
in situations in which (1) the event witnessing the coming apart of these two types
of typicality is a Bayesian agent’s success set and (2) the agent’s prior is one that, in
Belot’s view, otherwise displays a desirable type of open-mindedness. In such settings,
the argument goes, this dichotomy is particularly alarming, because topological
typicality is an objective notion—one that does not depend on any particular agent or
their subjective degrees of belief—whereas the measure-theoretic notion of
typicality, in this context, reflects a particular agent’s opinion and is therefore
subjective. These considerations lead Belot to conclude that Bayesian agents suffer
from an irrational overconfidence in their ability to be inductively successful.

This objection has received considerable attention in the literature (see Huttegger
2015; Weatherson 2015; Elga 2016; Belot 2017; Cisewski et al. 2018; Pomatto and
Sandroni 2018; Nielsen and Stewart 2019; Gong et al. 2021), and many of the available
responses recommend substantial modifications of the Bayesian framework to evade
Belot’s conclusion. For instance, Huttegger (2015) proposes to use metric Boolean
algebras, which allow to avoid drawing distinctions between events that can only be
made by infinitely many observations; Weatherson (2015) advocates passing to
imprecise Bayesianism; and Elga (2016) and Nielsen and Stewart (2019) suggest dropping
countable additivity in favor of finite additivity.

The goal of this article is not to further examine the merits or shortcomings of
Belot’s argument; rather, the aim is to shed light on how pervasive the phenomenon
identified by Belot is by clarifying the conditions under which his objection does not
apply—the conditions under which inductive success for a Bayesian agent is both
probabilistically and topologically typical—and the conditions under which it does.
To address this question, we will not depart from standard Bayesian lore: instead,
comfortably situated within the Bayesian framework, we will consider a taxonomy of
inductive problems, in the spirit of Kelly (1996), that will help us differentiate
between the learning situations in which convergence to the truth is topologically
typical and those in which it is not. We will focus on a canonical convergence-to-the-
truth result—Lévy’s Upward Theorem (Lévy 1937)—and show that, by categorizing the
random variables featuring in this result (the functions used to model the inductive
problems faced by Bayesian agents) in terms of their descriptive complexity and
computability-theoretic strength, we can gain a deeper and sharper understanding of
when topological and probabilistic typicality agree or disagree in this setting.2

1 Kelly (1996) voices an analogous worry. His argument relies on cardinality, rather than on
topological considerations. In particular, he points out that there are learning situations in which, even
though the collection of data streams along which convergence to the truth occurs has probability one,
the collection of data streams along which convergence to the truth instead fails is uncountable. Kelly
locates the culprit of Bayesian immodesty in the axiom of countable additivity.

2 The computability-theoretic approach advocated in this article is in line with Huttegger, Walsh, and
Zaffora Blando (2024) (see also Zaffora Blando 2020), where Lévy’s Upward Theorem is studied through
the lens of computability theory and the theory of algorithmic randomness—a branch of computability
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Continuity will play a crucial role in our investigation. We will show that, for
several classes of random variables that are “sufficiently close” to being continuous
and admit natural epistemic interpretations, convergence to the truth is indeed a
topologically typical affair. We will also see, however, that, for all sufficiently complex
classes of random variables, there are inductive problems for which convergence to
the truth is instead topologically atypical. Even though topologically typical inductive
success is guaranteed for several natural classes of inductive problems, “Bayesian
orgulity”—as Belot calls it—is, in this sense at least, a pervasive phenomenon. Last,
by bringing computability theory into the picture, we will identify several classes of
effective inductive problems and specific topologically typical collections of data
streams along which convergence to the truth is guaranteed to occur, no matter
which inductive problem from those classes the agent is trying to solve. This will
allow us to throw light on the kinds of properties of data streams that are conducive
to topologically typical inductive learning.

2 Lévy’s Upward Theorem, typicality, and Bayesian immodesty
In keeping with much of the Bayesian epistemology literature on the topic (see
Earman 1992; Belot 2013; Huttegger 2015, 2017), our discussion of Bayesian
convergence to the truth will focus on the setting of infinite binary sequences—
that is, the setting of Cantor space: the topological space whereby the set f0; 1gN of
infinite binary sequences is endowed with the topology of pointwise convergence. This is
the topology generated by the collection of cylinders σ� �, where σ 2 f0; 1g < N is a finite
binary string and σ� � � fω 2 f0; 1gN : σ ⊏ωg is the set of all sequences that begin
with σ (“σ ⊏ω” indicates that σ is a proper initial segment of ω). Every open set in
Cantor space can be expressed as a countable union of cylinders and every clopen set
as a finite union of cylinders. We will think of infinite binary sequences as data
streams, sequences of experimental outcomes, environments, or possible worlds.
From this viewpoint, cylinders intuitively encapsulate the information available to an
agent after having made finitely many observations or having performed an
imprecise measurement with a certain degree of precision.

2.1 Measure-theoretic versus topological typicality
One prominent way to think about typicality—the one onwhich Bayesian convergence-
to-the-truth theorems capitalize—is measure-theoretic. Recall that the Borel σ-algebra
B on f0; 1gN is the smallest σ-algebra containing all open sets in Cantor space. The
elements ofB are called Borel sets. A probability measure µ onB assigns to each Borel
subset of f0; 1gN a value in 0; 1� � in such a way thatµ�f0; 1gN� � 1 and, for any countable
collection fAngn2N of pairwise disjoint Borel sets, µ�Sn2N An� �

P
n2N µ�An�. Every

probability measure on B can be identified with a function µ that maps cylinders to
real numbers in 0; 1� � and satisfies the following two conditions: (1) µ ε� �� � � 1 (where ε
denotes the empty string) and (2) µ σ� �� � � µ σ1� �� � � µ σ0� �� � for all σ 2 f0; 1g < N

(where σ1 is the string consisting of σ followed by 1 and σ0 the string consisting of σ

theory on which we rely here as well. The present work may also be seen as a Bayesian counterpart to
work in formal learning theory. As mentioned earlier, see, in particular, Kelly (1996).

636 Francesca Zaffora Blando



followed by 0). By Carathéodory’s Extension Theorem (see Williams 1991, Theorem 1.7),
any such function can in fact be uniquely extended to a full probability measure onB.

A probability measure of which we will often make use is the uniform measure λ: the
probability measure that results from tossing a fair coin infinitely many times, given
by λ σ� �� � � 2� σj j for all σ 2 f0; 1g < N (where σj j denotes the length of σ).

Although probability measures admit various interpretations, here we will take
them to represent the subjective priors of Bayesian reasoners. So, a probability measure
µ on B will always stand for a specific agent’s initial degrees of belief, or credences,
about the events in B, and it will be understood as capturing that agent’s background
knowledge and inductive assumptions at the beginning of the learning process.

Given a probability measure µ, a set is measure-theoretically typical relative to µ

if it has µ-measure one and is measure-theoretically atypical relative to µ if it has
µ-measure zero. A µ-measure-one-set corresponds to an event of which the agent
with prior µ is essentially certain, whereas a µ-measure-zero set corresponds to an
event that the agent considers negligible. Measure-theoretic typicality is therefore
inextricably tied to the underlying prior: distinct probability measures may disagree
wildly as to which sets count as measure-theoretically typical.3

Topological typicality (the type of typicality on which Belot’s criticism is
grounded) is instead defined as follows. Recall that a set is nowhere dense if its closure
has empty interior—intuitively, if it corresponds to a hypothesis that, no matter what
evidence has been observed so far, can always be refuted by further evidence.
Equivalently, a set S 	 f0; 1gN is nowhere dense if, for every open set U 	 f0; 1gN,
S \ U is not dense in the subspace topology on U—where a set is dense if it has a
nonempty intersection with every nonempty open set (intuitively, a dense set
corresponds to a hypothesis that cannot be refuted by any finite amount of evidence).
A subset of a topological space is topologically atypical if it is meager, that is, if it is
expressible as a countable union of nowhere dense sets.4 On the other hand, a set is
topologically typical if it is co-meager: if it is the complement of a meager set.

Measure-theoretic and topological (a)typicality have several features in common.
For instance, the class of measure-zero sets and the class of meager sets are both

3 For a simple example, take the uniformmeasure λ and the collection of sequences that satisfy the Strong
Law of Large Numbers relative to λ, namely, the set of sequences along which the relative frequency of 1
converges to 1/2 in the limit. This is a set with λ-measure one and is therefore measure-theoretically typical
relative to λ. Its complement—the set of sequences that fail to satisfy the Strong Law of Large Numbers
relative to λ—has λ-measure zero and is therefore measure-theoretically atypical relative to λ. Yet, if one
takes a Bernoulli measure other than λ, the situation changes drastically. Consider, for instance, the
probability measure β given by β σ� �� � � �1=3�#1 σ� ��2=3�#0 σ� � for all σ 2 f0; 1g < N, where #1 σ� � denotes the
number of 1s occurring in σ and #0 σ� � the number of 0s occurring in σ. According to β, the set of sequences
that satisfy the Strong Law of Large Numbers relative to λ not only fails to bemeasure-theoretically typical; it
is measure-theoretically atypical, because β assigns probability one to the set of sequences along which the
relative frequency of 1 converges to 1/3 in the limit.

4 For instance, every singleton set ωf g is nowhere dense, so every countable set is meager. But
nowhere dense sets—and, a fortiori, meager sets—can also be uncountable. Consider the set
S � fω 2 f0; 1gN : 8n� � ω 2n� 1� � � ω 2n� �g, that is, the set of all sequences whose odd entries agree
with the preceding even entry (where the enumeration starts at 0). This is an uncountable set, and yet it
is nowhere dense. To see this, let σ� � be an arbitrary cylinder. Let τ be a string of even length that extends
σ such that τ’s last entry is 1, while its penultimate entry is 0. Then, S \ τ� � � ;, which suffices to
conclude that S is nowhere dense.
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σ-ideals: measure-zero and meager sets are both closed under subsets and countable
unions. However, although they both aim at capturing notions of “largeness” and
“smallness,” these concepts often diverge. For a well-trodden example, consider the
collection of sequences that satisfy the Strong Law of Large Numbers relative to the
uniform measure λ (the set of sequences with limiting relative frequency 1/2 for 1):
this is a set with λ-measure one, and yet it is also meager (see Oxtoby 1980, 85).

2.2 Lévy’s Upward Theorem
Bayesian convergence to the truth is epitomized by Lévy’s Upward Theorem (Lévy
1937), which establishes that, given some quantity that a Bayesian agent is trying to
measure, the probability of observing a data stream that will lead the agent’s
successive estimates to asymptotically align with the truth is one. In other words, a
Bayesian reasoner conducting repeated experiments to gauge some quantity expects
that almost every sequence of observations will bring about inductive success.

Let f : f0; 1gN ! R be a random variable relative to some probability measure µ

on B. Think of the values of f as quantities that the agent with prior µ wishes to
estimate; for instance, f could record the value of some unknown physical parameter
that may vary between possible worlds. The unconditional expectation of f with
respect to µ (the average value of f weighted by µ, given by

R
f0;1gN f dµ) is abbreviated

as Eµ f� �. If Eµ fj j� � < ∞ , then f is integrable. For each n 2 N, let Fn be the sub-σ-
algebra ofB generated by the cylinders σ� � centered on strings σ 2 f0; 1g < N of length
n. This collection of algebras has an especially natural epistemic interpretation: each
Fn intuitively captures the possible information that the agent may obtain at the nth
stage of the learning process—any string of outcomes that could result from n
experiments. The conditional expectation Eµ�f jFn� : f0; 1gN ! R of f given Fn is
itself a random variable that, on input ω 2 f0; 1gN, returns the best estimate of f ’s
value, from the perspective of µ, conditional on the first n digits ω↾n of ω. More
suggestively, when ω is the true state of the world, Eµ�f jFn� ω� � can be seen as
encoding the agent’s beliefs regarding the true value of f (namely, f ω� �) after having
observed the outcomes ω↾n of the first n experiments. We use throughout the
following version of the conditional expectation (because it is unique only up to
µ-measure zero)—though, as will become clear, this choice is immaterial for our
results. For all ω 2 f0; 1gN,

Eµ� f j Fn��ω� �
1

µ��ω↾n��
R
�ω↾n� f dµ ifµ��ω↾n�� > 0; and

0 otherwise

�

Lévy’s Upward Theorem is the following result (see Williams 1991, sec. 14.2):

Theorem 2.1 (Lévy’s Upward Theorem, Lévy 1937). Let f : f0; 1gN ! R be an integrable
random variable. Then, for µ-almost every ω 2 f0; 1gN, limn!∞Eµ�f jFn� ω� � � f ω� �.5

5 Technically, Lévy’s Upward Theorem gives us more than this. A sequence of functions fgngn2N
converges to an integrable function g in the L1-norm if limn!∞

R
f0;1gN jgn � gj dµ � 0. Besides

establishing almost-sure pointwise convergence, Lévy’s Upward Theorem also establishes that
fEµ�f jFn�gn2N converges to f in the L1-norm.
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Call the set of sequences fω 2 f0; 1gN : limn!∞Eµ�f jFn� ω� � � f ω� �g that satisfy
Lévy’s Upward Theorem the success set of agent µ with respect to f and its
complement the failure set. Lévy’s Upward Theorem says that, from the agent’s
viewpoint, their failure set is negligible: the agent assigns probability one to the
hypothesis that their beliefs will eventually converge to the truth about the value
of f (i.e., µ�fω 2 f0; 1gN : limn!∞Eµ� f jFn� ω� � � f ω� �g� � 1).

The philosophical literature on Lévy’s Upward Theorem generally focuses on the
special case in which the integrable random variable being estimated is the indicator
function 1A of some Borel setA (as we shall see, this is the setting within which Belot
frames his objection). This restriction corresponds to the case in which the inductive
problem faced by the agent is a binary decision problem: does the true world—the
observed data stream—belong to A? Or, put differently, does the true world possess
the property corresponding toA? In this setting, the quantity that the agent is trying
to estimate is the truth value of A, and learning proceeds by standard Bayesian
conditioning. Whenever µ��ω↾n�� > 0, we in fact have that

Eµ�1AjFn� ω� � � 1
µ ω↾n� �� �

Z
ω↾n� �

1A dµ � µ A \ ω↾n� �� �
µ ω↾n� �� � � µ�Aj ω↾n� ��:

So, because the support supp�µ� � fω 2 f0; 1gN : �8n�µ��ω↾n�� > 0g of µ has
µ-probability one, Lévy’s Upward Theorem entails that limn!∞ µ�A j �ω↾n�� � 1A�ω�
for µ-almost every ω 2 f0; 1gN. An agent with prior µ expects their beliefs, given by the
preceding sequence of posterior probabilities, to converge almost surely to the truth
about whether A is the case with increasing information.

The almost-sure convergence to the truth achieved via Lévy’s Upward Theorem is
always relative to the agent’s prior. Before performing any experiments or
measurements, the agent is essentially certain that, with increasing information,
their beliefs will eventually converge to the truth. Yet, there is no objective or
external guarantee that this will indeed be the case. Thus Lévy’s Upward Theorem
does not establish the universal reliability of Bayesian learning methods from an
objective, third-person standpoint. Its epistemic significance stems from the fact that
it establishes that a certain kind of skepticism about induction is impossible: if an
agent is independently committed to probabilistic coherence, then, by Lévy’s Upward
Theorem, that agent cannot be a skeptic about the possibility of learning from
experience. The agent’s independent commitment to the Bayesian framework implies
that, by their own light, their recourse to inductive reasoning is justified. As Skyrms
(1984, 62) observes, from the perspective of a Bayesian agent, it is “inappropriate for
you to ask the standard question, ‘Why should I believe that the real situation is not in
that set of measure zero?’ The measure in question is your degree of belief. You do
believe that the real situation is not in that set, with degree of belief one.”

2.3 Belot’s argument
Precisely because of its barring a certain type of skepticism about induction, Lévy’s
Upward Theorem has been accused of being a drawback of the Bayesian approach,
rather than serving in its favor. In particular, Belot (2013) argues that, because of
Lévy’s Upward Theorem (and other convergence-to-the-truth results), Bayesian
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reasoners are forced to be epistemically immodest in an especially pernicious way.
Belot’s worry is that

Bayesian convergence-to-the-truth theorems tell us that Bayesian agents are
forbidden to think that there is any chance that they will be fooled in the long
run, even when they know that their credence function is defined on a space that
includes many [data streams] that would frustrate their desire to reach the
truth. (500)

Bayesian reasoners are, in a sense, incapable of entertaining the possibility of
inductive failure, and this is so even when “their desire to reach the truth” is
thwarted along many data streams—in fact, on a topologically typical collection of
data streams.

To make his point,6 Belot (2013) considers a specific class of priors, which he calls
open-minded. The notion of an open-minded prior is, by definition, always relative to a
particular Borel set—more suggestively, to a particular hypothesis under consider-
ation: given some S 2 B, µ is open-minded with respect to S if, no matter what string
σ 2 f0; 1g < N has been observed so far, there are always two possible distinct
extensions τ; ρ 2 f0; 1g < N of σ (i.e., σ ⊏ τ and σ ⊏ ρ) such that µ�Sj τ� �� ≥ 1=2 and
µ�Sj ρ� �� < 1=2. If µ is open-minded with respect to S, then no finite number of
observations will ever suffice for µ to settle on whether the data stream being
observed belongs to S.

Now, suppose the hypothesis under consideration corresponds to a countable
dense Borel set D (e.g., D could be the set of sequences that are eventually 0). Given a
Bayesian agent with prior µ, what do the success set and the failure set of µ with
respect to the binary estimation problem encoded by 1D look like? The answer to this
question depends, of course, on the particular prior adopted by the agent. Because D
and its complement are both dense, any finite sequence of observations is compatible
with the true data stream being inD but also with it not being inD. Hence, according
to Belot, in this case, it is reasonable to adopt a prior µ that is open-minded with
respect to D. Yet, Belot shows, if µ is open-minded with respect to D, then its failure
set—the set of sequences ω 2 f0; 1gN along which the conditional probabilities
µ�D j �ω↾n�� fail to converge to 1D ω� � in the limit—is co-meager, despite being a
µ-measure-zero set by Lévy’s Upward Theorem. Equivalently, the success set of µ
relative to 1D is meager (and, so, topologically negligible), despite having probability
one, according to the agent. Probabilistic and topological typicality are thus
orthogonal notions in this setting.

In light of these (and other analogous) observations, Belot (2013, 484) concludes
that the Bayesian approach is irremediably flawed: the account of rationality it yields
“renders a certain sort of arrogance rationally mandatory, requiring agents to be
certain that they will be successful at certain tasks, even in cases where the task is so
contrived as to make failure the typical outcome.”

6 Here we focus on the argument from Belot (2013, sec. 4).
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3 Meager and co-meager success
There are several moving parts in Belot’s argument that one may call into question to
avoid his conclusion. For instance, one may doubt the reasonableness of Belot’s notion
of an open-minded prior or challenge the very significance of topological
considerations for Bayesian epistemology (see, e.g., Huttegger 2015; Cisewski et al.
2018). Huttegger (2015, 92), for example, notes the following:

The mathematical structure of measure theory is very different from the
mathematical structure of topology. : : : Taking all of this together suggests that
topological and probabilistic concepts are fairly independent of each other, and
that results about the topology of a space do not prescribe specific probability
distributions for that space. From a Bayesian perspective, this makes a lot of
sense. Topology is a mathematical theory of concepts like closeness and limit
point, whereas probability is a mathematical theory of rational degrees of belief.
The two theories have very different domains, and so there is no reason to
suppose that there are any general principles connecting the two in the way
required by Belot’s argument.

The question of whether topological typicality is a relevant concept when
evaluating the rationality of probabilistic reasoners is a divisive one. It is, however,
worth pointing out that the use of topological typicality in the setting of Bayesian
convergence-to-the-truth results has some notable precedents that bear upon the
long-standing debate between Bayesians and frequentists in the foundations of
statistics—see, in particular, Freedman (1963, 1965), who employs notions of
topological typicality in studying the consistency of Bayes’s estimates. Regardless of
whether Belot’s specific argument is ultimately successful, we take the following
questions to be of independent interest: are there any ordinary learning situations
where Bayesian agents (or, at the very least, certain types of Bayesian agents) are
guaranteed to be inductively successful on a typical set of data streams both in the
probabilistic and the topological sense? Is it possible to provide an informative
classification of the learning scenarios in which these two notions of typicality are in
agreement (with respect to the success sets of Bayesian agents) and of the learning
scenarios in which they instead come apart, so as to be able to understand how
pervasive the phenomenon Belot identified is? These are the questions that will keep
us occupied in the remainder of this article.

Recall that a probability measure on B has full support if it assigns positive
probability to all cylinders. The uniform measure, for example, is a probability
measure with full support, and so are all other Bernoulli measures with bias strictly
less than one, as well as their mixtures. All of the learning situations identified in this
article for which convergence to the truth occurs on a co-meager set will feature
priors with full support. Priors with full support have a natural epistemic
interpretation: they, too, correspond to a form of open-mindedness—in particular,
they intuitively capture the credences of Bayesian reasoners who are open-minded
with respect to the evidence, in that they do not a priori exclude any finite sequence
of observations.
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Of course, the type of open-mindedness encoded by having full support is
compatible with various forms of closed-mindedness. Take, for instance, the set of
data streams that are eventually 0, which, as remarked earlier, is both countable and
dense. According to the uniform measure λ, this is a measure-zero set. Thus, though
open-minded with respect to all finite sequences of observations, λ is closed-minded
with respect to the possibility of observing only finitely many 1s. So, λ fails to be
open-minded in Belot’s sense with respect to the hypothesis encoded by this set. We
take this to be a feature, rather than a bug, as no prior can be open-minded with
respect to every event inB. In particular, Belot’s notion of open-mindedness is just as
susceptible to the charge of entailing various forms of closed-mindedness as having
full support is.

Lévy’s Upward Theorem holds very generally for any integrable random variable.
A crucial component of our analysis relies on classifying random variables in terms of
their descriptive complexity and computational strength. This will allow us to
identify well-behaved families of integrable random variables for which Lévy’s
Upward Theorem can be shown to hold on a co-meager set. To this end, we need to
introduce a few more definitions.

3.1 The Borel hierarchy and the arithmetical hierarchy
The events inB can be classified in terms of their rank, or descriptive complexity, within
the Borel hierarchy (see, e.g., Kechris 1995, sec. 11B):

Definition 3.1 (Borel hierarchy). The Borel hierarchy of subsets of Cantor space consists
of the following three types of classes: Σ0

α,Π0
α, andΔ0

α, where α is a countable ordinal greater
than 0. Given a positive natural number n,7 a set S 2 B is in

• Σ0
1 if and only if it is open;

• Π0
n if and only if its complement S is in Σ0

n;
• Σ0

n (n > 1) if and only if there is a sequence fSigi2N of Π0
n�1 sets such that

S � S
i2N Si;

• Δ
0
n if and only if S is in both Σ0

n and Π0
n.

For instance, theΠ0
1 sets are the closed sets, theΔ

0
1 sets are the clopen sets, the Σ

0
2 sets are

countable unions of closed sets, and the Π0
2 sets are countable intersections of open sets.

The Borel hierarchy has an effective counterpart called the arithmetical hierarchy,
which allows to classify certain Borel sets in terms of their arithmetical complexity (see,
e.g., Soare 2016, chap. 14; Downey and Hirschfeldt 2010, sec. 2.19):

Definition 3.2 (Arithmetical hierarchy). The arithmetical hierarchy of subsets of
Cantor space consists of the following three types of classes: Σ0

n, Π0
n, and Δ

0
n, where n is a

positive natural number. A set S 2 B is in

• Σ0
1 if and only if it is effectively open (i.e., if there is a computably enumerable set

S 	 f0; 1g < N such that S � �S� � S
σ2S�σ�);

7 Here we focus only on finite ordinals—and, so, on Borel sets of finite rank.
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• Π0
n if and only if its complement S is in Σ0

n;
• Σ0

n (n > 1) if and only if there is a computable sequence fSigi2N ofΠ0
n�1 sets

8 such that
S � S

i2N Si;
• Δ

0
n if and only if S is in both Σ0

n and Π0
n.

For instance, the Π0
1 sets are the effectively closed sets, the Δ0

1 sets are the (effectively)
clopen sets, theΣ0

2 sets are effective countable unions of effectively closed sets, and theΠ
0
2 sets

are effective countable intersections of effectively open sets. A set with a classification within
the arithmetical hierarchy is said to be arithmetical (or arithmetically definable).

The levels of the arithmetical hierarchy can also be characterized in terms of
the complexity of the formulas in the language of first-order arithmetic that define
the sets belonging to those levels (hence the name “arithmetical hierarchy”).
A set S 2 B is in Σ0

n if and only if it is definable by a Σ0
n formula, namely, if

S � fω 2 f0; 1gN : �9k1��8k2�:::�Qkn� R�ω↾k1;ω↾k2; :::;ω↾kn�g for some computable
relation R, with Q � 9 if n is odd and Q � 8 if n is even. On the other hand, a set S 2 B
is inΠ0

n if and only if it is definable by aΠ0
n formula, namely, if there is a computable

relation R such that S � fω 2 f0; 1gN : �8k1��9k2�:::�Qkn� R�ω↾k1;ω↾k2; :::;ω↾kn�g,
with Q � 8 if n is odd and Q � 9 if n is even.

3.2 Algorithmic randomness and effective genericity
As notions of “largeness” go, having measure one and being co-meager are rather
coarse-grained. There are many sets that, while measure-theoretically or topologically
(a)typical, seem to intuitively differ in “size.” For instance, the concept of Hausdorff
dimension, which is a generalization of the uniform measure, was introduced to
formalize the intuition that certain subsets of a metric space differ in size, even though,
from the viewpoint of the uniform measure, they all have measure zero. In what
follows, we will consider some more refined notions of typicality whose definitions rely
on the machinery of computability theory. These notions of effective typicality allow
one to make more fine-grained distinctions between intuitively “large” sets. Here we
will use them to provide a more detailed analysis of the collections of data streams
along which convergence to the truth holds for several classes of inductive problems.

Let us start with algorithmic randomness: a branch of computability theory that
offers an account of effective measure-theoretic typicality (see Nies 2009; Downey and
Hirschfeldt 2010). According to algorithmic randomness, given a probability measure
µ fixed in the background, a sequence is random relative to µ if it is a representative
outcome of µ. One naive idea is that an outcome is representative of µ if it satisfies
every property that, according to µ, “most” sequences possess, that is, if it belongs to
all µ-measure-one sets. Given that being representative in this sense is not possible in
general,9 algorithmic randomness instead identifies representativeness—and, so,

8 This means that there is a computable function g : N ! N such that, for each i 2 N, Si � En�1
g i� � ,

where En�1
0 ; En�1

1 ; En�1
2 ; ::: is a fixed effective enumeration of all the Σ0

n�1 subsets of f0; 1gN (see, e.g.,
Downey and Hirschfeldt 2010, 75–76).

9 For every probability measure µ that assigns probability zero to every singleton set (i.e., for every
atomless probability measure), every sequence ω belongs to at least one µ-measure-zero set: its own
singleton set ωf g. Hence, defining randomness in terms of the satisfaction of all µ-measure-one
properties can lead to a vacuous notion.
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randomness—with membership in certain countable collections of µ-measure-one
sets: more precisely, µ-measure-one sets of a certain arithmetical complexity that
correspond to natural statistical laws (such as the set of sequences that satisfy the
Strong Law of Large Numbers relative to µ). In a nutshell, given such a countable
collection of arithmetically definable properties that hold with µ-measure one (of
arithmetically definable statistical laws), a sequence is algorithmically µ-random
relative to that collection if and only if it possesses all of the corresponding properties
(if and only if it satisfies all of the corresponding statistical laws).

The field of algorithmic randomness is teeming with notions of differing logical
strength, each determined by the particular family of measure-one arithmetically
definable properties a sequence must satisfy to count as random. In what follows, we
focus on two such notions.

Arguably, the simplest algorithmic randomness notion is Kurtz randomness
(Kurtz 1981):

Definition 3.3 (Kurtz randomness). Let µ be a probability measure.10 A sequence
ω 2 f0; 1gN is µ-Kurtz random if and only if ω belongs to all Σ0

1 sets of µ-measure one.

In other words, to qualify as µ-Kurtz random, a sequence has to possess all the
properties that correspond to µ-measure-theoretically typical effectively open subsets
of Cantor space (such as the property of having at least one prime-numbered 0 entry
whenµ is a nontrivial Bernoulli measure). Given that there are only countably manyΣ0

1
sets, there are only countably many of them that haveµ-measure one. Hence, for every
µ, the collection of µ-Kurtz random sequences is itself a µ-measure-one set.

Another fundamental algorithmic randomness notion is Martin-Löf randomness
(Martin-Löf 1966), which can easily be seen to entail Kurtz randomness:

Definition 3.4 (Martin-Löf randomness). Let µ be a probability measure. A µ-Martin-
Löf test is a computable sequence fUngn2N of Σ0

1 sets with µ Un� � ≤ 2�n for all n 2 N.
A sequence ω 2 f0; 1gN is µ-Martin-Löf random if and only if, for all µ-Martin-Löf tests
fUngn2N, ω =2T

n2N Un.

The requirement that, for a µ-Martin-Löf test fUngn2N, µ Un� � ≤ 2�n for all n 2 N
ensures that

T
n2N Un is a set of effectiveµ-measure zero: it is aµ-measure-zero set whose

measure can be approximated at a computable rate (2�n) using the measures of the
components Un of the test. And because the intersection of a computable sequence
of Σ0

1 sets is a Π
0
2 set, a sequence ω 2 f0; 1gN is µ-Martin-Löf random if and only if it

does not possess any Π0
2 properties of effective µ-measure zero—equivalently, if and

only if it possesses all Σ0
2 properties of effective µ-measure one. Once again, seeing

that there are only countably many Σ0
2 properties of (effective) µ-measure one, the

collection of µ-Martin-Löf random sequences is itself a µ-measure-one set.

10 Algorithmic randomness is often defined with respect to computable probability measures (see note
17). Here we will not impose such a restriction and will focus on blind randomness (see, e.g., Kjos-Hanssen
2010), namely, on notions where the underlying probability measure µ, which may be uncomputable, is
not used as an oracle when specifying the class of µ-measure-one arithmetically definable properties
that a sequence has to satisfy to be random.
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Since µ-Martin-Löf randomness entails µ-Kurtz randomness, while the reverse
implication does not hold in general, µ-Martin-Löf randomness yields a more fine-
grained notion of measure-theoretic typicality than µ-Kurtz randomness does; in
turn, µ-Kurtz randomness provides a more fine-grained notion of measure-
theoretic typicality than simply having µ-measure one.

The second family of effective typicality notions that will be relevant for our
discussion falls under the umbrella of effective genericity: a theory of effective
topological typicality (see Downey and Hirschfeldt 2010, sec. 2.24). Just as algorithmic
randomness is defined in terms of membership in every measure-one set from some
prespecified countable collection of sets, effective genericity essentially amounts to
membership in every co-meager set from some prespecified countable collection of
sets. Although there are many notions of effective genericity in the literature, here we
only consider the n-genericity hierarchy: a linearly ordered family of canonical
genericity notions. We begin by defining 1-genericity (the first level of the hierarchy)
and discuss the rest of the hierarchy in the last section of the article.

Given ω 2 f0; 1gN and S 	 f0; 1g < N, ω is said to meet S if ω 2 �S� � S
σ2S�σ�. A set

S 	 f0; 1g < N is dense along ω 2 f0; 1gN if ω is in the closure of S� �—in other words, if,
for every n 2 N, there is some σ 2 f0; 1g < N with ω↾n v σ such that σ� � 	 S� �.11 Then,
1-genericity is defined as follows:

Definition 3.5 (1-Genericity). A sequence ω 2 f0; 1gN is 1-generic if and only if ω meets
every computably enumerable set S 	 f0; 1g < N that is dense along ω.

Equivalently, a sequence is 1-generic if and only if it is not on the boundary of any Σ0
1

set. Intuitively, a 1-generic sequence ω is such that, for any Σ0
1 hypothesis S, if no

imprecise measurement of ω can rule S out, then ω is in S (and, so, satisfies the
hypothesis).

It is not difficult to see that every 1-generic sequence belongs to every denseΣ0
1 set

and that every such set is co-meager. Moreover, the following well-known facts will
be important for our discussion (see Kurtz 1981; Nies 2009; Downey and
Hirschfeldt 2010).

Proposition 3.6. The set of 1-generic sequences is co-meager.

Proposition 3.7. Let µ be a probability measure with full support. If ω 2 f0; 1gN
is 1-generic, then ω is µ-Kurtz random.12

11 For example, the set A � f0n1 2 f0; 1g < N : n 2 N with n 
 1g (where 0n1 is the string consisting of
n consecutive 0s followed by a 1) is dense along the constant 0 sequence 000000:::, even though this
sequence does not meet A.

12 When µ does not have full support, Proposition 3.7 may fail to hold. Consider the probability
measure δ concentrated on the constant 1 sequence 111111::: (i.e., δ is the measure given by δ ε� �� � � 1
and, for all σ ≠ ε, δ σ� �� � � 1 if σ consists of σj j consecutive 1s, and δ σ� �� � � 0 otherwise). Clearly δ does
not have full support (e.g., δ 0� �� � � 0). Now, the constant 1 sequence is not 1-generic—for instance, it
fails to belong to the set fω 2 f0; 1gN : 9n� � ω n� � � 0g of sequences with at least one 0 entry, which is
both dense and Σ0

1. However, the constant 1 sequence is the only δ-Kurtz random sequence. Hence, the
set of 1-generic sequences and the set of δ-Kurtz random sequences are disjoint.
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When µ is a probability measure with full support, the set of µ-Kurtz random
sequences is thus itself a co-meager set. So, both 1-genericity and µ-Kurtz
randomness provide more fine-grained notions of topological typicality than simply
being co-meager.

3.3 Continuous functions
With these taxonomic tools at our disposal, we are ready to consider some specific
families of inductive problems for which Bayesian convergence to the truth is not
susceptible to Belot’s charge of epistemic immodesty.

One way to achieve co-meager success is, of course, to be inductively successful
no matter what data stream is observed, that is, for convergence to the truth to
occur everywhere, not just almost everywhere according to the agent’s prior. So,
an immediate question is whether there are any ordinary learning situations in
which convergence to the truth can be achieved everywhere. In what follows, we
highlight one such class of learning situations that will guide the rest of our
discussion.

One simple type of inductive problem consists in estimating a continuous quantity.
Quantities of this kind are naturally modeled in terms of continuous random variables.
First, recall that the standard topology on R is the topology generated by the open
intervals, namely, by sets of the form a; b� � � fr 2 R : a; b 2 R and a < r < bg. Earlier,
we introduced the Borel hierarchy of subsets of f0; 1gN (Definition 3.1). The very same
taxonomy in terms ofΣ0

n;Π
0
n, andΔ0

n sets also applies to the Borel subsets of R, where
the Borel subsets of R are the elements of the Borel σ-algebra on R: the smallest
σ-algebra containing all open intervals. Continuous functions from f0; 1gN to R are
defined as follows:

Definition 3.8 (Continuous function). A function f : f0; 1gN ! R is continuous if and
only if, for every open (Σ0

1) subset U of R, f �1 U� � � fω 2 f0; 1gN : f ω� � 2 Ug is an open
(Σ0

1) subset of f0; 1gN.

Suppose an experiment is being conducted that involves measuring some real-
valued physical parameter, such as the temperature at a given location or the
concentration of some substance in a fluid. Such a learning situation may be modeled
via the function f : f0; 1gN ! R that maps each sequence in f0; 1gN to the real
number in 0; 1� � of which that sequence is the binary expansion. Let the true
parameter be given by f ω� �. Then, at each finite stage n of the learning process, the
observed data ω↾n provides an approximation of f ω� �. The map f is a continuous
function. For another simple example of a continuous function, let U be a clopen
subset of f0; 1gN and take its indicator function 1U . Intuitively, 1U represents a binary
decision problem that can be settled with a finite amount of data (such as the question
of whether the first n patients from a given sample all recovered after being treated
for a certain disease).

The following observation is entirely straightforward, but it is a useful starting
point. First, note that, because Cantor space is compact,13 every continuous function

13 This means that each of its open covers has a finite subcover.
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on it is bounded both below and above;14 hence, every continuous random variable on
Cantor space is integrable. When the quantity to be estimated is a continuous random
variable, it is easy to see that Lévy’s Upward Theorem holds for every sequence in the
support of the agent’s prior. So, when the agent’s prior has full support, Lévy’s
Upward Theorem holds everywhere.

Proposition 3.9. Let µ be a probability measure and f : f0; 1gN ! R a continuous random
variable. Then, for all ω 2 supp µ� �, limn!∞Eµ�f jFn� ω� � � f ω� �. When µ has full support,
supp µ� � � f0; 1gN, and so limn!∞Eµ�f jFn� ω� � � f ω� � for all ω 2 f0; 1gN.

Proof. Let ω 2 supp µ� �. Then, for all n 2 N, Eµ�f j Fn��ω� �
R
�ω↾n� f dµ=µ��ω↾n��.

Let ɛ > 0. By continuity, there is m 2 N such that, for all α 2 �ω↾m�, f ω� � � f α� �j j < ɛ.
Hence, for all n ≥ m,�����

R
�ω↾n� f dµ

µ��ω↾n�� � f �ω�
����� �

R
�ω↾n� jf�f �ω�j dµ

µ��ω↾n�� <

R
�ω↾n� ɛ dµ

µ��ω↾n�� � ɛ;

where the first inequality holds because f ω� � is a constant. This establishes the
claim. □

When the agent’s prior µ does not have full support, convergence to the truth is not
guaranteed to happen on a co-meager set. To see this, let µ be the probability measure
that results from first flipping a coin that lands heads with probability one and then
flipping a fair coin forever after.15 Take the indicator function 1 0� � of the cylinder 0� �,
which, as noted earlier, is continuous. Lévy’s Upward Theorem fails everywhere on 0� �, so
the success set of µ with respect to 1 0� � is not co-meager, as the cylinder 1� � is not co-
meager.

3.4 Baire class n functions
Continuity, though natural, is a strong condition. What we will consider next is a
family of functions that, relying on the classifications afforded by the Borel hierarchy,
provides a broad generalization of the class of continuous functions:

Definition 3.10 (Baire class n function). Let n 2 N. A function f : f0; 1gN ! R is of
Baire class n if and only if, for every Σ0

1 subset U of R, f �1 U� � is a Σ0
n�1 subset of f0; 1gN.

Clearly the collection of Baire class 0 functions coincides with the collection of
continuous functions. Moreover, for each n 2 N, every Baire class n function is also a
Baire class n� 1� � function (while the converse does not hold).

For each n ≥ 1, the indicator functions of the Δ
0
n, Σ0

n, Π0
n, and Δ

0
n�1 subsets of

Cantor space are straightforward examples of Baire class n functions. These functions
have natural epistemic interpretations. For instance, the indicator functions of Σ0

1

14 For each positive n 2 N, let Un � fω 2 f0; 1gN : n > f ω� � > � ng. Then, each Un is open,
Un 	 Un�1 for all n 
 1, and

S
n
1 Un � f0; 1gN. By the compactness of Cantor space, there is some

n0 
 1 such that Un0 � f0; 1gN. This establishes that f is bounded (below and above).
15 More precisely, µ is the probability measure given by µ ε� �� � � 1, and, for all strings σ ≠ ε,

µ σ� �� � � 0 if the first entry of σ is a 0, and µ σ� �� � � 2� σj j�1 otherwise.
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sets intuitively capture binary decision problems membership in which can be
verified with a finite amount of data, while the indicator functions of Π0

1 sets
intuitively capture binary decision problems membership in which can be refuted
with a finite amount of data. Similarly, the indicator functions of Σ0

2 sets correspond
to binary decision problems membership in which can be verified in the limit, the
indicator functions ofΠ0

2 sets correspond to binary decision problems membership in
which can be refuted in the limit, and the indicator functions ofΔ0

2 sets correspond to
binary decision problems membership in which can be decided in the limit.16

Another family of functions that are of Baire class 1 (in addition to the indicator
functions of Δ0

1, Σ
0
1, Π

0
1, and Δ

0
2 sets) is the class of semicontinuous functions, which

includes the lower semicontinuous and the upper semicontinuous functions:

Definition 3.11 (Lower and upper semicontinuous functions). A function
f : f0; 1gN ! R is lower semicontinuous if and only if all sets of the form
f �1 a;�∞� �� � � fω 2 f0; 1gN : f ω� � > ag are Σ0

1. A function f : f0; 1gN ! R is upper
semicontinuous if and only if all sets of the form f �1 �∞ ; b� �� � � fω 2 f0; 1gN : f ω� � < bg
are Σ0

1.

Semicontinuity is a weaker form of continutiy, and it is not difficult to see that a
function is continuous if and only if it is both lower semicontinuous and upper
semicontinuous. The collection of lower semicontinuous functions includes the
indicator functions ofΣ0

1 sets, while the collection of upper semicontinuous functions
includes the indicator functions of Π0

1 sets. For another simple example of a lower
semicontinuous function (and, so, of a Baire class 1 function), let f be given by
f ω� � � 1 if ω’s prime-numbered entries feature a 1 infinitely often and
f ω� � � 1 � 2�n if ω has exactly n 2 N prime-numbered entries featuring a 1
(basically, for any ω, f is a normalized function that counts the number of 1s in ω that
occur at prime-numbered positions). For one last example, take a bounded function
c : f0; 1g < N ! R recording the daily values of some stock market share. Then, the
function f given by f �ω� � supn;m2N jc�ω↾n� � c�ω↾m�j, which tracks the greatest
spread between this share’s values over its history, is lower semicontinuous.
Similarly, the function g given by g�ω� � inf n;m2N jc�ω↾n� � c�ω↾m�j, which tracks
the lowest spread between the share’s values over its history, is upper
semicontinuous.

The following is a classical result due to Baire (see Kechris 1995, Theorem 24.14;
Oxtoby 1980, Theorem 7.3) that will help us shed light on Lévy’s Upward Theorem in
the context of Baire class 1 functions:

Theorem 3.12 (Baire). Let f : f0; 1gN ! R be a function of Baire class 1. The points
of discontinuity of f form a meager Σ0

2 set—equivalently, the points of continuity of f form a
co-meager Π0

2 set.

With Theorem 3.12 at hand, the following can easily be seen to hold:

16 For a detailed discussion of how to provide a learning-theoretic interpretation of the levels of the
Borel hierarchy (and of the arithmetical hierarchy), see Kelly (1996).

648 Francesca Zaffora Blando



Corollary 3.13. Let µ be a probability measure with full support and f : f0; 1gN ! R a
Baire class 1 integrable random variable. Then, the collection of all ω 2 f0; 1gN with
limn!∞Eµ�f jFn� ω� � � f ω� � is co-meager.

Proof. Let ω be a point of continuity of f . Because µ has full support,
Eµ�f j Fn��ω� �

R
�ω↾n� f dµ=µ��ω↾n�� for all n 2 N. By the very same argument used in

the proof of Proposition 3.9, limn!∞Eµ�f jFn� ω� � � f ω� �. So, the set of points of
continuity of f is a subset of the set of sequences along which Lévy’s Upward Theorem
holds. By Theorem 3.12, the former set is co-meager. Hence, so is the set of sequences
along which Lévy’s Upward Theorem holds. □

When the underlying prior µ has full support, the success set of µ relative to a
Baire class 1 integrable random variable is a co-meager set. We thus have another
class of inductive problems relative to which convergence to the truth is not only
probabilistically typical but also topologically typical.

There are priors that do not have full support for which Corollary 3.13 does not
hold. By virtue of being continuous, the indicator function 1 0� � of 0� � is also of Baire
class 1, and we have already mentioned an example of a probability measure that does
not have full support whose success set with respect to 1 0� � fails to be co-meager.

For n ≥ 2, it is not in general true that the points of discontinuity of a Baire class n
function form a meager set. Consider once again the set of all sequences that are
eventually 0, that is, the set Z � fω 2 f0; 1gN : 9n� ��8m > n� ω m� � � 0g. The
indicator function 1Z of this set is of Baire class 2, yet 1Z is discontinuous everywhere.
Hence, the points of continuity of 1Z not only fail to form a co-meager set; they form a
meager set (because this set is empty).

Of course, this remark does not preclude the possibility that an analogue of
Corollary 3.13 may hold for Baire class n integrable random variables in general. The
following proposition establishes that Corollary 3.13 does not generalize:

Proposition 3.14. Let µ be a computable probability measure with full support.17 For each
n ≥ 2, there is a Baire class n integrable random variable f : f0; 1gN ! R such that the
collection of all ω 2 f0; 1gN with limn!∞Eµ�f jFn� ω� � � f ω� � is meager.

Proof. Let µ-MLR denote the set of µ-Martin-Löf random sequences (Definition 3.4).
The computability of µ ensures the existence of a universal µ-Martin-Löf test: a
µ-Martin-Löf test fVngn2N such that, to determine whether a sequence is µ-Martin-Löf
random, it suffices to check whether that sequence belongs to

T
n2N Vn (if it does, then

the sequence is not µ-Martin-Löf random; if it does not, then it is) (see Downey and
Hirschfeldt 2010, Theorem 6.2.5). Then, µ-MLR � T

n2N Vn. Because
T

n2N Vn is a Π0
2

set, µ-MLR is a Σ0
2 set. A fortiori, µ-MLR is in Σ0

2. The set
T

n2N Vn is also dense. For,
suppose not. Then, there is some σ 2 f0; 1g < N with

�T
n2N Vn

� \ �σ� � ;. Hence,

17 A real number r is computable if it is computably approximable: if there is a computable sequence
q0; q1; q2; ::: of rational numbers such that qn � r

�� �� ≤ 2�n for all n 2 N. A probability measure µ on B is
computable if, for any σ 2 f0; 1g < N, µ σ� �� � is a computable real number, uniformly in σ. This means that
there is a computable function that, on input σ 2 f0; 1g < N and n 2 N, returns the nth rational in a
computable approximation of µ σ� �� �. For a simple example of a computable probability measure, take
any Bernoulli measure with a computable bias.
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σ� � 	 µ-MLR. Take a computable sequence in σ� � that is not a µ-atom. We can find
such a sequence as follows. Because µ is computable, we can computably find
τ1 2 f0; 1g < N with µ στ1� �� � < 1

2 by dovetailing through the cylinders contained in σ� �,
approximating their respective measures from above. And, given τ1; :::; τn 2 f0; 1g < N

with µ στ1:::τn� �� � < 2�n, we can computably find τn�1 2 f0; 1g < N with
µ στ1:::τn�1

� �� �
< 2� n�1� � by following the same procedure inside στ1:::τn� �. Then,

ω � στ1τ2::: is a computable sequence with µ ωf g� � � 0. Since the only way for a
computable sequence to beµ-Martin-Löf random is to be aµ-atom,ω is notµ-Martin-Löf
random. But this contradicts the fact that σ� � 	 µ-MLR. Hence,

T
n2N Vn is indeed dense.

Clearly µ-MLR � S
n2N Vn, where each set Vn is Π0

1 and, so, closed. By the density ofT
n2N Vn, no Vn contains any nonempty open sets. Therefore each Vn is such that its

closure has empty interior; that is, each Vn is nowhere dense. Hence µ-MLR is meager.
The indicator function 1µ-MLR of µ-MLR is a Baire class 2 integrable random variable.
And because µ µ-MLR� � � 1 and µ has full support, the set of sequences α 2 f0; 1gN
with limn!∞Eµ�1µ-MLRjFn� α� � � 1µ-MLR α� � coincides with µ-MLR. Therefore the set
of sequences along which Lévy’s Upward Theorem holds for 1µ-MLR is meager. For n > 2,
we can then reason as follows.18 The notion ofµ-Kurtz randomness (Definition 3.3) can be
generalized to arbitrary levels of the arithmetical hierarchy: for any n ≥ 1, a sequence is
µ-weakly n-random if and only if it belongs to everyΣ0

n set of µ-measure one (so, µ-Kurtz
randomness coincides with µ-weak 1-randomness). The set of µ-weakly n-random
sequences is in Π0

n�1 and has µ-measure one. Moreover, µ-weak n� 1� �-randomness
entails µ-weak n-randomness, and µ-weak 2-randomness entails µ-Martin-Löf
randomness (see Downey and Hirschfeldt 2010, sec. 7.2). Hence, for each n > 2, by
the same argument used for 1µ-MLR, the indicator function of the set of µ-weakly
n � 1� �-random sequences is an example of a Baire class n integrable random variable for
which convergence to the truth occurs on a meager set. □

Proposition 3.9 and Corollary 3.13 circumscribe the reach of Belot’s objection: they
establish that, at least for relatively simple inductive problems, convergence to the
truth is topologically typical, in addition to being probabilistically typical. Proposition
3.14 pulls in the opposite direction. Not only does it show that, for more complex
classes of inductive problems, co-meager success is not always achievable, but it also
reveals that the dichotomy problematized by Belot is perhaps more pervasive than
one might have initially thought. Past the level of Baire class 1 integrable random
variables, co-meager failure can easily be found at every level of the Borel hierarchy.

3.5 Computable and almost everywhere computable functions
Though well behaved, all of the functions considered so far were allowed to be
arbitrarily computationally complex. We will now concentrate on effective functions—

18 Of course, 1µ-MLR is a Baire class n integrable random variable for every n ≥ 2, so the preceding
argument already suffices to establish the claim. In the remainder of the proof, we will show that it is
possible to identify a different Baire class n integrable random variable with a meager success set for each
n ≥ 2. The random variables we shall consider are different from each other for every nondegenerate
probability measure for which the algorithmic randomness hierarchy does not collapse.
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functions whose values are in some sense calculable or approximable—and provide
several examples of effective random variables for which convergence to the truth is
topologically typical.

The very same taxonomy we discussed in the context of the arithmetical hierarchy
of subsets of Cantor space also applies to the arithmetical subsets of R. Here the Σ0

1
sets are those that can be expressed as a computably enumerable union of open
intervals with rational endpoints, while the other levels of the hierarchy are defined
in the same way as in the Cantor space setting. Computable functions from f0; 1gN to
R are defined as follows:

Definition 3.15 (Computable function). A function f : f0; 1gN ! R is computable if
and only if, for every Σ0

1 subset U of R, f �1 U� � is a Σ0
1 subset of f0; 1gN, uniformly in a code

for U .19

It is not difficult to see that the computable functions are precisely those
functions whose values can be computably approximated to any degree of precision
(via a computable sequence of rational-valued step functions) (see, e.g., Li and
Vitányi 2019, 35–36).

Every open set in the standard topology on the reals can be expressed as a
(countable) union of Σ0

1 sets. Moreover, every Σ0
1 subset of Cantor space is open.

Therefore every computable function is continuous. Consequently, Proposition 3.9
holds for computable random variables as well. And when µ has full support, the set
of sequences along which Lévy’s Upward Theorem holds is co-meager. So, a Bayesian
agent with a prior with full support trying to estimate a computable quantity is
guaranteed to be inductively successful on a topologically typical collection of data
streams (in fact, along every data stream).

Much like its classical counterpart—the concept of a continuous function—the
notion of a computable function is rather demanding. The following example, taken
from Ackerman, Freer, and Roy (2019), nicely illustrates this point. Let θ 2 0; 1� �. A
0; 1f g-valued random variable f : f0; 1gN ! R relative to a probability measure µ is a
θ-Bernoulli random variable if µ�fω 2 f0; 1gN : f ω� � � 1g� � θ (i.e., if the probability
that f takes value 1 is θ). Ackerman, Freer, and Roy show that, for any θ 2 0; 1� � that is
not a dyadic rational, every θ-Bernoulli random variable fails to be continuous and, as
a result, is not computable in the sense of Definition 3.15. At the same time, for any
computable θ 2 0; 1� �, there are many θ-Bernoulli random variables that, though not
computable, are “very close” to being computable. The following, more permissive
notion—almost everywhere computability—is thus generally regarded as the more
natural one on which to focus in the context of (computable) probability theory (see
Hoyrup 2008; Hoyrup and Rojas 2009; Ackerman, Freer, and Roy 2019).20

19 Let S0;S1;S2; ::: be a fixed effective enumeration of all theΣ0
1 subsets ofR, and let E0; E1; E2; ::: be a

fixed effective enumeration of all the Σ0
1 subsets of f0; 1gN. The uniformity condition in Definition 3.15

means that there is a computable function g : N ! N such that, for all n 2 N, f �1 Sn� � � Eg n� �.
20 Importantly, all standard operations on random variables (such as addition, multiplication,

composition, and Cartesian products) preserve almost everywhere computability.
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Definition 3.16 (Almost everywhere computable function). Let µ be a probability
measure. A partial function f : f0; 1gN ! R is µ-almost everywhere computable if and
only if it is computable on aΠ0

2 subset of f0; 1gN of µ-measure one, namely, if there is aΠ0
2 set

D 	 f0; 1gN with µ D� � � 1 such that f is defined on every ω 2 D and, for every Σ0
1 subset

U of R, f �1 U� � \D � U 0 \D, where U 0 is a Σ0
1 subset of f0; 1gN, uniformly in a code

for U .21

The argument from the proof of Proposition 3.9 can once again be employed to
establish the following fact (because almost everywhere computable random
variables are integrable):

Proposition 3.17. Let µ be a probability measure and f : f0; 1gN ! R a µ-almost
everywhere computable random variable, with D the Π0

2 set of µ-measure one on which f is
computable. Then, for all ω 2 supp µ� � \D, limn!∞Eµ�f jFn� ω� � � f ω� �.

Proof. Let ω 2 supp µ� � \D. Then, for all n 2 N, Eµ� f j Fn��ω� �
R
�ω↾n� f dµ=µ��ω↾n��.

Let ɛ > 0. Because f is computable on D, f is continuous on D. Hence, there is
m 2 N such that, for all α 2 D, if α 2 �ω↾m�, then f ω� � � f α� �j j < ɛ. Therefore, for
all n ≥ m,
R
ω↾n� � f dµ

µ ω↾n� �� � � f ω� �
�����

����� ≤
R
ω↾n� � f � f ω� �j j dµ

µ ω↾n� �� � �
R
ω↾n� �\D f � f ω� �j j dµ

µ ω↾n� �� � <

R
ω↾n� �\D ɛ dµ

µ ω↾n� �� � � ɛ;

where both identities follow from the fact that µ D� � � 1. This establishes the claim. □

For any probability measure µ with full support, the Π0
2 collection of sequences

over which a µ-almost everywhere computable function is computable is co-meager:

Proposition 3.18. Let µ be a probability measure with full support and D 	 f0; 1gN aΠ0
2

set of µ-measure one. Then, D is co-meager.

Proof. Let fDngn2N be a computable sequence of Σ0
1 sets with D � T

n2N Dn. Then,
µ Dn� � � 1 for all n 2 N, and so each Dn is dense. For, suppose not. Then, there is
some n 2 N and σ 2 f0; 1g < N such that Dn \ σ� � � ;. Because µ σ� �� � > 0,
µ Dn� � ≤ 1 � µ σ� �� � < 1, which yields a contradiction. Let U 	 f0; 1gN be an arbitrary
open set. Because eachDn is dense,Dn \ U ≠; for all n. Moreover, given that eachDn

is open, each set Dn \ U is open in the subspace topology on U . For all n, given that

21 The restriction to Π0
2 sets might seem surprising at first. We could have defined a µ-almost

everywhere computable function as one that is computable on a µ-measure-one subset of f0; 1gN,
without requiring that this set also be Π0

2. However, by effectivizing a classical result due to Kuratowski
(see Kechris 1995, Theorem 3.8; Hoyrup 2008, Theorem 1.6.2.1; Ackerman, Freer, and Roy 2019, Remark
2.11), one can show that, for any such function f : f0; 1gN ! R, there is a function f 0 : f0; 1gN ! R that is
µ-almost everywhere computable in the sense of Definition 3.16 and agrees with f on all the sequences
over which f is computable. Moreover, a code for the Π0

2 set over which f 0 is computable can be
computed uniformly from a code for the family of Σ0

1 sets witnessing the µ-almost everywhere
computability (in the weaker sense defined earlier) of f . Hence, without loss of generality, we can always
assume that the µ-measure-one set of sequences over which a µ-almost everywhere computable
function is computable is Π0

2.
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Dn \ U
� � \ Dn \ U� � � ;, Dn \ U is not dense in U . Hence, each Dn is nowhere
dense. Therefore D � S

n2N Dn is meager and D is co-meager. □

Propositions 3.17 and 3.18 entail the following:

Corollary 3.19. Let µ be a probability measure with full support and f : f0; 1gN ! R a
µ-almost everywhere computable random variable. Then, the collection of all ω 2 f0; 1gN
with limn!∞Eµ�f jFn� ω� � � f ω� � is co-meager.

Hence, a Bayesian reasoner whose prior has full support has a co-meager success
set for any random variable whose values are computably approximable.

3.6 Randomness and genericity at work
Though in and of themselves significant, convergence to the truth with probability
one and convergence to the truth on a co-meager set remain somewhat elusive
notions. In its classical form, Lévy’s Upward Theorem is silent as to which data
streams belong to the probability-one set of sequences along which convergence to
the truth provably occurs. And, more generally, proving that convergence to the truth
happens with probability one or on a co-meager set provides little information about
the composition of the success set. It also does not tell us how the composition of this
set varies depending on the particular quantity the agent is trying to estimate, nor
does it indicate whether the data streams that ensure eventual convergence to the
truth share any property that might explain their conduciveness to learning—that is,
any significant property that sets them apart from the data streams along which
learning fails. In what follows, we address these worries from the vantage point of
computability theory. In particular, we will see that the theories of algorithmic
randomness and effective genericity can be put to use to identify specific
topologically typical collections of data streams along which convergence to the
truth in the sense of Lévy’s Upward Theorem is achieved for several classes of
effective random variables.

We begin by having a second look at the class of almost everywhere computable
random variables.

Recall the definition of µ-Kurtz randomness (Definition 3.3). Given µ, let µ-KR
denote the set of µ-Kurtz random sequences.

Proposition 3.20. Let µ be a probability measure and f : f0; 1gN ! R a µ-almost
everywhere computable function, withD the µ-measure-oneΠ0

2 set on which f is computable.
Then, µ-KR 	 supp µ� � \D.

Proof. Let ω 2 f0; 1gN. First, suppose that µ��ω↾n�� � 0 for some n 2 N. Then,
there is a Π0

1 set of µ-measure zero, �ω↾n�, to which ω belongs, which entails that
ω =2µ-KR. Now, suppose that ω 2 D. Because D is a Σ0

2 set of µ-measure zero,
D � S

n2N An, where each An is in Π0
1 and has µ-measure zero. Therefore, there is

once again a Π0
1 set of µ-measure zero to which ω belongs. Hence ω =2µ-KR. □

By combining Proposition 3.20 with Proposition 3.17, we can immediately conclude
that, for any µ-almost everywhere computable random variable (and, a fortiori, any
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computable random variable), observing a µ-Kurtz random data stream is a sufficient
condition for converging to the truth in the limit:

Corollary 3.21. Let µ be a probability measure and f : f0; 1gN ! R a µ-almost everywhere
computable random variable. Then, for all ω 2 µ-KR, limn!∞Eµ�f jFn� ω� � � f ω� �.

When µ has full support, the set µ-KR is co-meager. Hence, when the agent’s prior
has full support, there is a precisely identifiable collection of data streams—one that
is typical both probabilistically and topologically—membership in which guarantees
convergence to the truth for any inductive problem that can be modeled as a µ-
almost everywhere computable random variable.

Just as the computable functions are the effective analogue of the continuous
functions, Baire class n functions can be naturally effectivized as follows:

Definition 3.22 (Effective Baire class n function). Let n 2 N. A function f : f0; 1gN ! R
is of effective Baire class n if and only if, for everyΣ0

1 subset U ofR, f �1 U� � is aΣ0
n�1 subset

of f0; 1gN, uniformly in a code for U .

For each n ≥ 1, the indicator functions of Δ0
n, Σ0

n, Π0
n, and Δ

0
n�1 sets are simple

examples of effective Baire class n functions (this, of course, is the effective
counterpart of the fact that the indicator functions of Δ0

n, Σ0
n, Π0

n, and Δ
0
n�1 sets are

Baire class n functions in the classical setting). For instance, the indicator functions of
Σ0

1 sets, which intuitively correspond to binary decision problems that can be
effectively verified with a finite amount of data, and the indicator functions of Π0

1 sets,
which correspond to binary decision problems that can be effectively refuted with a finite
amount of data, are all effective Baire class 1 functions. For the first level of the hierarchy,
another natural example is the collection of semicomputable functions:

Definition 3.23 (Lower and upper semicomputable functions). A function
f : f0; 1gN ! R is lower semicomputable if and only if all sets of the form
f �1 a;�∞� �� �, with a 2 Q, are Σ0

1, uniformly in a. A function f : f0; 1gN ! R is upper
semicomputable if and only if all sets of the form f �1 �∞ ; b� �� �, with b 2 Q, are Σ0

1,
uniformly in b.

Semicomputability is the effective analogue of semicontinuity: a function is
computable if and only if it is both lower semicomputable and upper semicomputable.
The lower semicomputable functions are those whose values can be computably
approximated from below, whereas the upper semicomputable functions are those
whose values can be computably approximated from above (see Li and Vitányi 2019,
35–36). The collection of lower semicomputable functions includes the indicator
functions ofΣ0

1 sets, while the collection of upper semicomputable functions includes
the indicator functions of Π0

1 sets.
Given that every effective Baire class 1 function is a Baire class 1 function in the

classical sense, Theorem 3.12 and Corollary 3.13 also apply to effective Baire class 1
integrable random variables: when the agent’s prior has full support and the quantity
to be estimated is an effective Baire class 1 integrable random variable, Lévy’s Upward
Theorem holds on a co-meager set of data streams.
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But, as with the almost everywhere computable functions, adding effectivity into
the mix allows us to go beyond the mere observation that we can attain co-meager
success. For effective Baire class 1 functions, 1-genericity (Definition 3.28) can be used
to provide a more in-depth analysis of convergence to the truth via the following
effectivization of Theorem 3.12:

Theorem 3.24 (Kuyper and Terwijn 2014). Let f : f0; 1gN ! R be a function of effective
Baire class 1. Then, f is continuous at every 1-generic sequence.

It then immediately follows that, for any agent whose prior has full support,
observing a 1-generic data stream is conducive to learning no matter which effective
Baire class 1 integrable random variable that agent is trying to estimate:

Corollary 3.25. Let µ be a probability measure with full support and f : f0; 1gN ! R an
effective Baire class 1 integrable random variable. Then, for every 1-generic
ω 2 f0; 1gN, limn!∞Eµ�f jFn� ω� � � f ω� �.

Because the collection of 1-generic sequences is co-meager, Corollary 3.25 allows
one to pinpoint a single co-meager collection of data streams that guarantee
convergence to the truth for all inductive problems that can be modeled as effective
Baire class 1 integrable random variables.

3.7 ; k� �-Computable functions and ; k� �-effective Baire class n functions
We conclude our discussion of co-meager convergence to the truth with a more
technical note: by considering two collections of functions that rely on oracle
computation—the ; k� �-computable functions and the ; k� �-effective Baire class n
functions.

The arithmetical hierarchy can be relativized to sequences ω 2 f0; 1gN (taken to
represent the indicator function of a set of natural numbers) by letting the relation R
be ω-computable (i.e., computable with oracle ω). In this way, one obtains the notions
of Σ

0;ω
n , Π0;ω

n , and Δ
0;ω
n sets. From the perspective of computability theory, an

especially useful collection of oracles is the class of Turing jumps of the empty set ;.
The zeroth jump ; 0� � of ; is simply ; itself, which of course does not provide any
additional computational power. The first jump ; 1� � of ; is the halting set, namely, the
set n 2 N : ϕn n� � #f g of all natural numbers n such that the nth partial computable
function ϕn (equivalently, ϕ; 0� �

n ) is defined on n (the Turing machine computing ϕn

halts on input n). For k > 1, the kth jump ; k� � of ; is the halting set relativized to
; k�1� �, that is, the set fn 2 N : ϕ; k�1� �

n n� � #g of all natural numbers n such that the nth
; k�1� �-partial computable function ϕ; k�1� �

n is defined on n. Using sets of the form ; k� �

(or, rather, the infinite sequences corresponding to these sets) as oracles, one obtains

the classesΣ0;; k� �
n ,Π0;; k� �

n , andΔ0;; k� �
n . For instance, a set S isΣ0;; k� �

1 if and only if there is
a Σ0

k�1 set S 	 f0; 1g < N
—namely, a set of strings S that is computably enumerable

relative to the kth jump ; k� � of ;—such that S � S� � (see Soare 2016, chaps. 3 and 4).
The notion of a ; k� �-computable function is defined as follows:
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Definition 3.26 (; k� �-Computable function). Let k 2 N. A function f : f0; 1gN ! R is
; k� �-computable if and only if, for every Σ0

1 subset U of R, f �1 U� � is a Σ
0;; k� �
1 subset of

f0; 1gN, uniformly in a code for U .

The indicator functions of Δ
0;; k� �
1 sets are simple instances of ; k� �-computable

functions. For k ≥ 1, functions of this type can be thought of as binary decision
problems that are not in themselves decidable but become decidable having access to
the background information encapsulated by ; k� � (or any other problem of the same
complexity). More generally, a ; k� �-computable function is one whose values can be
computably approximated to any degree of precision with background informa-
tion ; k� �.

Crucially, for all k 2 N, the Σ
0;; k� �
1 subsets of f0; 1gN are open. Hence, just like the

computable functions, the ; k� �-computable functions are continuous. By Proposition
3.9, the set of data streams that satisfy Lévy’s Upward Theorem relative to a ; k� �-
computable random variable is thus co-meager, as long as the agent’s prior has full
support. And because, for any probability measure µ, every µ-Kurtz random sequence
is in the support of µ, observing a µ-Kurtz random data stream suffices to converge to
the truth for any ; k� �-computable random variable. So, the collection of µ-Kurtz
random sequences once again provides a crisp example of a set of data streams along
which convergence to the truth is guaranteed to occur.

A ; k� �-effective Baire class n function is instead defined as follows:

Definition 3.27 (; k� �-Effective Baire class n function). Let k; n 2 N. A function
f : f0; 1gN ! R is of ; k� �-effective Baire class n if and only if, for every Σ0

1 subset U of R,
f �1 U� � is a Σ

0;; k� �
n�1 subset of f0; 1gN, uniformly in a code for U .

The indicator functions of Δ0;; k� �
n , Σ0;; k� �

n , Π0;; k� �
n , and Δ

0;; k� �
n�1 sets are all of ; k� �-

effective Baire class n. For instance, the indicator functions of Σ0;; k� �
1 sets, which

correspond to binary decision problems that can be effectively verified having access
to ; k� �, are all of ; k� �-effective Baire class 1, whereas the indicator functions of Σ0;; k� �

2
sets, which correspond to binary decision problems that can be effectively verified in
the limit having access to ; k� �, are all of ; k� �-effective Baire class 2.

Once again, because every ; k� �-effective Baire class 1 function f is a Baire class 1
function, Theorem 3.12 and Corollary 3.13 both apply: the points of continuity of f
form a co-meager Π0

2 set, and, for any prior with full support, the collection of data
streams along which Lévy’s Upward Theorem holds with respect to f (when f is an
integrable random variable) is co-meager. As with effective Baire class 1 functions, we
can, however, say more.

First, note that the notion of 1-genericity introduced earlier can be generalized as
follows to any positive natural number:

Definition 3.28 (n-Genericity). Let n ≥ 1. A sequence ω 2 f0; 1gN is n-generic if and
only if ω meets every Σ0

n set S 	 f0; 1g < N that is dense along ω.

For every n ≥ 1, n� 1� �-genericity entails n-genericity, but the reverse
implication does not hold. Moreover, the fact that the set of 1-generic sequences
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is topologically typical generalizes to the entire hierarchy (see Kurtz 1981; Nies 2009;
Downey and Hirschfeldt 2010):

Proposition 3.29. Let n ≥ 1. The set of n-generic sequences is co-meager.

The following is proven analogously to Theorem 3.24:

Theorem 3.30. Let k ≥ 1 and f : f0; 1gN ! R be a function of ; k�1� �-effective Baire class
1. Then, f is continuous at every k-generic sequence.

Proof. Let S0;S1;S2; ::: be a fixed effective enumeration of the Σ0
1 subsets

of R. Recall that f being discontinuous at ω 2 f0; 1gN means that there is an open
subset O of R with f ω� � 2 O, but, for all open U 	 f �1 O� �, ω =2 U . In other words,
ω 2 f �1 O� �, but ω =2 Int f �1 O� �� �. Every open set is a union of Σ0

1 sets, so
fω 2 f0; 1gN : f is discontinuous at ωg � S

n2N
�
f �1�Sn� n Int� f �1�Sn��

�
. Let ω 2 f0; 1gN

be such that f is discontinuous at ω. Then, there is m 2 N with
ω 2 f �1 Sm� �nInt f �1 Sm� �� �. Given that f is of ; k�1� �-effective Baire class 1, by definition,

f �1 Sm� � is a Σ
0;; k�1� �
2 subset of f0; 1gN. Hence f �1�Sm� �

S
i2N Ci, where each Ci is a

Π
0;; k�1� �
1 set. So, f �1�Sm� n Int� f �1�Sm�� �

S
i2N Ci n Int�

S
i2N Ci� 	

S
i2N�Ci n Int�Ci��.

Thus there is j 2 N withω 2 CjnInt Cj
� �

, whichmeans thatω 2 Cj \ Cl Cj
� �

. Because Cj is a

Σ
0;; k�1� �
1 set, Cj � C� � for some Σ0

k set C 	 f0; 1g < N. And because ω 2 Cl C� �� �, C is dense

along ω. However, ω does not meet C, as ω =2 C� � � Cj. Therefore ω is not k-generic. □

Theorem 3.30 entails that, for any Bayesian reasoner whose prior has full support,
observing a k-generic data stream leads to inductive success for any inductive
problem corresponding to a ; k�1� �-effective Baire class 1 integrable random variable:

Corollary 3.31. Let k ≥ 1, µ be a probability measure with full support, and
f : f0; 1gN ! R be a ; k�1� �-effective Baire class 1 integrable random variable. Then, for
every k-generic ω 2 f0; 1gN, limn!∞Eµ� f jFn� ω� � � f ω� �.

As noted earlier, the set of k-generic sequences is co-meager. Hence Corollary 3.31
reveals that, for priors with full support, we can once again single out a specific
co-meager collection of data streams along which convergence to the truth happens
for all ; k�1� �-effective Baire class 1 integrable random variables.

4 Conclusion
According to Belot (2013), Bayesian learners are unavoidably epistemically orgulous:
the Bayesian framework, with its convergence-to-the-truth results, compels them to
be confident in their ability to be inductively successful even when there are co-
meager many data streams along which learning, as a matter of fact, fails.

In this article, we set out to elucidate how pervasive the issue Belot identified is.
We suggested using descriptive set theory and computability theory to classify the
inductive problems (random variables) faced by Bayesian agents in terms of their
complexity. Then, relying on this taxonomy, we provided an analysis of the
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conditions under which inductive success is both probabilistically and topologically
typical and the conditions under which these two notions of typicality instead
come apart.

We showed that there are several classes of random variables admitting natural
epistemic interpretations for which the dichotomy Belot highlights does not arise: for
the inductive problems in these classes, Lévy’s Upward Theorem holds both with
probability one (relative to the agent’s prior) and on a co-meager set of data streams.
Specifically, the collections of inductive problems for which we established that
success is topologically typical, in addition to being probabilistically typical, are the
classes of random variables listed in Figure 1.

The random variables for which we proved that convergence to the truth happens
on a co-meager set correspond to natural but relatively simple inductive problems
(they include, for instance, all binary decision problems that can be verified or refuted
with a finite amount of data and all binary decision problems that can be decided in
the limit). For more complex families of inductive problems (in fact, for the entire
hierarchy of Baire class n integrable random variables starting at level 2), we showed
that there are problems for which convergence to the truth happens only on a meager
set. Hence, the proposed taxonomy may also be leveraged to add to Belot’s negative
results and reveal that “Bayesian orgulity” is, relative to this classification at least, a
pervasive phenomenon.

Classical notions of measure-theoretic and topological typicality can be used to
prove that convergence to the truth happens along the “vast majority” of data
streams, but they convey little information as to what kind of data streams are
conducive to inductive learning, depending on the particular inductive problem at
hand. We saw that, in the effective setting, it is possible to get a much crisper
understanding of the success sets of Bayesian agents. In particular, we showed that
the theories of algorithmic randomness and effective genericity (which are theories
of effective measure-theoretic typicality and effective topological typicality,
respectively) can be employed to single out specific co-meager collections of data
streams along which Lévy’s Upward Theorem holds, no matter which inductive
problem from the classes of effective random variables listed in Figure 1 the agent is
trying to solve.

Our findings, while preliminary, evince that the taxonomy of inductive problems
afforded by descriptive set theory and computability theory is a promising lens
through which to probe Bayesian convergence-to-the-truth theorems. In particular,
they suggest that, by further analyzing the inductive problems Bayesian learners face
in terms of their complexity, we may be able to come to understand the full reach of
Belot’s objection. Moreover, quite aside from Belot’s concerns, the approach adopted

Figure 1. Classes of random variables for which convergence to the truth occurs on a co-meager set.
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in this article also offers a natural framework within which to investigate the
following general question: how does the complexity of a Bayesian learner’s success
set, understood in either topological or computability-theoretic terms, vary as a
function of the complexity of the inductive problem faced by the learner?
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