
Robotica (2023), 41, pp. 530–547
doi:10.1017/S0263574722001400

RESEARCH ARTICLE

Regulation of cost function weighting matrices in control
of WMR using MLP neural networks
Moharam Habibnejad Korayem∗ , Hamidreza Rezaei Adriani and Naeim Yousefi Lademakhi

Robotics Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical
Engineering, Iran University of Science and Technology, Tehran, Iran
∗Corresponding author. E-mail: hkorayem@iust.ac.ir

Received: 19 May 2022; Revised: 19 July 2022; Accepted: 5 August 2022; First published online: 28 October 2022

Keywords: intelligent regulation gains, optimal control, multi-layer perceptron neural networks (MLP-NN), wheeled mobile
robot (WMR)

Abstract
In this paper, a method based on neural networks for intelligently extracting weighting matrices of the optimal
controllers’ cost function is presented. Despite the optimal and robust performance of controllers with the cost
function, adjusting their gains which are the weighting matrices for the system state variables vector and the system
inputs vector, is a challenging and time-consuming task that is usually selected by trial and error method for each
specific application; and even little changes in the weighting matrices significantly impact problem-solving and
system optimization. Therefore, it is necessary to select these gains automatically to improve controller performance
and delete human energy to find the best gains. As a linear controller, linear quadratic regulator, and as a nonlinear
controller, nonlinear model predictive control have been employed with trained networks to track the path of a
wheeled mobile robot. The simulation and experimental results have been extracted and compared to validate the
proposed method. These results have been demonstrated that the intelligent controller’s operation has lower error
than the conventional method, which works up to 7% optimal in tracking and up to 19% better in angle state error;
furthermore, as the most important aim, the required time and effort to find the weighting matrices in various
situations has been omitted.

1. Introduction
As science and technology developed, robots and their improvement have been needed to be increased
in various fields. Mobile robots have been successfully employed in different areas, such as med-
ical, planetary exploration, agricultural machinery, and object moving [1–4]. So far, many control
methods have been used for mobile robots, and for choosing one of them, systems’ linearity and
nonlinearity, the design purpose, environment conditions, and the issue’s constraints should be con-
sidered [5]. The proportional – integral – derivative (PID) controller’s simple structure is superior to
other linear controller types. In order to increase the performance accuracy of this controller, Elsisi
et al. have presented a method based on modified neural networks to extract the optimal gains of this
controller, which performed better than the conventional way for robotic manipulators [6]. However,
controllers with more optimal capabilities have been studied and employed as control methods develop
and the more profound need for more accuracy, speed, and flexibility. The linear quadratic regula-
tor (LQR) is another type of linear controller known as a common and widely used type due to
its optimal solution. Xin et al. have implemented the system’s controller with reverse dynamic con-
trol to track the path of a four-legged mobile robot reliably; in this way, the current status of the
robot is rapidly updated, and the desired values have been sent to the actuators by minimizing the
cost function of LQR controller [7]. In another study, they have used the LQR controller with the
Extended Kalman Filter Estimator method for underwater mobile robot positioning problems and pro-
posed a method to determine it accurately [8]. Trimp et al. have suggested a method for extracting

C© The Author(s), 2022. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574722001400 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001400
https://orcid.org/0000-0002-1344-3797
https://orcid.org/0000-0001-9161-7636
https://doi.org/10.1017/S0263574722001400


Robotica 531

better coefficient from the LQR controller’s cost function to reduce inverted pendulum vibrations.
This method’s problem is its dependence on SPSA optimization parameters, and its optimization is
limited to the last step data [9]. Big bang-big crunch (BB-BC) optimization algorithm has been used for
a pendulum on a cart to find the cost function’s weighting matrices [10]. Kayacan and Chowdhary have
proposed the Tracking-Error Learning Control algorithm to improve off-road mobile robots’ tracking. In
this algorithm, the feedforward control actions are updated using tracking error dynamics, and the prob-
lem of the model is eliminated. The results showed improved performance in the control system [11].
Dönmez et al. have proposed a method called Bi-RRT based on vision for path planning a wheeled
mobile robot (WMR) and obstacle avoidance [12].

Since most systems are generally nonlinear, there is a considerable difference between the actual and
the modeled system when the system is linearized, which reduces the accuracy of the controller’s perfor-
mance in practical applications. In this regard, using a nonlinear model that needs a nonlinear controller
to solve makes a better outlook of the system’s actual behavior. State-Dependent Riccati Equation, which
was studied for the first time in robotics by Innocenti et al., can be described as one of the useful and opti-
mal nonlinear controllers [13]. Korayem et al. have employed this controller to determine the maximum
load of mechanical manipulators with flexible joints. R and Q matrices’ effects on the path have been
considered, and the results compared with the LQR controller [14]. A finite-time feedback linearization
controller has been implemented on the manipulators of a mobile robot. The optimal gain is obtained by
solving the state-dependent differential Riccati equation in a time-varying dynamic system to achieve a
finite time constraint [15]. Hun Lee et al. have suggested a method for generating and regulating joint
torque at each time step in legged robots. In this way, actual torque or force has been directly used in
control loops instead of feedforward force, which results in better performance [16].

Korayem et al. have introduced an approach to improve the sliding mode control (SMC) in the robotic
manipulators called nonsingular terminal SMC, simulated and implemented for the Scout mobile robot
manipulators. The results indicate that this method’s performance error was less than the conventional
method [17].

The model predictive control (MPC) is a perfect controller for mobile robots in different environ-
ments. This controller predicts some of the future steps to make better decisions, especially in unknown
environments, so its performance is desirable and reliable. This controller’s accuracy and solution speed
for a differential mobile robot has been studied and compared in the nonlinear and stable mode [18].
In another study, the problem of path tracking control has been solved by combining MPC for the kine-
matic part and adaptive control for the dynamic part [19]. A Hierarchical Decomposed-Objective based
on Model Predictive Control (HiDO-MPC) has been proposed to improve the performance of this con-
troller used in rescue robots to approach the casualty, which has demonstrated results in enhancing
accuracy and speed [20].

Extracting a model close to the existing system is necessary for good control performance. Fierro
and Lewis have provided the kinematic and dynamic model of WMRs with n-dimensional configura-
tion space S. Also, a robust-adaptive controller based on neural networks for trajectory tracking has been
proposed [21]. Another dynamic model of a WMR with manipulators has been extracted and presented
by recursive Gibbs–Appell formulation. This method’s benefit is omitting computing the Lagrange
multipliers associated with the nonholonomic system constraints [22]. Dönmez et al. have presented
a visual-based technique to increase the accuracy of WMRs’ controller act. The kinematic model has
been extracted using the general Gaussian function, and the system control works in real-time. In this
method, they need to calculate just one function to adjust system velocity parameters, which is a faster
method for real time [23].

The development of machine learning has solved the absence of an exact mathematical system model
and causes no more trial and error to achieve the controlling desire. It is reasonable to say that combining
classic and modern controllers with machine learning methods can be helpful and achieve excellent accu-
racy. Chen et al. have presented an adaptive neural networks control scheme for a WMR to compensate
system’s uncertainties by approximating its uncertain parameters, which improved system robustness
[24]. Recently, Peng et al. have developed neural networks based on adaptive control for optimal path
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tracking when environmental information is unavailable [25]. A computational method called QRnet
based on machine learning has been proposed to design optimal gains for high-dimensional nonlinear
systems using an LQR controller. However, this method has been limited to the “is it possible to approx-
imate the original problem to a linear-quadratic system” question [26]. Yan et al. have presented an
approach based on robust MPC influenced by finite uncertainties for discrete-time nonlinear systems.
At first, the system has been linearized, and then the MPC signal has been optimized with a recursive
neural network [27]. Also, an nonlinear model predictive control (NMPC) technique based on Gaussian
Particle Swarm Optimization has been employed, that a linear equivalent is extracted and solved for
the system in each solution’s step; however, it causes a reduction in the method solution’s speed [28].
Linearizing the model in the two last methods increases practical errors.

There are some gains in each controller, which must be optimally extracted and regulated for better
performance. In controllers with cost function, there are two weighting matrices, Q and R, to optimize
and obtain control output state and system input variables, which changing them affects the tracking of
the path significantly. Therefore, it is necessary to extract these gains for each situation by trial and
error method to improve the controller performance, and it requires a lot of time and energy. This
paper proposes an intelligent controller based on neural networks, with the following four innovations:
1. Extracting the cost function’s weighting matrices for every path without wasting operator time and
effort. 2. Improving the controller’s accuracy by intelligently selecting the gains separately in each solu-
tion step. 3. Presenting a predictive training method based on MLP-NN to extract gains with an outlook
on future steps. 4. Better accommodating the networks with new paths by training them based on sys-
tem state variables. The structure of the paper is illustrated as follows. Part II will discuss the MLP-NN
structure and the suggested method for network training to extract control gains. There is a review of two
controllers with the cost functions, LQR and NMPC, in Section III. Section IV deals with the kinematic
modeling of a wheeled mobile robot (WMR) in both linear and nonlinear formulations and introduces
the experimental robot. Then, in Section V, in addition to simulation results and their comparison,
actual test results for the four-WMR are presented and reviewed. Discussing the results is followed in
Section VI, and finally, the conclusions are provided in Section VII.

2. Controller’s weighting matrices regulation
2.1. Neural network training method considering the future steps
The method starts with data collecting and network training. The most critical question is: what inputs
are suitable for training the network? In this case, the first method for tracking by a mobile robot seems
to be putting the path type as the network’s input and the best Q and R for each of them as the network’s
output. There are some problems with this assumption; first, the amount of data is limited by path type,
and a meager amount of data is extracted; so the network has a low accuracy for new paths. Second,
the network is not trained in the actual control concept (the system’s state variables) and causes little
efficiency in new situations. Therefore, the best solution is to collect and use data based on the system’s
state variables at each time step; In this way, the differences between the variables of the current and
the reference states are given to the neural network at every time step, and its weighting matrices are
extracted and used. So, not only can much more data be extracted to train the network, but also it will
work much better for new paths since states’ errors are more adaptable than the path type.

However, the best way to train has been discovered, but the network decisions are still limited to
the current particular step. The proposed method can perform better along the path by entering the
system’s future state variables in network decisions. In this case, the network trained with this method
will extract control gains by looking at the future path changes. So, according to Fig. 1, the network’s
input is extracted in the form of Eq. (1).

ψ(i) = [
q1i (k) q2i (k) . . . qni (k) q1i (k + 1) q2i (k + 1) . . . qni (k + P)

]T (1)

Where n is the number of state variables of the system, q1i (k) is the difference between the first state
variable and its reference state variable at the k moment, qni (k) is the difference between the n state
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Figure 1. Architecture of a neural network with k hidden layer(s).

variable and its reference at the exact moment, q1i (k + 1) is the difference between the first reference
state at the k and k + 1 moments, and finally qni (k + P) is the difference between the n reference state
at the k + P-1 and k + P moments. The data extraction has been done by Algorithm 1 to train the
network.

https://doi.org/10.1017/S0263574722001400 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001400


534 Moharam Habibnejad Korayem et al.

3. Structure of controllers with cost function
In this paper, NMPC as a nonlinear controller and LQR as a linear controller have been used to validate
the content. The primary reason for choosing them is that these two controllers have the cost function
for optimization and require appropriate Q and R matrices. In addition, the NMPC is a perfect option
for path tracking with a mobile robot since it can predict some of the future steps. The LQR controller
has the flexibility to regulate better system inputs and inherent resistance to noise and disturbance.

3.1. LQR controller
Suppose the system equation in discrete linear form as Eq. (2) is extracted:

x(k + 1) = A(k)x(k) + B(k)u(k)

y(k) = C(k)x(k) + D(k) (2)

The matrices A(k) and B(k) are the coefficients of the control state variables and the system inputs,
respectively. Also, C(k) is defined as the state coefficient matrix in the system output equation, and
external uncertainties and disturbances define D(k). The system’s cost function as Eq. (3) is minimized
in this controller method:

JLQR =
∞∑

k=0

(
X(k)TQX(k) + u(k)TRu(k)

)
(3)

Q and R values must be selected based on design requirements. After finding the coefficient matrix
F(k), the system input is extracted as Eq. (4) by solving the controller at each step.

u(k) = −F(k)x(k) (4)

3.2. NMPC
A discrete nonlinear system as (5) is assumed:

x(k + 1) = f (x(k), u(k))

y(k) = h(x(k)) (5)

Which includes the constraints umin ≤ u(k) ≤ umaxand ymin ≤ y(k) ≤ ymax. x(k) ∈ Rn is the state variables
vector and u(k) ∈ Rm is the control input vector and also y(k) ∈ Rp is the output vector. According to [29],
the cost function of this controller has been extracted as Eq. (6):

JNMPC =∅(y(k + N|k)) +
N−1∑
i=0

L(y(k + i|k), u(k + i|k),�u(k + i|k)) (6)

In this equation, u(k + i|k) input and u(k + i) are calculated from the available data at the k step, and
also y(k + N|k) output and y(k + N) comes from the available data at the k step. C is the control horizon,
N is the prediction horizon, and as Eqs. (7) and (8), ϕ and L are two nonlinear functions that form the
cost function.

L = (y(k + i|k) − ys(k))TQ(y(k + i|k) − ys(k))

+ (u(k + i|k) − us(k))TR(u(k + i|k) − us(k)) +�uT(k + i|k)S�u(k + i|k) (7)

ϕ = (y(k + N|k) − ys(k))TQ(y(k + N|k) − ys(k)) (8)

Where the targets of the steady states y and u are ys and us.
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Figure 2. Intelligent path tracking block diagram for WMRs with adjustment of the cost function.

Also, Q and R are, respectively, n × n and m × m, where n is the number of the system’s state variables
and m is the number of control inputs. The difference between system inputs at the current step and
the previous step is defined as �u(k + i|k) = u(k + i|k) − u(k + i − 1|k), and S has been used as the
weighting matrix of the�u. Finally, the block diagram of the intelligent controller for tracking the path
by the WMR is shown in Fig. 2. As can be seen, a PI controller is used to control the speed of the
Dynamixel motors for their better performance, and the motors use this controller by default. Relative
to the reference coordinates, Xc(k) is the states value of the robot’s center of mass (COM) at the k step,
and Xref (k) is the state value of reference at the same step.

4. WMR modeling and introduction
4.1. Kinematic of a WMR
The schematic of the system, the mechanical motion structure, and the distribution of velocity vectors
have been shown in Fig. 3, where the robot’s center of mass is marked with COM. As can be seen, the
robot on the screen moves in the x and y directions and has a rotation angle θ . An ideal reference robot
has been considered to follow the path and move according to the desired values, so the real robot must
always follow it.

The state variables of the system are assumed to be q = [
x y θ

]T which are related to the gen-
eral coordinates. It can be considered that there is no slip in the system, so the friction between the
wheels and the floor has been neglected in this study. The linear velocity of each wheel is equal to the
angular velocity of the wheel multiplied by its radius. Thus the kinematic of the WMR is extracted as
Eq. (9) [30].
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⎡
⎣ ẋc(t)

ẏc(t)
θ̇ (t)

⎤
⎦ =

⎡
⎣ cosθ (t) 0

sinθ (t) 0
0 1

⎤
⎦

[
vCOM(t)
ωCOM(t)

]
(9)

Where vCOM(t) is the linear velocity of the robot’s COM in the direction of the longitudinal axis, and
ωCOM(t) is the angular velocity of the robot’s COM around its vertical axis. Physically, two wheels on the
same side of the robot must move at the same speed. In this case, the conversion matrix of the COM’s
linear and angular velocities to the right and left velocities has been expressed as Eq. (10), that W is the
width of the robot.

[
vCOM(t)
ωCOM(t)

]
=

⎡
⎢⎢⎣

1

2

1

2

1

W
− 1

W

⎤
⎥⎥⎦

[
vL(t)
vR(t)

]
(10)
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Table I. The dimensional and mass characteristics of the robot.

Unit Value Parameter
mm 380 Length of robot
mm 270 Width of robot
mm 50 Radius of wheels
rpm 53 The maximum value of motors speed
deg 0.08 Accuracy of motors for reading angles
kg 2.7 Mass of robot
kgm2 0.062 Moment of inertia of base about Z-axis
kgm2 0.00028 Moment of inertia of wheels about the rotation axis

The discretized kinematic model of the WMR corresponding to Fig. 3 has been extracted as
Eq. (11).

X(k + 1) = f (X(k), u(k))

x(k + 1) = x(k) + (v(k) cosθ (k))ts

y(k + 1) = y(k) + (v(k) sinθ (k))ts

θ (k + 1) = θ (k) +ω(k)ts (11)

Where k is the current step and ts is sampling time. The system equations are linearized using the
Taylor method’s linear controller in WMR. According to Ref. [31], the system’s discrete equations
can be extracted as Eq. (12), and the matrices A(k) and B(k) can be seen as Eqs. (13) and (14),
respectively:

q̃(k + 1) = A(k)q̃(K) + B(K)ũ(k) (12)

A(k) =
⎡
⎢⎣

1 0 −v(k) sinθr(k) ts

0 1 vr(k) cosθr(k) ts

0 0 1

⎤
⎥⎦ (13)

B(k) =
⎡
⎢⎣

cosθr(k) ts 0

sinθr(k) ts 0

0 ts

⎤
⎥⎦ (14)

4.2. Experimental setup of the robot
A four-WMR has been used to validate the results, shown in Fig. 4. The motors of this robot are
Dynamixel type and XM540-W150-r model, which can be networked with each other, and various infor-
mation such as position, speed, motor load, and input voltage can be extracted while receiving commands
from the central controller. The robot’s main body is made of aluminum, which all motors, the network
of motors, wires, and connections are placed on it. Finally, they are covered with a plexiglass surface,
and A 12(V) - 30(A) power supply is used for the motors. The dimensional and mass charcteristics of
the robot are shown in Table I.

To get feedback from the rotation angle of the robot body, the output of the motors’ encoders, or in
other words, the amount of the wheels’ rotation, have been used; Thus, the rotation ratio of the right and
left wheels determines the value of the angle.

For example, when the wheels’ rotation on both sides is equal, the body’s rotation value is zero, and
when the rotations of the two sides are opposite, the robot rotates around itself, and the angle value is
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Figure 5. Executive flowchart of intelligent control to track the path by a WMR.

determined depending on the different rotation between two sides at each step time. Then, according to
the distance between the robot’s COM and the wheels, the x and y positions of the robot are calculated,
and the system state variables’ errors continue the loop.

Also, for better expression, the schematic of the experimental setup has been presented in Fig. 4.
A U2D2 interface in the electrical box takes commands from the relevant software and sends them to
the motors’ board via the RS485 protocol; also, the power supply is connected to the motors’ board.
Finally, motors send requested information as feedback to the software, and the loop is completed.
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Figure 6. Four-WMR during the experimental test and tracking the path.

5. Simulation and experimental tests
5.1. Network training to track the path
The number of future steps entered in computation has been considered as P = 29 for the WMR path
tracking with n = 3 state variables, x, y, and θ ; So there is 90 datum in each data set as the net-
work input. The number of output data in each data set is 5, which includes three matrix elements of
Qi = diag[Q1 i Q2i Q3 i] and two matrix elements of Ri = diag[R1 i R2 i]. Therefore, with this operation,
the output vector which is the best weighting matrices of the specific state, has consisted, and network
training of MLP has been performed by the input and output vectors. At this step, the number of network
layers and the number of nodes of each hidden layer are required. In this regard, the best numbers of
the final network have been selected by testing different numbers and their performance results. The
experiment test by the 4-WMR has been shown in Fig. 5.

5.2. NN-LQR controller
At first, training data were collected for network learning, and 16,000 data sets were extracted by solving
several different paths. According to Fig. 1, the best number of layers has been chosen after consecutive
training as K = 4, and the number of hidden layers nodes as H1 = H2 = H3 = H4 = 5. This network has
been trained in MATLAB software, and its function has been extracted; the least-squares error for this
network training was 0.38 × 10−5. An algorithm is needed to find the minimum function to implement
this network with the MLP method.

In this paper, the Levenberg-Marquardt Algorithm (LMA) has been used to find the minimum of
multivariate nonlinear functions. In many cases, this method is more resistant than the Gauss-Newton
method and gives the desired answer, even when the starting point is far from the final minimum. Fig. 6
shows the four-WMR tracking selected path during the experimental test.

In Fig. 7, the desired path is sigma-shaped, with various curves along the way. Test results in the
desired path for simulation test with the LQR controller (LQR), with the neural network (NN LQR),
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Start point

End point

Figure 7. Path tracking in simulation and experimental test of LQR controller.

Figure 8. Tracking error relative to the reference path at each step.

and the path taken by the real four4-WMR with the intelligent controller (Experiment) has been shown.
The best Q and R were extracted by trial and error method for the LQR test. However, the path’s infor-
mation was unfamiliar to the network, but the NN LQR trained network has optimally obtained the best
gains, and the robot tracked the path very well. As can be seen, in the experimental test, the path taken
by the robot has slight oscillations around the desired path, which is part of the actual system reality.
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(a) (b)

Figure 9. (a) Theta state rate in simulation and experimental test. (b). Theta state error in simulation
and experimental test.

(a) (b)

Figure 10. (a) Three diagonal elements of the Q matrix extracted from the neural network. (b) Two
diagonal elements of the R matrix extracted from the neural network.

Figure 8 shows the path tracking error, obtained as the least-squares error method of two states
x and y as Eq. (15).

Tracking Error(k) =
√(

xc(k) − xref (k)
)2 + (

yc(k) − yref (k)
)2 (15)

The path error in the NN LQR mode is less than the LQR in the simulation test. However, the path
error is generally low in the simulation test due to the parametric solution. To have a better outlook
of the difference between the two simulation tests in the linear controller, Fig. 9(a) shows the angle
state variable in the considered path, and the difference between the value of this state variable and its
reference in each step is referred in Fig. 9(b). As can be seen, this state’s error in the controller with the
proposed method is lower, especially in the corners of the path.

Data obtained graph related to the weighting matrices from the NNLQR controller’s network along
the path in form (10a) is related to diagonal elements of the Q matrix, which have been optimally
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Table II. Compared matrices elements between LQR controllers with the same condition.

Parameters Step Desired path Robot starting
configuration time (sec) starting point point Q Matrix R Matrix
LQR 0.1 [0 0 −1] [−1 0.5 −0.9] Constant [0.2

0.19 0.22]
Constant [110

110]
NN-LQR 0.1 [0 0 −1] [−1 0.5 −0.9] Variable

[(0.18–0.23)
(0.16–0.27)

(0.17– 0.24)]

Variable
[(55–272)
(55–272)]

Start point

End point

(a)
(b)

Figure 11. Path tracking in simulation and experimental test of NMPC controller.

extracted in each step of the path. All three elements are separately extracted in different amounts; how-
ever, their changes are in the same rhythm based on network training. Figure 10(b) shows two diagonal
elements of the R matrix, which are approximately the same values based on the training.

One of the challenges in using the intelligent control method is the solution time. Mentioning that the
proposed method has several advantages, such as reducing tracking error, increasing path convergence
speed, and saving time and human energy to select control gains; the intelligent controller solution time
under the same conditions has been increased by less than 3% compared to the conventional method,
which is not comparable with its advantages.

Finally, Table II shows the Q and R matrix elements for two LQR and NNLQR controllers in the
same conditions. As can be seen, the amount elements related to the LQR controller are fixed and were
the most optimal amount for these conditions.

5.3. NN-NMPC controller
The NMPC has been used as a nonlinear controller for network training, and more than 18,000 data sets
have been collected by solving different paths. Since the number of the network’s inputs, outputs, and
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Figure 12. Tracking error relative to the reference path at each step.

(a) (b)

Figure 13. (a) Theta state rate in simulation and experimental test. (b) Theta state error in simulation
and experimental test.

data types is the same as the previous network, the number of layers and nodes used in the previous
network training has also been applied in this network training. The least-squares error for this network
training was 0.64 × 10−5. The simulation code has been prepared in MATLAB, and the sigma-shaped
path figures are extracted as Fig. 11. This figure shows the test results in the desired path for the simula-
tion with the NMPC controller (NMPC), with the neural network (NN NMPC), and the path taken by the
actual robot with the intelligent controller (Experiment). As can be seen, in the simulation, by applying
the neural network and determining the appropriate weighting matrices in each step, the robot got closed
to the path with more convergence speed and had lower error than the conventional method, especially
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(a) (b)

Figure 14. (a) Three diagonal elements of the Q matrix extracted from the neural network. (b) Two
diagonal elements of the R matrix extracted from the neural network.

in the path’s corners, as shown in Fig. 11(b). In the experimental test, the robot has successfully reached
the path and has followed it optimally.

Sampling error and the controller’s endeavor to improve tracking affected the data and caused small
oscillations in the experimental test, presented in Fig. 12. However, it is normal and insignificant in the
experimental.

Figure 13(a) shows change rates in the robot body’s rotation angle during solution time. The intel-
ligent controller obtained a better performance with a smaller error than the conventional controller, as
displayed in Fig. 13(b).

Figure 14(a) shows the diagonal elements of the Q matrix along the considered path, and as can
be seen, the optimal gains are extracted at each path step. According to the network training, the two
elements Q1 and Q2, which are the coefficient of the two states x and y, have been extracted almost
identically, and Q3, which is related to the angle state, was different from them but with the same rate
of change. Figure 14(b) relates to two elements of the R matrix which R1 is the coefficient of the robot
linear velocity, and R2 is the coefficient of the robot angular velocity.

Like the previous controller, this controller’s solving time in the proposed method has been measured
and compared to the conventional method. Under the same conditions, the intelligent controller solution
time has been increased by less than 4%, which is not comparable with its advantages. Also, Table III
displays the Q and R matrix elements for two NMPC and NN-NMPC controllers in the same conditions.

6. Discussion of results
Generally, with adding the trained networks to controllers, there is no need to extract the weighting
matrices by the trial and error method anymore, and the networks have extracted these gains. In addition,
as can be seen in the figures, intelligent controllers’ performance is better and optimizer than the usual
methods, which work up to 7% optimal in tracking (Fig. 11) and up to 19% better in angle state error
(Figs. 9(b) and 13(b)). Controlling the system gets easier and simpler by linearizing it, so the system’s
error in tracking the path by a linear controller is less than a nonlinear one in the simulation test that
can be found by looking closely at the diagrams. Nevertheless, a nonlinear controller performance in
simulation is closer to reality. The actual system operates better and more efficiently with a nonlinear
controller due to its nonlinear nature, but the linear controller has more oscillations around the path and
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Table III. Compared matrices elements between NMPC controllers with the same condition.

Parameters Step time Desired path Robot
configuration (sec) starting point starting point Q Matrix R Matrix
NMPC 0.1 [1 −0.5 −0.9] [0 0 0] Constant [103

103 92 ]
Constant [2.25

2.25 ]
NN-NMPC 0.1 [1 −0.5 −0.9] [0 0 0] Variable [(92 –

109) (92 – 109)
(75 – 95)]

Variable
[(2.18–2.5)
(2.18–2.5)]

less accuracy in following the path. This point can be followed by comparing the experimental tests of
two linear and nonlinear models.

7. Conclusion
This paper proposes an intelligence approach based on MLP-NN for the controllers with the cost func-
tion. The controller’s performance has been improved, and the path tracking error has been reduced. In
addition, the need to spend time and human energy to adjust the weighting matrices has been eliminated.
The proposed method can be implemented for all linear and nonlinear controllers with the cost func-
tion. A suggested method also causes better performance by entering the calculations of future steps in
the extraction of weighting matrices. In order to validate the performance of NN LQR and NN NMPC
controllers, the results have been compared with their conventional methods in simulation mode. Also,
the experimental test results obtained from the 4-WMR show the excellent performance of the presented
method in a real environment. In this case, the trained network obtains the best weighting matrices in
each step for any path or starting point selected for each robot, and the controller optimally tracks the
path. The intelligent controllers performed up to 7% better than the conventional method in path tracking
and up to 19% better in angle state error in corners of the path.
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Appendix A
Theory of MLP-NN
According to the structure of neural networks, the output vector of the whole network is defined as
Eq. (A1), assuming that the number of layers of the whole network is N.

fN = ϕN(WNfN−1 + bN) (A1)
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Where the input vector is considered as X = [X1X2 . . . Xn]T which n is the number of network inputs
and the vector fN = [

f1f2 . . . fm

]T is the output vector of the whole network, that m is the number of the
network’s outputs. ϕN is the last layer activation function, WN is the matrix connecting the N-1 hidden
layer with the n hidden layer and bN is the bias vector for the last hidden layer. In addition, fN−1 is assumed
to be the output of the N-1 hidden layer. in the other word, the output of the neural network with K hidden
layer can be extracted in the form of Eq. (A2):

f = WKmax (0, WK−1max (. . .max (0, W1X))) (A2)

Cite this article: M. Habibnejad Korayem, H. Rezaei Adriani and N. Yousefi Lademakhi (2023). “Regulation
of cost function weighting matrices in control of WMR using MLP neural networks”, Robotica 41, 530–547.
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