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Tilings of the hyperbolic space and
Lipschitz functions
Christian Bargetz , Franz Luggin, and Tommaso Russo

Abstract. We use a special tiling for the hyperbolic d-spaceHd for d = 2, 3, 4 to construct an (almost)
explicit isomorphism between the Lipschitz-free space F(Hd) and F(P) ⊕ F(N), where P is a
polytope in R

d and N a net in H
d coming from the tiling. This implies that the spaces F(Hd) and

F(Rd) ⊕ F(M) are isomorphic for every net M in H
d . In particular, we obtain that, for d = 2, 3, 4,

F(Hd) has a Schauder basis. Moreover, using a similar method, we also give an explicit isomorphism
between Lip(Hd) and Lip(Rd).

1 Introduction

Given a metric space M with a distinguished point 0M ∈ M, the Lipschitz-free space
F(M), together with an isometric mapping δ∶M → F(M), is the uniquely determined
(up to linear isometry) Banach space with the following universal property: for every
Lipschitz mapping f ∶M → X to a Banach space X with f (0M) = 0, there is a unique
bounded linear operator F∶F(M) → X with ∥F∥ = Lip( f ) such that the diagram

F(M) X

M

F

δ
f

commutes. See, for instance, [26] for an approach to Lipschitz-free spaces via the
universal property. The dual space of F(M) is the space Lip0(M) of Lipschitz func-
tions f ∶M → R with f (0M) = 0 equipped with the Lipschitz constant as norm, (i.e.,
∥ f ∥ ∶= Lip( f )). Note that the condition f (0M) = 0 eliminates the constant functions
and hence ensures that the Lipschitz constant is indeed a norm.

The name Lipschitz-free spaces was introduced by G. Godefroy and N.J. Kalton
in [31] where, among others, these spaces are used to construct canonical examples
of nonseparable Banach spaces which are bi-Lipschitz equivalent but not linearly
isomorphic. Such spaces have been studied by several authors in different contexts
and with different terminology, and we refer to [47] and [40, Section 1.6] for some ter-
minological and historical remarks. The appearance of [31] resulted in a new impetus
to their study – in particular, in connection with nonlinear functional analysis, metric
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2 C. Bargetz, F. Luggin, and T. Russo

geometry, and theoretical computer science; let us refer to [1, 2, 4, 5, 23, 25, 43, 46] for
a nonexhaustive list of some recent results. Let us also refer to [29] for a recent nice
survey on some aspects of the theory of Lipschitz-free spaces. A detailed exposition
of the spaces Lip0(M) and F(M) can also be found in N. Weaver’s book [47]. There,
in addition to the Banach space Lip0(M), also the Banach space Lip(M) of bounded
real-valued Lipschitz functions is introduced and studied in detail. This space has the
additional important property to be a Banach algebra.

In metric geometry, up to dimension and a scaling of the metric, there only exist
three model spaces (see, for example, [14, Chapter I.2]): the sphereSd with the intrinsic
(geodesic) metric, the Euclidean spaceRd , and the hyperbolic spaceHd . The structure
of F(Rd) is well studied, both from the isometric [21] and from the isomorphic point
of view [3, 13, 20, 33, 41]. Quite recently, it was proved that the spacesF(Sd) andF(Rd)
are isomorphic, [1, Theorem 4.21] (see also [25] for a more general result). However,
much less seems to be known about the structure of the space F(Hd) and its dual
space Lip0(Hd); some results concerning F(Hd) can be found in [23] where, among
others, the authors pose the questions of whether F(Hd) has a Schauder basis and
whether it is isomorphic to F(Rd). While our work was under review, the preprint
[27] by C. Gartland actually gave a positive answer to the latter question.

The aim of this paper is to explain how the local structure of Hd for d = 2, 3, 4
together with a macroscopic view of Hd determine the Banach space structure of
F(Hd) and Lip0(Hd). Since the space Lip0(Hd) is more tangible than F(Hd), it will
be more convenient for us to work with the space Lip0(Hd) and then transfer the
results to the predual. More precisely, we construct an (almost) explicit isomorphism

Φ∶Lip0(Hd) ≃ Lip0(P) ⊕ Lip0(N),

where P is a polytope (with nonempty interior) in R
d and N is a suitable net in H

d . In
particular, we build an explicit isomorphism between Lip0(Hd) and Z ⊕ Lip0(N),
where Z is a direct sum of certain subspaces of Lip0(P). This gives us an explicit
procedure to reduce the study of Lip0(Hd) to the discrete case of Lip0(N) and to a
space of Lipschitz functions on R

d . Since our main focus is on the hyperbolic case, we
allow ourselves to use nonexplicit arguments, such as Lee–Naor extension results [39]
and Pełczyński decomposition method, in the proof that Z is isomorphic to Lip0(P)
(in Section 4). Let us, however, point out that this part of the argument could also be
made entirely explicit by using a variant of the arguments from Section 5.

Since Φ is weak∗-to-weak∗ continuous, it is the adjoint of an isomorphism

F(Hd) ≃ F(P) ⊕ F(N).

Moreover, by the results of [21], F(P) is isomorphic to F(Rd), which yields

F(Hd) ≃ F(Rd) ⊕ F(N) and Lip0(Hd) ≃ Lip0(Rd) ⊕ Lip0(N)

for d = 2, 3, 4. Since both the spaceF(Rd) andF(N)have a Schauder basis, the former
result being due to P. Hájek and E. Pernecká in [33] and the latter to M. Doucha and
P. Kaufmann in [23], we conclude that, for d = 2, 3, 4, F(Hd) also admits a Schauder
basis, thereby giving a partial positive answer to the first question mentioned above.
Let us recall that if one is aiming for weaker structural properties, such as the bounded
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Tilings of the hyperbolic space and Lipschitz functions 3

approximation property, or the (π)-property, then more general results are available;
see, for instance, [30, 37] and the references therein.

Using the same methods, we also show that the space Lip(Hd) is isomorphic
to Lip(Rd), this time by giving an entirely explicit isomorphism (Remark 5.11).
Combining this result with standard arguments, in Remark 5.12, we conclude that

Lip(Hd) ≃ Lip(Rd) ≃ Lip(Sd)
(i.e., the spaces of bounded Lipschitz functions on the model spaces of metric
geometry are all isomorphic).

At the core of our argument, we have to decompose a Lipschitz function on H
d

into a Lipschitz function on a net N and a sequence of Lipschitz functions on a convex
subset of Hd . In order to do this, we consider a suitable tiling of Hd by polytopes; the
existence of such tilings depends upon classical results from the theory of reflection
groups; see, for example, [22, Chapter 6] or [45, Chapter 5]. More precisely, given a
right-angled polytope P (namely, such that all dihedral angles are exactly π/2), by
reflecting across the faces of P, we obtain a tessellation of Hd by isometric copies of P.
In [44] (see also [42, Section 2]), the author shows that such right-angled polytopes
exist only if d ⩽ 4; explicit constructions in dimensions d = 2, 3, 4 were already known
to exist (see Section 3.1). This justifies why we are able to prove our results only in
dimension d = 2, 3, 4. In order to emphasize the subtlety of hyperbolic tilings results,
let us mention two more results: in dimension d ⩾ 6, there exists no regular tiling of
H

d [19, p. 206], and, more generally, for d ⩾ 30, there are no hyperbolic reflection
groups at all (see, for example, [22, Theorem 6.11.8]).

Given a tiling of Hd by right-angled polytopes, we first use an extension operator
from the net, given by choosing a distinguished point inside the polytope, to
decompose a Lip0-function on H

d into a function on the net and a bounded Lipschitz
function on H

d . Then, using an extension operator for Lipschitz functions on P,
we decompose the bounded Lipschitz function in a bounded sequence of Lipschitz
functions on P. The latter construction is inspired by a decomposition method for
(C∞-)smooth functions on R

d into sequences of functions on the unit cube in [8]
and [9].

Let us close this section with a brief description of the structure of the paper. In
Section 2, we recall basic notions on Lipschitz-free spaces and metric geometry. A self-
contained revision of hyperbolic geometry is the content of Section 3; in particular,
we explain the properties of the tilings that we need in Section 3.1. As we mentioned
already, Section 4 is dedicated to the local problem, and we study the space Lip0(P),
for a polytope P in R

d . Finally, the core of our paper with the proof of the main results
is Section 5.

2 Preliminary material

Given a pointed metric space (M , d) with distinguished point 0M ∈ M, we consider
the Banach space Lip0(M) of all Lipschitz functions f ∶M → R such that f (0M) = 0,
endowed with the norm

∥ f ∥Lip0
∶= Lip( f ) ∶= sup{∣ f (x) − f (y)

d(x , y) ∣ ∶ x ≠ y ∈ M} .
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4 C. Bargetz, F. Luggin, and T. Russo

Moreover, when (M , d) is a metric space, we consider the vector space of all bounded
Lipschitz functions f ∶M → R that, following [47, Chapter 2], we denote by Lip(M).
Lip(M) becomes a Banach space when equipped with the norm

∥ f ∥Lip ∶= ∥ f ∥Lip0
+ ∥ f ∥∞.

The pointwise multiplication induces an algebra structure on Lip(M) due to the basic
inequality

Lip( f g) ⩽ Lip( f )∥g∥∞ + Lip(g)∥ f ∥∞.

When M is bounded, the same product also gives an algebra structure on Lip0(M)
because ∥ f ∥∞ ⩽ diam(M)∥ f ∥Lip0

. Actually, a different product turns every Lip0(M)
into a Banach algebra, [2].

For p ∈ M, the evaluation functional δp ∈ Lip0(M)∗ is defined by ⟨δp , f ⟩ ∶= f (p).
It is easy to see that ∥δp∥ = d(p, 0M). Then one can define F(M) ∶= span{δp ∶ p ∈
M} ⊂ Lip0(M)∗ and verify that F(M) satisfies the universal property stated in the
Introduction. In particular, F(M)∗ = Lip0(M).

As mentioned in the Introduction, our argument will proceed in Lip0(M), and only
at the very end, we will pass to preduals and deduce results for F(M). Therefore, we
need information on the weak∗ topology of Lip0(M) induced by the predual F(M).
By definition, the set {δp ∶ p ∈ M} of elementary molecules is linearly dense in F(M).
Thus, on bounded sets, the weak∗ topology coincides with the weak topology induced
by the functionals {δp∶ p ∈ M}. In other words, it agrees with the topology of pointwise
convergence on M. When combined with the Banach–Dieudonné theorem, this fact
has important consequences. First, a subspace X ⊂ Lip0(M) is weak∗ closed if and
only if it is pointwise closed. Second, a bounded operator L∶Lip0(M) → Lip0(N)
is weak∗-to-weak∗ continuous if and only if it is pointwise-to-pointwise continuous
(see, for example. [24, Exercise 3.65] or [47, Corollary 2.33]). These facts will be freely
used multiple times in our arguments. Moreover, if X is a weak∗ closed subspace of
Lip0(M), then it is the dual to some quotient Z of F(M), and the weak∗ topology of
X induced by Z coincides with the restriction to X of the weak∗ topology of Lip0(M);
see, for example, [18, Corollary V.2.2].

A ubiquitous role in our proofs will be played by linear extension operators. If N is a
subset of M with 0M ∈ N , a linear extension operator E∶Lip0(N) → Lip0(M) is a linear
operator such that E f is an extension of f for every f ∈ Lip0(N). Plainly, the restriction
operator f ↦ f ∣N is a left-inverse to E. Thus, E defines an isomorphic embedding
of Lip0(N) as a complemented subspace of Lip0(M). Moreover, if E is pointwise-
to-pointwise continuous, both the isomorphic embedding and the projection are
weak∗-to-weak∗ continuous. The construction of linear extension operators for
Lipschitz functions has been a topic of great interest in recent years; see, for example,
[1, 6, 15, 16, 28, 35, 39].

In most cases, our extensions operators will be based on direct and explicit
constructions. However, in one place we shall use the following deep extension result
due to Lee and Naor [39]: there is a universal constant C such that for every pointed
metric space (M , d) and every subspace N with 0M ∈ N that is λ-doubling, there
is a linear extension operator E∶Lip0(N) → Lip0(M) with ∥E∥ ⩽ C log(λ). For a
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more recent simpler proof, see [16, Theorem 4.1]; importantly, the operator E is also
weak∗-to-weak∗ continuous, as it is explained for example in [37].

Next, we need to mention some basics on metric geometry. Recall that a met-
ric space (M , d) is geodesic if for every two points x , y ∈ M, there is an isometry
γ∶ [0, d(x , y)] → M such that γ(0) = x and γ(d(x , y)) = y. In case such an isometry
γ is unique, (M , d) is said to be uniquely geodesic. Intuitively speaking, geodesics are
the metric analogue of segments. Accordingly, the image γ([0, d(x , y)]) of a geodesic
connecting x to y is sometimes called metric segment and denoted [x y]. Moreover,
we say that a subset C of M is (geodesically) convex if every metric segment [x y]
with x , y ∈ C is entirely contained in C. Let us refer, for example, to [14] for more
on geodesic metric spaces.

An important property of geodesic metric spaces is that the Lipschitz condition
becomes a local property, in the sense of the following lemma. For convex subsets of
Banach spaces, it is due to D. J. Ives and D. Preiss in [34].

Lemma 2.1 [10, Lemma 2.1] Let M be a geodesic space, N a metric space, and {Z i}∞i=1
a countable family of sets covering M. Let f ∶M → N be a continuous mapping whose
restrictions to the sets Z i are Lipschitz and satisfy Lip( f ∣Z i ) ⩽ L for some L > 0. Then f
is Lipschitz with Lip( f ) ⩽ L.

3 Hyperbolic geometry

This section is dedicated to a brief introduction to the hyperbolic d-space H
d . The

shortest way to introduce it is to define Hd as the unique complete, simply-connected
Riemannian d-manifold with constant sectional curvature −1. The uniqueness of a
Riemannian d-manifold with such properties is a consequence of the Killing–Hopf
theorem; see, for example, [38, Theorem 12.4]. However, for our purposes, it will be
more convenient to have an explicit description of a model for Hd ; we shall now recall
two such models and later use whichever model is more convenient for our purpose.

Let us start by recalling the hyperboloid model: consider the non-degenerate
bilinear form

⟨x , y⟩ ∶=
d
∑
i=1

x i y i − xd+1 yd+1

on R
d+1 and define

H
d ∶= {x ∈ Rd+1∶ ⟨x , x⟩ = −1, xd+1 > 0} .

A metric on H
d can be defined by

ρ(x , y) = arcosh(−⟨x , y⟩).

As it turns out, ⟨⋅, ⋅⟩ is positive definite on the tangent bundle of Hd and ρ is exactly
the Riemannian distance induced by the Riemannian metric ⟨⋅, ⋅⟩ on H

d . Geodesic
lines are defined as the intersections of Hd with 2-dimensional subspaces of Rd+1. In
particular, Hd is uniquely geodesic, and every geodesic can be uniquely extended to a
geodesic line. Angles are also defined in terms of ⟨⋅, ⋅⟩: given two geodesics that meet at
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6 C. Bargetz, F. Luggin, and T. Russo

a point ξ ∈ Hd , one takes unit tangent vectors u and v to the geodesics at ξ and defines
the angle between the geodesics as the unique α ∈ [0, π] such that cos α = ⟨u, v⟩.
Note that, in particular, if the point in question is the origin, then ud+1vd+1 = 0; thus,
⟨u, v⟩Hd = ⟨u, v⟩Rd+1 , and hence, the angle is the Euclidean one. For the same reason, if
any geodesic subspace containing the origin meets a geodesic at an orthogonal angle
in R

d+1, then the (two possible) tangent vectors u of said geodesic will satisfy ud+1 = 0,
and the hyperbolic angle will be orthogonal as well.

An isometry of Hd is a bijection of Hd that preserves the distance ρ; it then follows
that such isometries also preserve angles. Let us recall that the group of isometries acts
transitively onH

d ; moreover, each isometry ofHd can be obtained as a composition of
at most d + 1 reflections through hyperplanes. More on isometries of Hd can be found
in [11, Chapter 19], [14, Chapter I.2], or [17, Section 10].

We next briefly describe the Beltrami–Klein model. It is represented by points in the
Euclidean open unit ball Bd ∶= {x ∈ Rd ∶ ∥x∥2 < 1}. Geodesics are simply intersections
of Euclidean lines with B

d . Likewise, hyperplanes are intersections of Euclidean
hyperplanes with B

d . The metric for Hd
BK can be defined as follows: given points x

and y in B
d , let x∞ and y∞ be the intersections of the line through x and y with the

boundary of Bd (arranged so that x∞, x , y, y∞ appear in order). Then

ρBK(x , y) ∶= 1
2

log ∥x − y∞∥2∥y − x∞∥2

∥x − x∞∥2∥y − y∞∥2
.

Further information on this and more models can be found in [11, Chapter 19],
or [14, Chapter I.6]. Let us notice that, by the Killing–Hopf theorem, all such models
are mutually isometric. More importantly, simple and explicit isometries between the
models are available, thus allowing explicit transfer of properties; see, for example,
[11, Chapter 19], or [38, Theorem 3.7]. Finally, for a gentle and elementary introduction
to hyperbolic geometry, mainly in the plane, we refer the interested reader to [7].

The last result we require is a particular case of the well-known fact from Rieman-
nian geometry that differentiable maps between Riemannian manifolds are locally
Lipschitz. A direct, computational proof of this particular case can be given by using
the explicit formula for the metric.

Lemma 3.1 Let Hd
BK be the Beltrami-Klein model of Hd and let Bd be the Euclidean

open unit ball in R
d . Then the identity function id∶Hd

BK → B
d is locally bi-Lipschitz.

3.1 Tilings of Hd

We call a subset of Rd or Hd a polyhedron if it is a finite intersection of closed half-
spaces. A bounded (or equivalently compact) polyhedron is called a polytope. Note
that polyhedra are convex sets, as is, for example, obvious in the Beltrami–Klein
model. Hence, the nearest point projection – namely, the mapping which assigns to
a point x the point in the polyhedron which minimizes the distance to x – is well
defined and 1-Lipschitz; see Proposition 2.4 in [14, p. 176]. In particular, polyhedra are
1-Lipschitz retracts of both R

d and H
d .

In order to investigate the local and global structure of the Lipschitz functions on
H

d separately, we will need a suitable tiling of the hyperbolic space H
d . A sequence
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(Pn)n∈N of polytopes is a tiling, or tessellation, of H
d if ⋃n∈N Pn = H

d , and the
intersection of any two distinct polytopes is either empty or a face of both polytopes
(in particular, the interiors of the polytopes Pn are mutually disjoint).

In our arguments, we will use the existence in H
d for d = 2, 3, 4 of a regular

orthogonal tiling – namely, a tiling (Pn)n∈N consisting of mutually isometric polytopes
and where each Pn satisfies the following definitions (see, for example, [22, Chapter 6]
for more details):
(T1) A polytope P in H

d is regular if the group of isometries of P is flag-transitive.
More precisely, a flag in P is a chain F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ Fd−1, where F0 is a vertex of
P and each Fk is a k-dimensional face of P. Then P is regular if for every two
flags F0 ⊂ F1 ⊂ ⋅ ⋅ ⋅ ⊂ Fd−1 and F′0 ⊂ F′1 ⊂ ⋅ ⋅ ⋅ ⊂ F′d−1, there is an isometry of P that
maps one flag onto the other.

(T2) A polytope is right-angled, or orthogonal, if all dihedral angles are exactly π/2.
Before passing to the explanation of the existence of the tiling, let us mention two

more properties that follow from (T1) and (T2) (two further properties will be proved
in Lemma 3.2 and Lemma 3.3 below).
(T3) Every polytope Pn has an inscribed circle, whose center we denote by pn and

whose radius is by definition the in-radius of Pn .
Indeed, every regular polytope P admits a center, whose existence can

be shown as follows. If F is a maximal face of P, then x ↦ dist(x , F) is a
convex function (as follows easily from Proposition 2.2 in [14, p. 176]). Thus,
letting {F1 , . . . , Fk} be the maximal faces of P, the map x ↦ dist(x , F1)2 + ⋅ ⋅ ⋅ +
dist(x , Fk)2 is strictly convex and hence has a unique minimum p. Since the
above map is defined only by metric properties, every isometry of P must fix p.
Finally, by regularity, p has the same distance to all maximal faces. For further
details, we refer to [14, pp. 178–179].

(T4) There is a number N(d) such that every Pn intersects at most N(d) polytopes
from the tiling.

Indeed, at each vertex of Pn , there are exactly 2d polytopes intersecting Pn ,
by the right-angle property. So a (rough) upper bound for N(d) is 2d times the
number of vertices of Pn (such a number of vertices is independent of n, as the
polytopes are mutually isometric).

We now pass to explaining the existence of regular orthogonal tilings (Pn)n∈N for
d = 2, 3, 4. By Proposition 6.3.2 and 6.3.9 in [22], every polytope P whose dihedral
angles are of the form π/m for some integer m ⩾ 2 (these polytopes are sometimes
called Coxeter polytopes) is simple. Hence, by Theorem 6.4.3 in [22], P is a strict
fundamental domain of the reflection group generated by reflections across the faces
of P. In other words, P intersects every orbit in exactly one point. This implies in
particular that the images of P by the elements of the reflection group tessellate H

d .
Thus, every element of the reflection group maps the faces of a polytope Pn to the faces
of some other polytope of the tiling.

If we restrict our attention to right-angled polytopes, by the above observations,
the existence of a right-angled polytope P directly implies that there is a tessellation
of Hd by isometric copies of P. Several explicit constructions of such polytopes for
dimensions d = 2, 3, 4 are available in the literature, and we mention a few of them

https://doi.org/10.4153/S0008414X24000804 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000804


8 C. Bargetz, F. Luggin, and T. Russo

Figure 1: The first seventeen isometric octagons tiling the hyperbolic plane.

in the next paragraph. On the other hand, E. B. Vinberg proved in [44] that there
is no right-angled polytope in H

d when d ⩾ 5; a short proof of this fact can also be
found in [42, Section 2]. Consequently, an orthogonal tiling of Hd exists precisely for
dimensions d = 2, 3, 4.

As it turns out, in dimension d = 2, 3, 4, an orthogonal tiling can be constructed
that is additionally regular. In dimension d = 2, there are infinitely many regular
orthogonal tilings, one for each integer p ⩾ 5. They are obtained by taking a regular
right-angled p-gon in H

2 and gluing together 4 of them at each vertex; by means of
the so-called Schläfli symbol, such a configuration is denoted by {p, 4}. For instance,
{8, 4} is a tiling via four regular octagons meeting at each vertex, illustrated in Figure 1.
In dimension d = 3, a tiling exists described by {5, 3, 4}, which is to be read as follows:
start with a regular right-angled pentagon in H

2 and glue three of them at each vertex.
This gives a (hyperbolic) dodecahedron {5, 3} and gluing 4 on each edge gives the
tiling. In dimension d = 4, instead, one glues together 3 dodecahedra on each edge to
obtain a 4-dimensional polytope {5, 3, 3} whose maximal faces are the dodecahedra
{5, 3}. Then, gluing 4 such polytopes at each 2-dimensional face, one gets the tiling
{5, 3, 3, 4}. A list of all regular tilings of Hd can be found in [45, Section 5.3.3] or
[19, Sections 2–4] (the orthogonal ones among them are exactly those with 4 as the
last number in their Schläfli symbol).
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Tilings of the hyperbolic space and Lipschitz functions 9

One notable feature of orthogonal tilings, which we will use in the next lemma as
well as Section 5, is the following:

Lemma 3.2 Whenever two hyperplanes H1 , H2 ⊂ H
d meet orthogonally, the reflec-

tions RH1 and RH2 across them commute and RH1 RH2 = RH2 RH1 = RH1∩H2 . Further,
RH2[H1] = H1 and RH2 preserves the two half-spaces defined by H1.

Proof We will prove this statement using the hyperboloid model of Hd . Since for
every point in H

d , there exists an automorphism mapping it to the origin, we can
assume that 0 ∈ H1 ∩ H2. Moreover, up to a rotation around 0 of Hd (i.e., a rotation of
R

d+1 around the xd+1 axis), we may assume that H1 = {y ∈ Hd ∶ y1 = 0} and H2 = {y ∈
H

d ∶ y2 = 0} (recall that angles at the origin 0Hd are Euclidean angles).
Then it follows that RH1(x) = (−x1 , x2 , . . . , xd+1) and RH2(x) = (x1 ,−x2 , . . . , xd+1)

for x ∈ Hd . Clearly, these two mappings commute, and their composition is the
mapping x ↦ (−x1 ,−x2 , x3 , . . . , xd+1), which is the reflection across H1 ∩ H2. The last
clause also follows directly from these formulas. ∎

As one can already glean from Figure 1, the edges of the octagons combine into
geodesic lines, and this is true in general for any regular orthogonal tiling.

Lemma 3.3 Let P = (Pn)n∈N be a regular orthogonal tiling of Hd , d ⩽ 4. Then, there
exists a sequence (Hk)k∈N of hyperplanes in H

d such that

⋃
n∈N

∂Pn = ⋃
k∈N

Hk .

These Hk are exactly all the supporting hyperplanes for any maximal face of any Pn . As a
consequence, if R is a reflection across some maximal face,

R [⋃
k∈N

Hk] = ⋃
k∈N

Hk .

Proof Let (Hk)k∈N be the sequence listing all the supporting hyperplanes for any
maximal face of any polytope Pn . Then the validity of the ‘⊂’ inclusion is clear.

For the converse inclusion, take a hyperplane H ∈ {Hk}k∈N. By definition, there is
a polytope P ∈ P such that M ∶= H ∩ P is a maximal face of P. Then M is a regular
right-angled polytope in H (which is isometric to H

d−1); hence, the reflection group
generated by reflections across the maximal faces of M induces a tiling of H, by copies
of M. However, a reflection across a maximal face of M is the restriction to H of a
reflection across a hyperplane H̃ in H

d , orthogonal to H (in fact, the reflection across
H̃ maps H to H, by Lemma 3.2). Moreover, H̃ supports a maximal face of P, as P is
right-angled. Therefore, the images of M under the reflection group of M are images of
maximal faces of P under the reflection group of P. Hence, H ⊂ ⋃n∈N ∂Pn , as desired.

Finally, the last claim follows because R preserves the set ⋃n∈N ∂Pn of faces. ∎

4 Lipschitz functions on polytopes

This section is dedicated to the local part of our construction, where we study the
Banach space of Lipschitz functions on a single polytope. The result we prove in this
section asserts that the space of all Lipschitz functions that vanish on certain subsets
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10 C. Bargetz, F. Luggin, and T. Russo

of the boundary of a polytope P is weak∗-to-weak∗ isomorphic to Lip0(P). Since Hd

is locally bi-Lipschitz equivalent to R
d by Lemma 2.1, it is irrelevant if we consider

Euclidean or hyperbolic polytopes; therefore, in all the section, we consider polytopes
in R

d . As we explained in the Introduction, our focus being on the hyperbolic case,
we treat the Euclidean case as a black-box; this explains why in this section we will use
nonexplicit arguments and we do not have an explicit formula for the isomorphism.

We begin by introducing the following notation.

Definition 4.1 If S is a subset of a pointed metric space M, we denote by

Lip0,S(M) ∶= { f ∈ Lip0(M)∶ f ∣S = 0}

the space of all Lipschitz functions on M vanishing on S (in addition to vanishing
on 0M).

It is easy to see that Lip0,S(M) is pointwise closed, and hence weak∗ closed as well.
Thus, Lip0,S(M) is the dual of a quotient of F(M), and the corresponding weak∗
topology is the restriction of the weak∗ topology of Lip0(M); hence, on bounded sets,
it coincides with the pointwise one.

Before the main result of the section, we collect in the following lemma a basic
construction of a linear extension operator.

Lemma 4.2 Let (M , d) be a pointed metric space and N ⊂ M be a bounded Lipschitz
retract of M with 0M ∈ N. Then for every ε > 0, there is a bounded, weak∗-to-weak∗
continuous, linear extension operator

EN ,ε ∶ Lip0(N) → Lip0(M), f ↦ EN ,ε f

such that, for every f ∈ Lip0(N), the support of EN ,ε f is contained in the set B(N , ε) =
{x ∈ M∶dist(x , N) ⩽ ε}.

Proof Fix a Lipschitz retraction r of M onto N and define the mapping λ∶M →
[0, 1] by λ(x) = max{1 − dist(x ,N)

ε , 0}. λ is clearly 1/ε-Lipschitz and vanishes outside
B(N , ε). Then the mapping

EN ,ε ∶ Lip0(N) → Lip0(M), f ↦ ( f ○ r)λ

is well defined and bounded since

Lip (( f ○ r)λ) ⩽ Lip( f ○ r)∥λ∥∞ + Lip(λ)∥ f ○ r∥∞

⩽ Lip( f )Lip(r) + 1
ε
∥ f ∥∞ ⩽ (Lip(r) + diam(N)

ε
)∥ f ∥Lip0

.

Finally, the pointwise-to-pointwise continuity of EN ,ε is clear from the definition. ∎

Proposition 4.3 Let P be a polygon in R
d with 0 ∈ int(P) and let S ⊂ ∂P be the union

of one or more faces (of any dimension) of P. Then,

Lip0(P) ≃ Lip0,S(P).

Moreover, the isomorphism is weak∗-to-weak∗ continuous.
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Tilings of the hyperbolic space and Lipschitz functions 11

Proof Let us first prove that Lip0(P) is weak∗-to-weak∗ isomorphic to a weak∗-
complemented subspace of Lip0,S(P). For this, note that, for α ∈ (0, 1), Lip0(P) and
Lip0(αP) are weak∗-to-weak∗ isomorphic (P and αP are bi-Lipschitz equivalent).
Hence, it is enough to prove that Lip0(αP) is weak∗-to-weak∗ isomorphic to a
weak∗-complemented subspace of Lip0,S(P). Now, αP is a Lipschitz retract of P (via
the nearest point projection), and it has positive distance to the boundary ∂P of P.
So, by Lemma 4.2 for ε = dist(∂P, αP)/2 > 0, there is a bounded, weak∗-to-weak∗
continuous, linear extension operator

EαP ,ε ∶Lip0(αP) → Lip0(P)

such that EαP ,ε f (x) = 0 for all x ∈ ∂P (so the image of EαP ,ε is contained in
Lip0,S(P)). As we observed in Section 2, this gives the desired embedding of
Lip0(αP) into Lip0,S(P).

Next, we show that Lip0,S(P) is a weak∗-complemented subspace of Lip0(P).
Consider the subset S ∪ {0} of P and observe that P is a doubling metric space (as the
doubling property passes to subspaces and R

d is doubling). Therefore, we can apply
Lee’s and Naor’s extension result [39] (see Section 2) and find a weak∗-to-weak∗
continuous linear extension operator E∶Lip0(S ∪ {0}) → Lip0(P). Then the map

Q∶Lip0(P) → Lip0,S(P)∶ f ↦ f − E( f ∣S∪{0})

is a linear projection onto Lip0,S(P) since by definition, Q f vanishes on S and for
each f ∈ Lip0,S(P), E( f ∣S∪{0}) = 0. Hence, Lip0,S(P) is a complemented subspace of
Lip0(P). In addition, Q is weak∗-to-weak∗ continuous since E is.

Finally, by standard duality, the assertions proved in the previous paragraphs
yield that Lip0,S(P) is the dual to a complemented subspace Z of F(P) and F(P) is
isomorphic to a complemented subspace of Z. Moreover, P has nonempty interior in
R

d ; hence, combining [36, Corollary 3.5] and [36, Theorem 3.1], we obtain thatF(P) is
isomorphic to its �1-sum. Therefore, Pełczyński decomposition method assures us that
F(P) is isomorphic to Z and passing to the duals we reach the sought conclusion. ∎

5 Extension operators and proof of the main result

In this section, we construct a number of extension operators which are the central
tools for the proof of the main result. We are using a regular orthogonal tiling,
and hence, we consider H

d only for d = 2, 3, 4. Given a regular orthogonal tiling
P ∶= (Pn)n∈N by isometric copies of a single polytope, we denote by pn the center point
of Pn in the sense of (T3) of Section 3.1 and consider the net N ∶= {pn ∶ n ∈ N}. For the
space Lip0(Pn), we use pn as the distinguished point, and for the sake of simplicity,
we assume that p1 = 0.

Using these data, we use the following strategy to prove the main result: In
Section 5.1, we use an extension operator from the net N to decompose Lipschitz
functions on H

d into Lipschitz functions on N and (bounded) Lipschitz functions
vanishing on N. In Section 5.2, we decompose the latter functions into a sequence
of Lipschitz functions on the tiles. In Section 5.3, we use extension operators from
the tiles to construct the inverse operator of this decomposition operator. Finally,
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in Section 5.4, we combine these arguments to finish the proof and state some
consequences.

5.1 Extension from the net N

In this part, we construct a bounded, weak∗-to-weak∗ continuous linear extension
operator from the net N to H

d . In order to achieve this, we will exploit a Lipschitz
partition of unity in the spirit of [1, 16, 35]. Notice that said results cannot be applied
directly because Hd is not a doubling metric space. However, the specific shape of the
net, inherited from the tiling, allows a very simple construction of the partition of
unity.

Since the polytopes Pn are mutually isometric, the in-radius dist(pn , ∂Pn) of Pn
is the same for all n; thus, we can set δ ∶= dist(pn , ∂Pn) > 0. Therefore, when k ≠ n,
dist(pk , Pn) ⩾ δ. Define functions ρn ∶Hd → R by ρn(x) ∶= max{1 − dist(x ,Pn)

δ , 0}.
Then ρn(pk) = δk ,n and ρn is 1/δ-Lipschitz. Moreover, the restriction of ρn to Pk
is nonzero only when Pk intersects Pn . Hence, by (T4), the series ∑∞n=1 ρn is locally
a sum of at most N(d) terms, and therefore, it defines a bounded Lipschitz func-
tion. Additionally, we have ∑∞n=1 ρn(x) ⩾ 1 for all x ∈ Hd , as ρn equals 1 on Pn .
Consequently, the functions

φn ∶=
ρn

∑∞n=1 ρn

are uniformly Lipschitz, with constant, say, LN. Clearly, (φn)∞n=1 is the desired par-
tition of unity and φn(pk) = δk ,n . We can now proceed to the construction of the
extension operator from the net N.

Lemma 5.1 The operator EN defined as

EN∶Lip0(N) → Lip0(Hd)∶ f ↦
∞

∑
n=1

f (pn)φn

is a bounded linear extension operator from the net N to H
d which is weak∗-to-weak∗

continuous.

Proof The sum defining EN f is locally finite; thus, EN is clearly a well-defined linear
extension operator, and EN f is continuous. In order to bound the Lipschitz constant
of EN f , we use Lemma 2.1. Thus, fix f ∈ Lip0(N) and x , y ∈ Pn , for some n ∈ N.
Let {n1 , . . . , nN(d)} be the set of indices corresponding to the polytopes Pk that
intersect Pn . Hence, we have

∣EN f (x) − EN f (y)∣ =
%%%%%%%%%%%

N(d)

∑
j=1

(φn j(x) − φn j(y)) f (pn j)
%%%%%%%%%%%

=
%%%%%%%%%%%

N(d)

∑
j=1

(φn j(x) − φn j(y))( f (pn j) − f (pn))
%%%%%%%%%%%

⩽
N(d)

∑
j=1

LN ρ(x , y) Lip( f ) ρ(pn j , pn) ⩽ C Lip( f ) ρ(x , y).
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Here, C = 2 diam(Pn) LN N(d), and we used the fact that ρ(pn j , pn) ⩽ 2 diam(Pn),
since Pn j ∩ Pn ≠ ∅. According to Lemma 2.1, this inequality proves that Lip(EN f ) ⩽
CLip( f ), whence the boundedness of EN.

Lastly, to prove weak∗-to-weak∗ continuity, we need only show pointwise-to-
pointwise continuity. So assume that ( fk)k∈N is a sequence of Lipschitz functions
converging pointwise to some function f ∈ Lip0(N). Then, using again local finiteness
of the sum,

lim
k→∞

EN( fk)(x) =
∞

∑
n=1

lim
k→∞

fk(pn)φn(x) =
∞

∑
n=1

f (pn)φn(x) = EN( f )(x). ∎

5.2 Decomposition into functions on tiles

The aim of this section is to decompose a Lipschitz function on H
d into a sequence

of functions defined on the tiles of our tiling. As a first step, we use the results of
the previous section to remove the part of the function defined on the net N. More
precisely, Lemma 5.1 implies that the mapping

Lip0(Hd) → Lip0(N) ⊕ Lip0,N(Hd)∶ f ↦ ( f ∣N , f − EN( f ∣N))

is a weak∗-to-weak∗ continuous isomorphism (with inverse (g , h) ↦ EN(g) + h).
Hence, our goal now is to decompose a function in Lip0,N(Hd) into a sequence of

functions defined on the tiles. We start with some geometric preliminaries.

Definition 5.2 Let H be a hyperplane in H
d not containing the origin 0. The two

connected components of Hd/H are called the open half-spaces defined by H. We
denote their closures by H+ and H−, where H+ is chosen so that 0 is in the interior
of H+.

Let us now fix some notation and parameters. Let P be our tiling of H
d and

(Hm)m∈N be the sequence of hyperplanes supporting the faces of the tiles Pn as in
Lemma 3.3. Let ε > 0 be a fixed number which is smaller than the in-radius of Pm
and smaller than half of the minimal distance of nonadjacent faces of Pm . For the
hyperplane Hm , we denote by Rm ∶Hd → H

d the reflection across Hm .
In order to start the construction of the decomposition, for each hyperplane Hn ,

we define a cutoff function

ψn ∶Hd → [0, 1]∶ x ↦ max{1 − dist(x , Hn)
ε

, 0} ,

which clearly satisfies Lip(ψn) ⩽ 1/ε, ψn(x) = 1 if and only if x ∈ Hn , and ψn(x) = 0 if
and only if dist(x , Hn) ⩾ ε.

We now construct operators on the space (⊕m∈N Lip0(Pm))�∞ . In order to simplify
the notation, we often interpret this sum as the space of all functions g defined on
⋃m∈N int(Pm) ⊂ H

d which are Lipschitz on every int(Pm)with supm∈N Lip(g∣Pm) < ∞
and that vanish on the net N. More precisely, to a sequence (gm)m∈N, we associate the
function g defined to be equal to gm on int(Pm), for every m ∈ N; vice versa, to a func-
tion g, we associate the sequence (gm)m∈N, where gm is the unique continuous exten-
sion of g∣int(Pm) to Pm . The important advantage of this interpretation is that we do
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not consider values on the boundaries of the tiles, which simplifies several formulas.
As a first instance of this, this interpretation allows us to identify Lip0,N(Hd)with the
subspace of all functions admitting a continuous extension to H

d .
With these preparations, we are now able to define the operator

χn ∶ ( ⊕
m∈N

Lip0(Pm))
�∞

→ ( ⊕
m∈N

Lip0(Pm))
�∞

by setting

(χn g)(x) =
⎧⎪⎪⎨⎪⎪⎩

g(x) for x ∈ H−n ,
g(x) − ψn(x)g(Rn(x)) for x ∈ H+n .

Notice that in the definition of χn , we used the interpretation explained above. Also,
according to Lemma 3.3, Rn maps ⋃m∈N int(Pm) to itself; thus, we can legitimately
evaluate g at the point Rn(x).

Since reflections are isometries and g is bounded, the operator χn is bounded and
it is clearly also weak∗-to-weak∗ continuous. Also note that since χn does not change,
the values of g on H−n and Rn(x) ∈ H−n whenever x ∈ H+n , its inverse is the operator
defined by

(χ−1
n g)(x) =

⎧⎪⎪⎨⎪⎪⎩

g(x) for x ∈ H−n ,
g(x) + ψn(x)g(Rn(x)) for x ∈ H+n .

We denote by χ1, . . . ,n ∶= χn ○ ⋅ ⋅ ⋅ ○ χ1 the composition of χ1 , . . . , χn and note that it
satisfies χ−1

1, . . . ,n = χ−1
1 ○ ⋅ ⋅ ⋅ ○ χ−1

n .
Given a function g ∈ Lip0,N(Hd), we define a function gm ∶ Pm → R by

gm(x) ∶= lim
n→∞

χ1, . . . ,n(g)(x) (x ∈ Pm).

Note that for each m, there is an Nm such that χ1, . . . ,n(g)(x) does not change for
n ⩾ Nm . Hence, the above limit exists since the sequence is eventually constant, and
the index where it becomes constant only depends on Pm and not on the individual
point x ∈ Pm .

Let us now consider the linear mapping

Lip0,N(Hd) → ( ⊕
m∈N

Lip0(Pm))
�∞
∶ g ↦ (gm)m∈N ,

which will eventually be the main ingredient for our isomorphism. Since it is not
surjective between the above spaces, we have to determine a suitable codomain. With
this in mind, for each m ∈ N, we define

Sm ∶= ⋃
n∈N

Pm⊂H+n

Hn ∩ Pm .(5.1)

Now we are able to define the desired operator

Φ∶Lip0,N(Hd) → ( ⊕
m∈N

Lip0,Sm
(Pm))

�∞
∶ g ↦ (gm)m∈N

and start checking that it has the desired properties.
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Lemma 5.3 The linear operator Φ maps Lip0,N(Hd) into (⊕m∈N Lip0,Sm
(Pm))�∞ .

Moreover, it is bounded and weak∗-to-weak∗ continuous.

Proof We first check that Φ(g) is a sequence of Lipschitz functions whose Lipschitz
constants are bounded by a multiple of the Lipschitz constant of g. Since g ○ Rn
and ψn are Lipschitz and bounded, the standard product formula gives us that χn
is bounded with ∥χn∥ = ∥χ1∥ for all n. Moreover, χn only changes its argument on an
ε-neighborhood of Hn , and Pm intersects said neighborhood if and only if Hn supports
a face of Pm . Hence, the number of faces N(d) of the polytopes Pm gives us the number
of times the function g can at most be changed on that tile during the limit process
that produces Φ(g). Thus, the Lipschitz constant of Φ(g)m is at most

Lip(Φ(g)m) ⩽ ∥χ1∥N(d)Lip(g).

Also, Φ(g)(pm) = g(pm) = 0 because pm ∈ N and the center-point pm of any Pm is
not in an ε-neighborhood of any Hn . It follows that Φ(g)m ∈ Lip0(Pm). Note that the
above inequality also shows the boundedness of Φ. By the same reason, the weak∗-to-
weak∗ continuity of χn implies that Φ is also weak∗-to-weak∗ continuous.

To conclude, we need to check that (Φ(g))m vanishes on Sm . For this aim, assume
x ∈ Pm ∩ Hn and Pm ⊂ H+n and observe that

χ1, . . . ,n(g)(x) = χ1, . . . ,n−1(g)(x) − ψn(x)
6
=1

(χ1, . . . ,n−1(g)(x))( Rn x
7
=x

) = 0.

So at the n-th step of our limit process, the values of our function χ1, . . . ,n g are set to
zero everywhere along Hn on the tiles that lie within H+n . To express this briefly, we say
that χ1, . . . ,n g vanishes on ∂H+n . We now have to show that this value of zero is retained
by all the subsequent functions χ1, . . . ,k g, k > n. We will do this by induction.

So fix k > n and assume that χ1, . . . ,k−1 g(x) = 0 for x ∈ ∂H+n . To show that
χ1, . . . ,k g(x) = 0 as well, we distinguish two cases. If Hk and Hn are not orthogonal, it
follows from our choice of ε that ψk is zero on Hn . Hence, χ1,. . . ,k g(x) = χ1, . . . ,k−1 g(x) =
0 for x ∈ ∂H+n . However, if Hk is orthogonal to Hn , Lemma 3.2 implies that
Rk[Hn] = Hn and Rk[H+n ] = H+n . Therefore, χ1, . . . ,k−1 g(Rk x) = 0 when x ∈ ∂H+n . As
before, it follows that χ1, . . . ,k g vanishes on ∂H+n , which finishes the proof. ∎

In the following subsection, we will construct an inverse operator for Φ, thus
showing that Φ is an isomorphism.

5.3 Extension operators from the tiles and inverse of Φ

The goal of this section is to construct a linear extension operator from Lip0,Sm
(Pm)

to Lip0,N(Hd) which works well with the decomposition considered in the previous
section and allows us to show that the operator Φ is an isomorphism. The inter-
pretation of (⊕k∈N Lip0(Pk))�∞ and its subspace (⊕k∈N Lip0,Sk

(Pk))�∞ considered
in the previous section allows us to view the space Lip0,Sm

(Pm) as a subset of
(⊕k∈N Lip0,Sk

(Pk))�∞ , by setting the function equal to zero outside of Pm .
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For the construction of the extension operator for Lip0,Sm
(Pm), let n1 > ⋯ > ns be

the natural numbers such that the hyperplane Hn j supports a face of Pm which is not
contained in Sm . As a first step, we define the operator

Lip0,Sm
(Pm) → (⊕

m∈N
Lip0(Pm))

�∞

∶ h ↦ (χ−1
ns
○ ⋅ ⋅ ⋅ ○ χ−1

n1
)(h).

The next lemma shows that (χ−1
ns
○ ⋅ ⋅ ⋅ ○ χ−1

n1
)(h) admits a continuous extension to H

d ,
and hence, we may define the extension operator

Em ∶Lip0,Sm
(Pm) → Lip0,N(Hd)∶ h ↦ Em h,

where Em h is the unique continuous extension of (χ−1
ns
○ ⋅ ⋅ ⋅ ○ χ−1

n1
)(h) to H

d .

Lemma 5.4 The operator Em is well defined, bounded, linear, and weak∗-to-weak∗
continuous. Moreover, ∥Em∥ is bounded by a constant depending only on ε, the number
of faces of Pm and the diameter of Pm .

Proof In order to show that Em is well defined, we have to show that g ∶=
(χ−1

ns
. . . χ−1

n1
)(h) admits a continuous extension to H

d . We show this in an inductive
manner. Note that no hyperplane Hn intersects the interior of Pm and, by definition of
Sm (see (5.1)), H+n j

is the half-space separated from Pm by Hn j (otherwise, Hn j would
support a face contained in Sm , which it does not by definition of n1 , . . . , ns).

Since we think of Ck ∶= ⋃s
j=k+1 int(H+n j

) as the set to where we have not yet
extended our function in the k-th step, we now show that gk ∶= (χ−1

nk
○ ⋅ ⋅ ⋅ ○ χ−1

n1
)(h)

has an extension to H
d which is zero on Ck and continuous on H

d/Ck . Since g = gs
and Cs = ∅ this will prove our claim.

The function g0 = h is zero outside of Pm and hence on C0 and (Hd/C0)/Pm . Since
the (relative) boundary of Pm in the set Hd/C0 is precisely Sm and hm vanishes there,
g0 has a continuous extension to H

d/C0.
Let us assume now that we have already shown that gk−1 has an extension to H

d

which is zero on Ck−1 and continuous on H
d/Ck−1. By abuse of notation, we call this

extension gk−1 as well. We now have to check that gk also has the desired properties.
We first check that gk vanishes on Ck and recall that gk(x) = gk−1(x) for x ∈ H−nk

and gk(x) = gk−1(x) + ψn(x)gk−1(Rnk x) for x ∈ H+nk
. We distinguish between two

cases: If for j > k we have Hn j ∩ Hnk ≠ ∅, these hyperplanes are orthogonal, and
hence, x ∈ H+n j

if and only if Rnk x ∈ H+n j
, and hence, gk(x) = 0 for x ∈ int (H+n j

).
For the other case, note that Hnk cannot be in H+n j

since otherwise the face of Pm
contained in Hnk would have to be in H+n j

, which is only possible if it was in Hn j ,
which contradicts Hnk ∩ Hn j = ∅. Hence, we have dist (H+n j

, Hnk) > 2ε, and therefore,
gk(x) = gk−1(x) = 0 for x ∈ Hns−k+1 .

In order to show that gk has a continuous extension to H
d/Ck , let z ∈ Hnk /Ck and

note that gk−1(x) = 0 for x ∈ int(H−nk
). Hence,

lim
x→z

gk(x) = lim
x→z

ψnk(x)gk−1(Rnk(x)) = gk−1(z),

where x converges to z in the interior of H−nk
since ψnk(z) = 1 and Rnk(z) = z. This

finishes the proof of the well-definedness of Em .
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Linearity and pointwise-to-pointwise continuity are clear. Since χ−1
ns

. . . χ−1
n1

is the
composition of bounded operators on (⊕m∈N Lip0(Pm))�∞ and Em hm is continuous,
boundedness of Em follows from Lemma 2.1 and ∥Em∥ ⩽ ∥χ−1

ns
○ ⋅ ⋅ ⋅ ○ χ−1

n1
∥. Finally, note

that this norm only depends on ε, s, and the diameter of Pm and that s is at most the
number of faces of Pm . ∎

Remark 5.5 Note that applying χ−1
n for n distinct from n1 , . . . , ns in definition of Em

does not change anything, as the function we are working with is zero on the interior
of H−n , so instead of using χ−1

ns
○ ⋅ ⋅ ⋅ ○ χ−1

n1
, we can also use χ−1

1, . . . ,n1
or even χ−1

1, . . . ,k for
every k ⩾ n1.

We are now in position to define the operator

Ψ∶ ( ⊕
m∈N

Lip0,Sm
(Pm))

�∞
9→ Lip0,N(Hd)∶ (hm)m∈N ↦ ∑

m∈N
Em hm

(where the sum is meant to be taken pointwise) and show that it is the inverse of Φ.

Proposition 5.6 Ψ is well defined, linear, bounded, weak∗-to-weak∗ continuous, and
the inverse of Φ.

Proof The sum in the definition of Ψ is locally finite with a uniform bound N(d) on
the number of summands; thus, Ψ is a bounded linear operator by Lemma 5.4. Since
weak∗-to-weak∗ continuity of Ψ is easy to see, we are left to show that Ψ is the inverse
of Φ.

We start by showing that Φ ○ Ψ = Id. For this, let (hm)m∈N ∈ (⊕m∈N
Lip0,Sm

(Pm))�∞ and fix an arbitrary k ∈ N. It is enough to check that
(Φ(Ψ((hm)m∈N)))k(x) = hk(x) for x in the interior of Pk . Recall that in Section 5.2,
we observed that there is an index Nk ∈ N such that (χ1, . . . ,n g)(x) = (χ1, . . . ,Nk g)(x)
for n ⩾ Nk , every g ∈ Lip0,N(Hd), and all x ∈ Pk . Using this observation together
with the definition of these operators and Remark 5.5, we have

(Φ(Ψ((hm)m∈N)))k(x) = (Φ( ∑
m∈N

Em hm))
k
(x) = ∑

m∈N
χ1, . . . ,Nk(Em hm)(x)

= ∑
m∈N

(χ1, . . . ,Nk(χ−1
1, . . . ,Nk

(hm)))(x) = ∑
m∈N

hm(x) = hk(x)

for all x ∈ int (Pk) (i.e. (Φ(Ψ((hm)m∈N)))k = hk).
In order to show that Ψ ○ Φ = Id, let g ∈ Lip0,N(Hd) be given. It is enough to

check that Ψ ○ Φ(g)(x) = g(x) for all x in the interior of Pk and for all k. Since
χ−1

n ((Φ(g))k)(x) for k ≠ n is only nonzero if x ∈ H+n and within ε-distance of Hn and
there are at most d hyperplanes Hn1 , . . . , Hnd with this property, there are numbers
M , N ∈ N such that

(Ψ(Φ(g)))(x) =
M
∑
m=1

(Em((Φ(g))m))(x) =
M
∑
m=1

(χ−1
1, . . . ,N)(Φ(g))m)(x)

= χ−1
1, . . . ,N(

M
∑
m=1

1int Pm χ1, . . . ,N(g))(x)

= χ−1
1, . . . ,N χ1, . . . ,N(

M
∑
m=1

1int Pm g)(x) = g(x)
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since we may interpret the sum ∑M
m=1 1int Pm χ1, . . . ,N(g) locally around x as a

representation of χ1, . . . ,N(g) as a function similar to the previous sections, and the
operator χ1, . . . ,N and its inverse are defined pointwise and only depend on “nearby”
values of the function. ∎

5.4 Conclusion of the proof and consequences

In this section, we use the arguments of the previous sections and combine them with
the results of Section 4 to prove our main result. Moreover, we state a number of direct
consequences of the main result and compare it to the case of the space of bounded
Lipschitz functions Lip(Hd).
Theorem 5.7 For d = 2, 3, 4, we have

Lip0(Hd) ≃ (Lip0(N) ⊕ ⊕
m∈N

Lip0(Pm))
�∞

and

F(Hd) ≃ (F(N) ⊕ ⊕
m∈N

F(Pm))
�1

.

Proof We consider the mapping

Lip0(Hd) → Lip0(N) ⊕ ( ⊕
m∈N

Lip0,Sm
(Pm))

�∞
∶ f ↦ ( f ∣N , Φ( f − f ∣N)),

which by Lemma 5.1, Lemma 5.3, and Proposition 5.6 is a weak∗-to-weak∗ continuous
isomorphism. By Lemma 3.1, Pm is bi-Lipschitz equivalent to the same polytope P′m
considered in R

d . Combining this with Proposition 4.3 implies that Lip0,Sm
(Pm) and

Lip0(Pm) are weak∗-to-weak∗ isomorphic, with a uniform bound on the distortion
(because the polytopes Pm are mutually isometric). This gives the first of the claims
above and shows that the isomorphisms are also weak∗-to-weak∗ continuous. Hence,
we may pass to the preduals and arrive at the second claim. ∎
Corollary 5.8 Let d = 2, 3, 4 and M be any net in H

d . Then F(Hd) is isomorphic to
F(M) ⊕ F(Rd).
Proof As proved by Bogopolskii in [12], all nets in H

d are bi-Lipschitz equivalent;
thus F(M) ≃ F(N), where N is the net from the above theorem. Moreover, by
Lemma 3.1, P1 is bi-Lipschitz equivalent to a polytope in R

d (with nonempty interior),
soF(P1) ≃ F(Rd) due to [36, Corollary 3.5]. Finally, eachF(Pn) is isometric toF(P1);
thus, (⊕n F(Pn))�1 ≃ (⊕n F(Rd))�1 ≃ F(Rd), where the last isomorphism follows
from [36, Theorem 3.1]. ∎
Remark 5.9 Alternatively, instead of [12], we could have used the following result
from [32]: if N and M are nets in a metric space, both of cardinality the density of the
metric space, then F(N) ≃ F(M).
Corollary 5.10 For d = 2, 3, 4, F(Hd) has a Schauder basis.
Proof We will show that F(N) ⊕ F(Rd) has a Schauder basis. F(N) does as proved
by Doucha and Kaufmann in [23], whereasF(Rd) does by [33]. Thus, their direct sum
has a Schauder basis as well. ∎
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Remark 5.11 Note that a similar construction using a tessellation with cubes works
in R

d . Additionally, if we look at the spaces of bounded Lipschitz functions Lip(Rd)
and Lip(Hd) rather than the ones which are zero at a given base point, then we can
use an analogous construction to the one we employ in Section 5.2 and Section 5.3
to decompose any function f ∈ Lip(Hd) and any g ∈ Lip(Rd) into a sequence of
bounded Lipschitz functions ( fn)n∈N and (gn)n∈N on the tiles (Pn)n∈N tessellating Hd

and the cubes (Qn)n∈N tesselatingRd , respectively. Since the functions in Lip(Rd) and
Lip(Hd) are already bounded and functions in Lip(M) do not require a base point
within the domain on which they are zero, removing the values on a net is not needed
in this case. Thus, for d = 2, 3, 4,

Lip(Hd) ≃ (⊕
n∈N

LipSn
(Pn))

�∞
and Lip(Rd) ≃ (⊕

n∈N
LipTn

(Qn))
�∞

,

where Sn is defined as in Definition 5.1 and Tn , analogously, is the union of all bound-
ary (hyper-)surfaces of the (hyper-)cubes Qn which are supported by a hyperplane
which does not separate Qn from the origin 0Rd . Equivalently, the union of all faces
of Qn which contain the point(s) of Qn that is (are) furthest from the origin.

From this, we are able to obtain that Lip(Hd) ≃ Lip(Rd)– this time, in a completely
explicit manner.

Indeed, since Sn is the part of the boundary of Pn which is invisible from the origin
(i.e., the geodesics connecting a point from Sn with the origin intersect the polytope
in other points) an elementary geometric argument shows that it is simply connected.
Similarly, Tn is a simply connected subset of Qn . It follows that one can find explicit
bi-Lipschitz mappings between any pair (Pn , Sn) and (Qm , Tm). The only two tiles
for which this is not true are the two tiles P1 ⊂ H

d and Q1 ⊂ R
d which contain their

spaces’ respective base points 0, since those are the only two tiles whose “boundary
condition” Sn is the entire boundary ∂P1 and ∂Q1, respectively. However, this simply
means that we map P1 to Q1 in a bi-Lipschitz way, and then carry on with the rest of
the sequence arbitrarily since any other (Pn , Sn) can be bi-Lipschitz mapped to any,
say, (Qm , Tm).

Finally, there are only finitely many different pairs (Pn , Sn), which are not pair-
wise congruent (and similarly, finitely many pairs (Qm , Tm)). Therefore, these bi-
Lipschitz maps have uniformly bounded distortion and hence induce and isomor-
phism Lip(Hd) ≃ Lip(Rd).

Remark 5.12 The isomorphism Lip(Sd) ≃ Lip(Rd) can be deduced from the cor-
responding isomorphism for the Lip0-spaces. First note that since S

d has a finite
diameter, the space Lip0(Sd) is a hyperplane in Lip(Sd). Moreover, we have

Lip0(Sd) ≃ Lip0(Rd) ≃ Lip0([0, 1]d)

by [1] or [25]. As for the sphere, the space Lip0([0, 1]d) is a hyperplane in Lip([0, 1]d).
By [20, Theorem 5] all the Lip0-spaces above and hence also all spaces of bounded
Lipschitz functions contain a (complemented) copy of �∞; hence, they are isomorphic
to their hyperplanes. Therefore, we may conclude that Lip(Sd) ≃ Lip([0, 1]d). Using
Proposition 4.3 together with an argument similar to the one in Remark 5.11, we obtain
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that Lip(Sd) ≃ Lip(Rd). In contrast to the case of the hyperbolic space, this argument
works for arbitrary d.
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