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With the wide acceptance of the long-chain (LC) n-3 PUFA EPA and DHA as important nutrients
playing a role in the amelioration of certain diseases, efforts to understand factors affecting in-
takes of these fatty acids along with potential strategies to increase them are vital. Widespread
aversion to oil-rich fish, the richest natural source of EPA and DHA, highlights both the highly
suboptimal current intakes in males and females across all age-groups and the critical need for
an alternative supply of EPA and DHA. Poultry meat is a popular and versatile food eaten in
large quantities relative to other meats and is open to increased LC n-3 PUFA content through
manipulation of the chicken’s diet to modify fatty acid deposition and therefore lipid composition
of the edible tissues. It is therefore seen as a favourable prototype food for increasing human
dietary supply of LC n-3 PUFA. Enrichment of chicken breast and leg tissue is well established
using fish oil or fishmeal, but concerns about sustainability have led to recent consideration of
algal biomass as an alternative source of LC n-3 PUFA. Further advances have also been made in
the quality of the resulting meat, including achieving acceptable flavour and storage properties
as well as understanding the impact of cooking on the retention of fatty acids. Based on these
considerations it may be concluded that EPA- and DHA-enriched poultry meat has a very positive
potential future in the food chain.

EPA and DHA intakes: Chicken meat: Enrichment

Food and nutrition are important environmental factors
affecting the incidence of non-communicable disease(1)

and the socio-economic impact of disease is a cause for
major concern in the UK, across Europe and worldwide.
Dietary factors coupled with more sedentary lifestyles have
also led to a substantial rise in the levels of obesity(2)

paralleled by an increased incidence of the metabolic syn-
drome. The metabolic syndrome is known to increase the
risk of CVD (mainly CHD and stroke) and type 2 diabetes;
therefore, the reduction in pathological components of
these conditions, which can be affected by nutrition, are
the focus of many strategies to reduce disease risk and sub-
sequent mortality. Taking into account the predicted trend
towards increasing levels of obesity and associated disease,
prevention and management strategies to reduce the eco-
nomic burden and decelerate rates of progression of

conditions such as the metabolic syndrome, CVD and
type 2 diabetes are vital. At the present time there is a large
body of evidence to support the beneficial effects of long-
chain (LC) n-3 PUFA on cardiovascular health, in par-
ticular and there is also mounting evidence for their
neurological benefits. The potential role of LC n-3 PUFA
in health and its current intakes, along with the enrichment
of chicken meat as a potential vehicle to increase supply,
are the focus of the present review.

Long-chain n-3 PUFA: nomenclature, natural origin
and role in the food chain

The important LC n-3 PUFA are 20:5n-3 (EPA), 22:5n-3
(docosapentaenoic acid) and 22:6n-3 (DHA). EPA and

Abbreviations: LC, long-chain; ALA, a-linolenic acid.
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DHA are naturally found in substantial amounts in marine-
derived foods such as oil-rich fish and to a lesser extent in
white fish and shellfish. This natural occurrence is a direct
result of phytoplankton, a diverse range of microscopic
organisms found in water that are the abundant natural
producers of LC n-3 PUFA at the base of the food chain.
Algae (a type of phytoplankton) are important constituents
of a range of ecosystems and are particularly known for
their role as primary producers of LC n-3 PUFA(3). In the
marine food chain microalgae (a subgroup of algae) are
consumed by zooplankton, which in turn are consumed by
planktiverous fish. Thus, EPA- and DHA-rich lipids orig-
inally synthesised by microalgae are transferred into the
lipid stores of planktiverous fish. Larger pisciverous fish
feed on planktiverous fish, therefore obtaining and depos-
iting LC n-3 PUFA in their lipid stores, and both plankti-
verous and pisciverous fish are consumed by the human
population, at which point these fatty acids enter the
human food chain. The concentrations of LC n-3 PUFA in
edible fish differ subtly according to species, geographical
location and season of catch and are also different in wild
and farmed species, with the lipid profiles of farmed
species resembling those of the fish oil or fishmeal on
which they are fed(4,5).

Another important and dietary essential n-3 PUFA is
a-linolenic acid (ALA; 18:3n-3). This fatty acid is not
marine derived but is found in plant oils, with linseed oil
being one of the richest sources (approximately 50–60%
total fatty acids)(6). The role of ALA is reviewed else-
where(7–9), but it should be noted that the health effects
of ALA (particularly its cardiovascular effects) are not
the same as those associated with marine-derived PUFA.
Investigations have also shown that the conversion effi-
ciency of ALA to EPA and DHA in human subjects not
only proceeds with low efficiency but is influenced by fac-
tors such as gender, age and genotype. Efficiency of con-
version, particularly along the n-3 pathway, has been
shown to be variable at 5–10% ALA being converted to
EPA and 2–5% ALA converted to DHA(10–15). The most
likely limiting factor in the conversion is the D6 desaturase
step, as expression and activity of this enzyme is influ-
enced by numerous factors including competition by other
fatty acids(16).

In conclusion, preformed EPA and DHA are therefore
needed in the human diet to satisfy requirements for opti-
mum health. Dietary habits have changed over the years,
resulting in marked increases in the consumption of n-6
PUFA. It has been suggested that n-6:n-3 should ideally
be approximately 1:1, but currently it is more likely to be
15:1(17). It has also been noted that linoleic acid intake has
increased substantially in Western societies(18), which is of
concern because of the shared metabolic pathways of both
the n-3 and n-6 PUFA and the resulting competition for
metabolite production(19), which has had an impact on the
efficiency of conversion of ALA to EPA. It has been con-
cluded that the concept of n-6:n-3 is not as useful as
considering the impact of actual low consumption of LC
n-3 PUFA(20). In either case, the concurrent increase in n-6
consumption and decrease in n-3 consumption deserves
attention, including consideration of the options for in-
creased supply of LC n-3 PUFA.

Long-chain n-3 PUFA and human health

Cardiovascular health

Metabolic syndrome is a complex web of conditions that
are the consequence of a number of ‘dysregulated’ meta-
bolic pathways(21). It gives rise to markedly increased risk
of serious morbidity or mortality from a cardiovascular-
related illness(22,23), which according to the British Heart
Foundation is the cause of four in ten deaths in the UK
each year(24). Fish, fish oil and thus LC n-3 PUFA have
been indicated in the reduction of risk factors associated
with metabolic disease and mortality since the work of
Hugh Sinclair in the 1950s(25) and in later research show-
ing a 10-fold lower incidence of CVD for Greenland Inuits
than for age- and gender-matched Danes despite a higher
total fat intake(26). These findings were attributed to regular
consumption of seal and whale blubber in Greenland,
which had previously been observed to be a concentrated
source of LC n-3 PUFA. Other epidemiological studies of
populations such as those of Japan and Alaska whose diets
are rich in fish and LC n-3 PUFA have indicated a lower
prevalence of CHD(27,28). A selection of studies investi-
gating the link between fish and LC n-3 PUFA consump-
tion and CVD and all-cause mortality are shown in
Table 1. In addition, one of the largest randomised control-
led trials that has been conducted in this area of research
is the GISSI Prevenzione Study(29), a placebo-controlled
study of >11 000 Italian patients post myocardial infarc-
tion who were given 885 mg EPA+DHA/d or 300 mg
vitamin E/d or both. The greatest reduction in risk was
found for sudden death (44%) after the 3.5-year follow up,
along with 30, 35 and 32% reduction in risk of cardio-
vascular, cardiac and coronary deaths respectively; the
reduction was found in both the EPA+DHA and EPA+
DHA+ vitamin E groups, although the magnitude of risk
reduction was not found to differ significantly between the
two groups, indicating no additional benefit of vitamin E.
These outcomes are impressive and indicative of a marked
benefit of a modest daily intake of EPA+DHA.

The large body of evidence to support the inverse rela-
tionship between CVD and consumption of fish has been
extensively reviewed(30–33). A meta-analysis of eleven key
studies has concluded that for a 20 g/d increase in fish
consumption there is an associated 7% reduction in CHD
mortality risk and that consumption of fish once per week
confers reduced CHD mortality rates(31). A large meta-
analysis encompassing forty-six randomised controlled
trials, prospective cohort studies and case–control studies
has concluded that data from both secondary and primary
prevention studies support the association between in-
creased EPA and DHA consumption and reduced risk of
all-cause mortality, cardiac death, sudden death and stroke
but this outcome is not apparent for ALA(30). The analysis
emphasises that the strongest evidence available at the time
was for secondary prevention rather than for primary pre-
vention, but this finding may have been a result of fewer
comprehensive studies in this area(30). The variety of mech-
anisms that potentially contribute to the reduction in CVD
have also been well studied and are summarised in
Table 2; they include decreased arrhythmias, decreased
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TAG, increased plaque stability and modest reduction in
blood pressure.

Long-chain n-3 PUFA and neurological health

More recently, the potential role of LC n-3 PUFA in neuro-
logical health, particularly in association with infant visual
acuity, child cognitive development, age-related cognitive
decline and dementia has been recognised. A small number
of studies have examined the association between LC n-3
PUFA intake and visual acuity in infants(34–36) and reviews
in this area support the positive role of LC n-3 PUFA in
visual development of infants(37,38). DHA supplementation
has been found to positively affect the mental development

of preterm infants(39–41) and rate of maternal supply of LC
n-3 PUFA is thought to be influential in the subsequent
cognitive development of the child, although consistent
evidence is not available as there have only been a small
number of studies. In a comparison of the mental devel-
opment of children whose mothers were either supple-
mented with cod liver oil providing 1986 mg EPA+DHA/d
or maize oil providing 4747 mg linoleic acid+83 mg
ALA/d from week 18 of pregnancy through to parturition
eighty-four children completed a battery of cognitive
tests(42). The results show a correlation between maternal
EPA and DHA intake during pregnancy and mental pro-
cessing scores at 4 years of age. Further studies with in-
fants are required.

Table 1. Examples of studies reporting an inverse association between fish and long-chain (LC) n-3 PUFA consumption and CVD and mortality

Reference No. of subjects Gender

Study

duration

(years) Key findings

Kromhout

et al.(109)
852 M 20 Fish consumption inversely related to CHD mortality

Kromhout

et al.(110)
272 (elderly) M + F 17 Fish consumption inversely related to CHD mortality

Shekelle et al.(111) 1931 M 25 Fish consumption inversely related to total and CHD mortality

Norrell et al.(112) 10 966 M + F 14 Fish consumption inversely related to fatal MI and CHD mortality

Burr et al.(113) 2033 M 2 Reduced fat intake and increased fish intake inversely related to all

cause mortality

Dolecek(114) 6258 M 10.5 LC n-3 PUFA consumption inversely related to total, CHD and CVD

mortality

Siscovick

et al.(115)
334 cases,

493 controls

M + F LC n-3 PUFA consumption inversely related to primary cardiac arrest

EPA and DHA content of erythrocytes inversely related to primary

cardiac arrest

Daviglus et al.(116) 1822 M 30 Fish consumption inversely related to CHD mortality, CVD mortality,

fatal MI and non-sudden death. No effect on sudden death and

total mortality

Albert et al.(117) 20 551 M 11 Fish consumption inversely related to total mortality and sudden death.

No relationship with MI, non-sudden death, CHD mortality or

CVD mortality

LC n-3 PUFA consumption inversely related to sudden death.

No relationship with sudden death, total mortality, MI, non-sudden

death, CHD or CVD mortality

Oomen et al.(118) 1088 Finland, 1092

Italy, 553, The

Netherlands

M Fish consumption inversely related to CHD mortality in Italy, but not

in Finland or The Netherlands

Oil-rich fish consumption (but not white or lean fish) inversely related

to CHD mortality in all countries

Albert et al.(119) Ninety-four cases,

184 controls

M Whole-blood total LC n-3 PUFA lower in cases of sudden death than

in controls and inversely related to risk of sudden death over an

average of 8.7 years

Hu et al.(120) 84 688 F Fish and LC n-3 PUFA consumption inversely related to incidence

of CHD, CHD mortality and non-fatal MI

Tavani et al.(121) 507 cases, 478

controls

M + F Fish, fresh fish and LC n-3 PUFA consumption inversely related to

risk of non-fatal MI

Lemaitre et al.(122) Fatal CHD: fifty-four

cases, fifty-four

controls

Non-fatal MI: 125

cases, 125 controls

M + F Lower plasma phospholipid EPA +DHA in cases of fatal CHD than in

controls

No difference in plasma phospholipid EPA +DHA in non-fatal MI and

controls

Mozaffarian

et al.(123)
3910 M + F 9.3 Tuna and consumption of ‘other’ fish inversely related to total CHD

death and arrhythmic death. No association with non-fatal MI.

Fried fish and fish-sandwich consumption not associated with

CVD outcomes

M, males; F, females; MI, myocardial infarction.
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Evidence in relation to the effect of LC n-3 PUFA
(particularly DHA(43)) on age-related cognitive decline,
dementia and Alzheimer’s disease is mainly from epi-
demiological studies(44) and is inconsistent. Part of the
Framingham Heart Study has reported that subjects with
plasma phosphatidylcholine DHA levels in the top quartile
have a 47% lower risk of developing all-cause dementia
than those in the bottom quartile and greater protection is
afforded in those consuming 2.9 meals of fish per week
compared with those consuming only 1.3 meals of fish per
week(45). Similarly, the Zutphen Study has revealed that
fish consumers show less cognitive decline over 5 years
than those who consume no fish and there is an inverse
linear relationship between EPA+DHA intake (calculated
on the basis of fish consumption) and cognitive decline(46).
The most-recent studies in this area have failed to show
an association between moderate fish and LC n-3 PUFA
consumption and long-term dementia risk(47) or between
erythrocyte membrane concentrations of LC n-3 PUFA and
dementia or Alzheimer’s disease risk(48). Intervention trials
investigating the link between fish and LC n-3 PUFA
intake and cognitive decline are sparse and those available
have shown mixed results. In a study of 204 patients with
Alzheimer’s disease it was found that supplementation
with 1.7 g DHA/d and 0.6 g EPA/d does not have an over-
all impact on cognitive performance(49). More studies in
this area are clearly required before conclusions and speci-
fic recommendations can be made.

Recommended intakes of long-chain n-3 PUFA

In 1994 the Department of Health recommended that the
population average consumption of LC n-3 PUFA should
be increased from the estimated intake of approximately
100 mg/d to 200 mg/d (1.5 g/week)(50). In 2004 the report
Advice on Fish Consumption: Benefits and Risks was pub-
lished jointly by the Scientific Advisory Committee on

Nutrition and the Committee on Toxicity(51), having been
commissioned specifically to examine the nutritional and
toxicological evidence relating to fish consumption and its
benefits and potential risks. The report acknowledges the
Department of Health’s earlier recommendation(50), but
notes that the UK population is at high risk of CHD and
therefore recommends a review of intakes. It also considers
new evidence for health benefits that could substantiate
an increase in recommended intakes of fish, whilst also
considering the potential adverse affects of consumption
because of the presence of toxins. Based on available evi-
dence for CVD, but not neurological effects, the report
recommends consumption of 450 mg LC n-3 PUFA/d,
which is still easily achievable by consuming two portions
of fish per week, of which one should be oil-rich fish.

The report also highlights the low consumption of oil-
rich fish in the UK (approximately 27% of adults are
consumers) but also the lack of sufficient data to formulate
recommendations for the sector of the population who
consume little or no oil-rich fish(51). It also acknowledges
that there is evidence to demonstrate the need to consume
‡1.5 g LC n-3 PUFA/d in order to have any noticeable

effects on many CVD risk factors such as reducing TAG
and inflammatory response, but that making a generalised
recommendation of >450 mg/d is not ‘practical’. The lack
of recommendations for intakes >450 mg/d, despite con-
vincing evidence to the contrary, has in recent years been
subject to much debate(52). However, it will become clear
in the following discussions that average intakes are
<450 mg/d at present and thus more emphasis should be
placed on increasing intakes in general rather than attempt-
ing to provide exact guidelines for intakes in different
population sectors.

Recommended v. current intakes: effects of age
and gender

Estimates of intakes of specific fatty acids can be derived
from food consumption data, chemical analysis of diets or
from blood or tissue lipid samples used as biomarkers of
intake and good-quality food-consumption data(53). Despite
the availability of good-quality data from the UK National
Diet and Nutrition Survey(54) there have been no detailed
reports of LC n-3 PUFA intake across the UK population
showing the relative contributions of different foods to
total LC n-3 PUFA intake until a recent report of work that
couples food intakes with composition data for fish, meat,
milk and milk products(55). This report estimates mean
current intakes at 244 mg/d for UK adults, but highlights
the possible effect of only 27% of the population being
consumers of oil-rich fish and suggests that intakes
amongst non-consumers could be as low as 100 mg/d(55). It
should be noted that whilst animal-derived foods currently
supply only minor amounts of LC n-3 PUFA to UK adults
(mg EPA+DHA per adult per d; oil-rich fish 131, chicken
meat 26, beef 4, lamb 2), these foods are the only source
for the majority of the population(55).

In terms of global intakes of EPA+DHA, the USA
is reported to have intakes of 100–200 mg/d(56) whilst
Australians (all ages) are estimated to consume

Table 2. Effects of long-chain (LC) n-3 PUFA on cardiovascular risk

factors (adapted from Calder(124) and Minihane & Lovegrove(125))

Risk factor

Effect of LC

n-3 PUFA

Plasma TAG concentration (fasting and

postprandial)

fl

Production of chemoattractants fl
Production of growth factors fl
Cell-surface expression of adhesion

molecules

fl

Production of inflammatory eicosanoids

and cytokines

fl

Blood pressure fl (modest)

Endothelial relaxation ›
Thrombosis fl
Cardiac arrhythmias fl
Heart-rate variability ›
Atherosclerotic plaque stability ›
NO production ›
Platelet aggregation fl

fl, Decreased; ›, Increased.
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approximately 175 mg/d(57). Furthermore, there is the poten-
tial for considerable variation between genders and age-
groups(55) but because the UK National Diet and Nutrition
Survey reports oil-rich fish intakes that include canned
tuna, which should not be categorised as an oily fish
(although this factor has been corrected for by the Scien-
tific Advisory Committee on Nutrition and the Committee
on Toxicity in their calculations of mean fish intake for all
ages and genders(51)), it has not been possible to study this
variation in detail. Consequently, further studies have been
carried out to correct for canned tuna and to calculate
current intakes of EPA+DHA by gender and across age-
groups(58). The results of these investigations show clear
age-related trends emerging in both males and females.
EPA+DHA intakes show an increase with increasing
age, with intakes in young adults (19–24 years) the lowest
at 97 mg/d and those of 50–64 year olds the highest at
330 mg/d(58). It is not clear, however, whether these trends
will continue in future generations as these data are only
cross-sectional. A summary of studies that have reported
intakes by age-group is shown in Table 3, which also
identifies age-related trends in other countries. Estimates
of LC n-3 PUFA intakes for the low-income subsection of
the UK population have also been made using data from
the Low Income Diet and Nutrition Survey(59) and food

fatty acid concentrations(58). Overall, EPA+DHA intakes
are approximately 50 mg/d lower than those for the
national population (RA Gibbs, C Rymer and DI Givens,
unpublished results) but the percentage of consumers of
oil-rich fish in this group (15) is lower than that in the
national population, suggesting that intakes in non-
consumers would be lower than the mean.

It is worth noting that the countries that have been dis-
cussed so far are Westernised and that intakes in Japan,
for example, a nation for which fish is a substantial part
of the diet, are higher, approximately 1.2 g LC n-3 PUFA
per capita per d(60). In conclusion, current intakes of
EPA+DHA in UK adults in relation to recommendations
are substantially <450 mg/d for males and females across
all age-groups, with greater disparity in the youngest age-
groups. Furthermore, widespread low consumption of oil-
rich fish (67% non-consumers according to the National
Diet and Nutrition Survey(54) and 85% non-consumers
according to the Low Income Diet and Nutrition Sur-
vey(59)) coupled with evidence for poor in vivo conversion
of ALA to EPA and DHA(15,61) would suggest that LC n-3
PUFA status in at least two-thirds of the population is very
low indeed, with the main contribution currently being
from animal sources. Thus, strategies to increase intakes
across the whole population are urgently needed, although

Table 3. Studies reporting EPA and DHA intakes in different age-groups and genders

Reference Country and food intake method

No. of

subjects Age (years)

EPA +DHA intake (mg/d)

Males Females All

Meyer et al.(57) Australia, 24 h recall 13 858 2–3 – – 34

4–7 – – 90

8–11 – – 95

12–15 – – 118

16–18 – – 145

19–64 – – 161

>65 – – 165

Howe et al.(126) Australia (same cohort as

Meyer et al.(57)), 24 h recall

13 858 2–11 – – 78

12–18 – – 127

19–24 – – 171

25–64 – – 178

‡ 65 – – 165

All ages 208 143 175

Bauch et al.(127) Germany, interview of

4-week diet history

4030 18–24 232 127 –

25–34 212 167 –

35–44 238 197 –

45–54 295 207 –

55–64 274 219 –

65–79 278 200 –

Sioen et al.(128) Belgium, 2 d food diary 641 18–39 – 209 (54*) –

Sioen et al.(129) Belgium, parentally-reported

3 d food diary

661 2.5–3 – – 65

4–6.5 – – 75

2.5–6.5 – – 72

Gibbs et al.(130) UK, 7 d weighed intakes 1358 19–24 97 98 –

25–34 172 136 –

35–49 249 203 –

50–64 334 328 –

*Median values.

148 R. A. Gibbs et al.

https://doi.org/10.1017/S0029665109991716 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665109991716


P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

strategies that specifically target different population sub-
groups may be appropriate.

The potential of animal-derived foods to
increase intakes

Animal-derived foods have been highlighted as foods that
can potentially be altered to accommodate optimum nutri-
ent requirements for health(56,62), including manipulation
of their LC n-3 PUFA content. Animal nutrition plays a
key role in determining animal fat composition and there-
fore is the central tool for changes in fat composition.
The lipid fraction of animal-derived foods has particular
potential for manipulation through dietary adjustment(63),
although responses to such manipulations are species de-
pendent. Meats and dairy foods currently contribute sub-
stantially to the human diet(54,55). As animal fat is a major
source of fat in the diet, exploiting the wide consumption
of animal fats is potentially an important route to increased
intakes of particular fatty acids(62,63). The overall success
of strategies to increase the supply of LC n-3 PUFA in the
food chain through enriched foods is likely to depend on
the following key factors(55,62–66):

the extent to which the fatty acid composition of the
food is amenable to manipulation;
the wideness of consumption of the product across the
general population;
the quantities in which the product is consumed;
taste and other quality characteristics;
consumer acceptance and willingness to buy.

Poultry meat as a prototype food to increase intakes

Poultry meat has been identified as meeting the criteria
outlined, chiefly because of the amenability of the lipid
fraction to accommodate PUFA(63,65,67–70). Poultry meat is
a popular food, consumed by approximately 80% of UK
adults(54) and is also highly versatile. It is available in
many forms at retail and the range is wide enough to meet
the preferences of a wide range of consumers. According
to TNS� (London, UK; personal communication) 34% of
the poultry meat purchased in retail outlets during 2006–8
was as meat portions, whilst 11% was purchased as whole
birds. A further 14% of poultry meat was found in ready-
prepared meals containing meat and carbohydrate and 14%
as processed meat portions. Added together these sources
account for approximately 75% of poultry-meat purchases,
with the remaining 25% comprising hot rotisserie birds,
the meat in poultry pies, cold and ready-to-eat poultry etc.
There are no data available for quantities of poultry meat
consumed as fast food, in restaurants and other kinds of
catering or in takeaway sandwiches etc., but there is also
likely to be a substantial amount consumed in this way.

The fatty acid composition of breast, leg and skin of
broilers (chickens reared for meat) has been shown to
reflect that of the diet(67). Targeted enrichment of tissues
was first achieved in poultry in the late 1960s when it was
demonstrated that feeding fish oil to turkeys increases the

EPA and DHA content of depot fat and muscle lipids(69).
Work began in the 1980s to study the effects of feeding
ALA to poultry, but it was soon noted that the response of
skinless breast, in terms of EPA and DHA deposition, is
poor although the response in meat with skin is better. This
finding is understandable because skin has a high lipid
content and is also composed of a larger proportion of
TAG(63), in which ALA accumulates. It was found that
ALA itself is readily accumulated in tissues. A review of
work on feeding ALA to poultry(65) has concluded that
feeding ALA in order to increase EPA and DHA deposi-
tion in edible tissues (breast and white meat particularly) is
not at all efficient and therefore a preformed source of EPA
and DHA is needed if poultry are to accumulate mean-
ingful amounts in their edible tissues. No differences
between gender or breeds of chicken have been found in
terms of their response to dietary n-3 PUFA(63).

An increase in the EPA and DHA content of tissues as a
result of feeding fish oil or algae has been noted by several
authors(63,68,69,71–75). Over time, the emphasis has shifted
to investigating the appropriate doses of dietary LC n-3
PUFA and the efficiency of responses that will achieve
maximum potential for poultry meat to provide LC n-3
PUFA to the human diet. Studies have also investigated the
potential drawbacks of such practices in terms of meat
quality.

Challenges with enrichment of poultry meat

Sustainability of long-chain n-3 PUFA sources

The potential use of large quantities of fish oil or fishmeal
in animal feeds is a cause for concern because of the
uncertainty over the sustainability of increasing demand
on world fish stocks(76). At the present time there is little
evidence to show the direct effects of using alternative
sources of LC n-3 PUFA on the rate of enrichment of
edible chicken tissues or on the oxidative stability of
tissues enriched with sources of LC n-3 PUFA other than
those of fish oil or fishmeal. Although work is underway to
engineer a crop plant such as oilseed rape (Brassica napus)
to have the capacity to manufacture and deposit EPA in its
seed oil, it may be some time before this application can
be tested(77,78). However, since ALA is not converted into
EPA and DHA to any meaningful extent by the broiler and
the conversion of ALA to 18:4n-3 (stearidonic acid) by
D6-desaturase is likely to be the limiting factor in this
process, the provision of preformed stearidonic acid to the
bird may give rise to deposition of EPA in tissues. A seed
oil that naturally contains stearidonic acid is that derived
from the Echium plant, which can be grown in temperate
conditions and contains approximately 12.5 g stearidonic
acid/100 g fatty acids(79). In a recent study in which broiler
feeds containing rapeseed oil and Echium oil were com-
pared higher proportions of EPA, docosapentaenoic acid
and DHA were found in edible tissues of birds receiving
Echium oil(80). Work with stearidonic acid has also been
undertaken in human subjects with positive out-
comes(79,81).

Having considered all these factors it was concluded
that utilisation of primary production of LC n-3 PUFA by

Enriched chicken meat and LC n-3 PUFA intake 149

https://doi.org/10.1017/S0029665109991716 Published online by Cambridge University Press

https://doi.org/10.1017/S0029665109991716


P
ro
ce
ed
in
gs

o
f
th
e
N
u
tr
it
io
n
So

ci
et
y

algae is the most viable alternative to fish sources at the
present time and warrants further investigation. The com-
mercialisation of the primary production of LC n-3 PUFA
in the 1980s followed the development of a successful
heterotrophic method of microalgae production(82) that
allowed adequate production rates and consistent product
quality. Whilst successful small-scale studies have been
carried out to test the use of algal biomass (primarily from
Schizochytrium sp.) to enrich chicken meat and eggs(83),
there is currently a lack of comprehensive and comparative
studies that have investigated the ability of algal biomass
to enrich broiler tissues to the same extent as fish oil.
A comparison of control broilers with broilers fed the drum-
dried Schizocytrium sp. biomass DHA Gold� (Omega-
Tech Inc., Boulder, CO, USA) to provide a total of 3.6 g
DHA per bird over a 49 d period has shown that the birds
fed the biomass have a 6-fold increase in the DHA content
of breast meat and a 2–3-fold increase in the DHA content
of dark meat(83). In the only study that has compared the
use of commercially-available drum-dried algal biomass of
Schizocytrium sp. with that of fish oil to enrich broiler
tissues 600 broilers were fed for the final 21 d of growth
the biomass at one of two rates (22 and 55 g/kg feed) or
fish oil at 20 g/kg feed or a control diet(84). DHA enrich-
ment of the tissues was found for all treatments compared
with controls, with similar rates of enrichment by algal
biomass and fish oil at equivalent dietary inclusion rates.
However, the results are for breast tissue only and it is not
clear which genotype of broiler was used, although there is
no evidence to suggest marked differences between geno-
types(85). Furthermore, the DHA concentration reported for
the algal biomass used in the experiment is lower than that
for the currently-available drum-dried algal biomass DHA
Gold�, which is a result of further developments in the
algae production process that have increased the fat con-
tent and DHA concentration of the algal biomass (R Abril,
personal communication).

To further clarify the potential of the currently-available
algal biomass as a sustainable alternative to fish oil,
a study has been conducted in which the effects on tissue
fatty acid composition of DHA supplementation in the
form of algal biomass, fresh fish oil and encapsulated fish
oil have been compared(86). Low, medium and high doses
of algal biomass were used, providing approximately 2, 4
and 6 g DHA/kg feed respectively. Fish oil and encapsu-
lated fish oil were provided at 4 g DHA/kg feed. LC n-3
PUFA concentrations were found to increase in breast and
leg tissue as a result of all three sources of DHA compared
with controls. However, breast tissue DHA concentrations
were not different between sources at 12.9, 12.1 and
14.7 g/100 g fresh tissue for fresh fish oil, encapsulated fish
oil and medium-dose algal biomass respectively. A linear
increase in DHA was found in response to increasing dose
of algal biomass, which indicates that edible tissues
respond well to increasing DHA from algal biomass at the
rates applied. These findings are of great value as they
confirm that algal biomass has the same capacity to enrich
edible tissues as conventional sources of DHA. The study
also suggests that there could be a potential to ‘tailor’
composition using species of algae that produce either EPA
or DHA specifically.

Efficiency of accumulation of long-chain n-3 PUFA
in different tissues

The accumulation of LC n-3 PUFA in broiler tissues other
than breast and leg is not well documented, particularly in
response to increasing dietary supply of LC n-3 PUFA.
However, such information would provide a useful basis
for making inferences on the partitioning and overall effi-
ciency of LC n-3 PUFA utilisation in the broiler. It is
known that certain tissues, such as brain, have an innate
requirement or preference for DHA for healthy function-
ing(37), but little evidence is available to indicate what
proportion of dietary DHA is partitioned into these tissues
in broilers or indeed what proportion is metabolised or
excreted. It has been demonstrated that birds fed sunflower
oil or fish oil have markedly reduced fat pads compared
with those fed diets containing tallow, with the birds fed
the PUFA-rich diets showing greater energy partitioning
towards lean tissue than fat(87).

Initial findings of recent studies have established that the
proportions of DHA in breast muscle, leg muscle, brain,
heart, kidneys, liver, skin (with subcutaneous fat) and
abdominal fat increase in response to increasing dietary
DHA content and that the tissue DHA content is higher in
birds fed diets containing 4 mg DHA/kg feed than in con-
trols(86). Furthermore, estimates of the tissue DHA pools
show that whilst brain tissue contains 16 g DHA/100 g fatty
acid, this tissue DHA pool is only 20 mg. Skin, however,
contains 1.9 g DHA/100 g fatty acid, although the tissue
DHA pool is 2.3 g (the greatest of all tissues analysed).
Full analysis of these data will provide a better indication
of the fate and partitioning of DHA in broiler tissues, but it
is clear that a large proportion of dietary DHA retained
in the carcass is in the skin and adipose, which presents a
challenge for its utilisation in the food chain.

Quality of enriched poultry meat

There are also potential problems associated with meat
from birds fed diets supplemented with fish oil, fishmeal or
algae in terms of keeping quality and sensory attributes
because of the low oxidative stability of LC n-3
PUFA(88–91). Thus, if enriched chicken meat is to become a
viable alternative to fish, work to overcome these problems
is essential. The oxidative stability of enriched food pro-
ducts is important as it has a direct effect on the food’s
flavour, quality and shelf life, which ultimately determine
consumer acceptance of the product(92,93). Post slaughter,
membrane deterioration because of oxidation occurs in
animal tissues and this loss of membrane integrity causes
drip loss and degradation of membrane lipids, which sub-
sequently leads to rancidity and warmed over flavours
(unpleasant flavours that develop on the oxidative dete-
rioration of meat including rancid, painty or metallic fla-
vours) in meats(94,95). Increased unsaturation of fatty acids
is associated with a greater risk of oxidation as the oxi-
dation potential of a fatty acid is directly related to the
number of double bonds it contains; for example, the oxi-
dation potential of DHA is five times greater than that of
linoleic acid(96). Thus, the phospholipid fraction of chicken
muscles enriched with highly-unsaturated EPA and DHA
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are particularly vulnerable to rapid oxidation. Cooking fur-
ther increases the susceptibility to oxidation and reheating
cooked meat can bring about very rapid oxidation. Meat
(enriched with n-3 PUFA) that has been acceptable when
freshly cooked becomes unacceptable when refrigerated
and then reheated the following day(97).

To overcome this increased propensity to oxidation
greater concentrations of antioxidants need to be incorpo-
rated into the meat. Synthetic antioxidants such as buty-
lated hydroxyanisole and butylated hydroxytoluene can be
used (in countries where it is permissible). These anti-
oxidants can be incorporated into the poultry diet or (in
processed products) added during processing. Adding
relatively high concentrations of vitamin E to poultry diets
also prevents much of the oxidative deterioration as-
sociated with increasing the n-3 PUFA content of the
meat(89–91,98,99). The recommended dietary vitamin E con-
centration for finishing broilers (birds in the final phase of
growth before slaughter, when nutrition is often adjusted to
reflect these changes) is 50 mg/kg(100) but typical levels of
inclusion of vitamin E (as a-tocopheryl acetate) with n-3
PUFA-enriched diets are £300 mg/kg(84,85,87,94–98,101,102).
A relationship has been proposed to predict the dietary
vitamin E content required for a particular dietary PUFA
content in order to maintain the oxidative stability of
meat(103). Supplementing the broiler diet with 40 g fish oil
/kg and 100 mg a-tocopheryl acetate/kg produces breast
meat with sensory qualities that are not significantly dif-
ferent from those of control meat, even when the cooked
meat has been refrigerated and reheated(104). Alternative
antioxidants, such as vitamin A analogues and herbal
extracts, have also been investigated but they do not appear
to be as effective as vitamin E at preventing oxidative
deterioration(98,105,106), although synergistic effects of
feeding some herbal extracts in combination with vitamin
E have been observed(107,108).

The effect of cooking on enriched poultry
meat composition

Since all chicken meat is consumed in the cooked state it is
crucial that the effects of cooking on fatty acid composi-
tion are also known. Fatty acid-enrichment studies have
predominantly reported the fatty acid composition of raw
meat and very few studies have directly compared un-
cooked and cooked conventional and enriched broiler
meat. The fatty acid composition of grilled samples of LC
n-3 PUFA-enriched chicken has been compared with that
of raw meat samples derived from broilers fed a control
diet or a diet containing 50 or 150 g tuna fishmeal with an
antioxidant complex/kg feed for 21 d(107). Concentrations
of total LC n-3 PUFA in grilled breast and thigh were
found to be increased compared with those of raw breast
and thigh and it was suggested that moisture loss during
grilling causes a concentrating effect(74). In a study in
which fatty acid concentrations of cooked thigh meat with
skin were also measured it was found that cooking for
30 min at 80�C in a water bath results in highly significant
reductions (P £ 0.001) of 6.2%, 6.8% and 5.7% in SFA,
MUFA and PUFA respectively, but SFA:MUFA:PUFA is

unchanged and there are no significant differences between
the levels of EPA and DHA in raw and cooked thigh
meat(108). The fish oil concentrations of the diets used in
the study were relatively low (0, 5, 10 or 20 g/kg feed)
compared with those used in recent enrichment studies
(£ 40 or 60 g/kg feed). Thus, a greater extent of enrichment
and thus polyunsaturation of the lipids in edible tissues
may have an impact on losses. The findings of these two
studies are insufficient to draw firm conclusions in relation
to the fate of EPA+DHA as a consequence of cooking.

To address this issue a study was designed to examine
the effect of cooking skinless breasts taken from a group of
broilers reared on either a control diet (main fat source
soya oil at 50 g/kg feed) or a fish oil-supplemented (50 g
fish oil/kg feed) diet and slaughtered at approximately 42 d
of age. Each breast was cut in half and half was roasted for
20 min in a fan-assisted oven at 180�C. Both the cooked
and raw breast pieces were analysed for fat content and
fatty acid composition whilst maintaining the identity of
each raw and cooked breast tissue pair. The concentrations
of major fatty acids in the breast tissue were not found to
be significantly affected, indicating that no significant loss
of any fatty acid occurs as a result of cooking (by roasting;
RA Gibbs, C Rymer and DI Givens, unpublished results).
Furthermore, to establish whether there are any differences
between different methods of cooking skinless breast
samples were taken from forty-eight birds that had re-
ceived either control or fish oil-supplemented diets at (/kg
feed) 40 g fish oil+ 100 mg vitamin E (as a-tocopheryl
acetate), 60 g fish oil+100 mg vitamin E, 60 g fish oil+
150 mg vitamin E, 80 g fish+200 mg vitamin E. At 42 d
broilers were slaughtered and breasts were taken and cut
longitudinally into three pieces. Breast pieces were taken
and cooked by one of four methods; boiling, pan frying in
olive oil, grilling and roasting. Procedures were standar-
dised and closely resembled those used in the home. Once
the cooked chicken pieces had cooled each piece was
analysed for fat content and fatty acid composition. Sig-
nificant differences (P<0.0001) in fatty acid concentrations
of chicken breast cooked by different methods were found,
with results suggesting that boiling chicken meat (as a
representation of casseroling in water-based liquid) is the
most favourable method (RA Gibbs, C Rymer and DI
Givens, unpublished results). A 135 g breast portion de-
rived from broilers fed 40 g fish oil/kg feed, when boiled,
has been shown to contain approximately 450 mg EPA+
docosapentaenoic acid+DHA or 320 mg EPA+DHA.
These levels are different from those for fried breast,
which contains 210 and 270 mg of EPA+DHA and EPA+
docosapentaenoic acid+DHA respectively (RA Gibbs,
C Rymer and DI Givens, unpublished results).

Potential impact of enriched chicken meat on
intakes of long-chain n-3 PUFA

Chicken meat currently provides a small proportion of the
LC n-3 PUFA consumed in the human diet but it is clear
that there is great potential for this enriched prototype to
contribute to increased intakes. Much research has recently
focused on techniques for optimising the LC n-3 PUFA
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content of poultry meat to address the needs of the con-
sumer. However, to predict the potential impacts on nutri-
ent intakes there is a need to relate modified-product
composition to product consumption trends and the overall
diet(55,67). This issue is currently being addressed and
initial findings, some of which are described here, indicate
that cooked chicken breast could supply £148 mg EPA+
DHA/d based on current consumption trends of chicken
meat in UK adults. However, as with all food technologies,
governmental, commercial and consumer interest is des-
perately needed to make LC n-3 PUFA-enriched chicken
meat a viable and widely-available product.

Conclusion

Current intakes of LC n-3 PUFA in UK adults both in the
national population and in the low-income subgroup are
suboptimal as a consequence of low fish consumption.
Poultry meat fatty acid composition can be altered so that
it contains more LC n-3 PUFA and currently such enrich-
ment can be achieved by dietary supplementation with fish
oil and fishmeal or by means of algae, particularly if sus-
tainability is of concern. Reduced oxidative stability of the
meat is the main drawback in terms of product quality but
this issue can be adequately resolved, at least in freshly-
cooked meat, by meeting the antioxidant requirements
of the bird via vitamin E supplementation. The LC n-3
PUFA content of enriched meat appears to be retained after
cooking, thus confirming enriched poultry meat as a viable
potential source of LC n-3 PUFA for human diets in the
future.
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