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The Steklov Problem on Differential Forms

Mikhail A. Karpukhin

Abstract. In this paper we study spectral properties of the Dirichlet-to-Neumann map on diòeren-
tial forms obtained by a slight modiûcation of the deûnition due to Belishev and Sharafutdinov. _e
resulting operator Λ is shown to be self-adjoint on the subspace of coclosed forms and to have purely
discrete spectrum there. We investigate properties of eigenvalues of Λ and prove a Hersch–Payne–
Schiòer type inequality relating products of those eigenvalues to eigenvalues of theHodge Laplacian
on the boundary. Moreover, non-trivial eigenvalues of Λ are always at least as large as eigenvalues
of the Dirichlet-to-Neumann map deûned by Raulot and Savo. Finally, we remark that a particular
case of p-forms on the boundary of a 2p+2-dimensional manifold sharesmany important properties
with the classical Steklov eigenvalue problem on surfaces.

1 Introduction

Let M be a compact Riemannian manifold of dimension n with smooth boundary
∂M. Recently, there has beenmuch research dedicated to the Steklov eigenvalue prob-
lem that is deûned in the following way. Number σ is called a Steklov eigenvalue ofM
provided there exists a non-zero solution u ∈ C∞(M) to the following problem:

{ ∆u = 0 on M ,
∂nu = σu on ∂M ,

where ∂n stands for the derivative with respect to the unit outer normal vector.
Steklov eigenvalues coincide with eigenvalues of the Dirichlet-to-Neumann oper-

ator D∶C∞(∂M) → C∞(∂M). _e operator D sends a function v to the normal de-
rivative of its harmonic extension. _enD is a self-adjoint elliptic pseudo-diòerential
operator of order 1, i.e., Steklov eigenvalues form a sequence tending to +∞. For de-
tails, we refer the reader to [6] and the references therein.

In the present paperwe study Steklov eigenvalues on the space of diòerential forms
on M. Several deûnitions of the Dirichlet-to-Neumann operator are present in the lit-
erature [1,9, 13]. _e deûnition commonly used in spectral theory literature is due to
Raulot and Savo [13] and has the advantage of being a positive elliptic self-adjoint
pseudo-diòerential operator of order 1. However, in the literature on inverse prob-
lems, diòerent deûnitions of the Dirichlet-to-Neumann map are used; see the full
Dirichlet-to-Neumann map in [9, 16] and the deûnition due to Belishev and Shara-
futdinov [1] that motivated by Maxwell’s equations. In the present paper we modify
the latter to obtain a self-adjoint operator with a purely discrete spectrum and study
its eigenvalues. We plan to tackle spectral theory of the full Dirichlet-to-Neumann
map in a subsequent article.
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2 Main Results

2.1 Notations

In the following, (M , g) is always assumed to be a smooth compact orientablemani-
fold of dimension n with smooth nonempty boundary ∂M. It seems that orientability
is a purely technical condition that could be eliminated with further investigation.
However,_eorem 2.7 requires orientability in an essential way.

Let (X , h) be a compact Riemannianmanifold, possibly with boundary. _e space
of smooth diòerential p-forms on X will be denoted byΩp(X). We denote the spaces
of smooth exact and closed p-forms by

Ep(X) ⊂ Cp(X) ⊂ Ωp(X),

respectively. A letter c in front of either of them denotes the preûx “co-”, concatenation
of the letters stands for intersection, e.g., CcCp(X) is the space of closed and coclosed
p-forms that will be denoted by Hp(X) in the following. If ∂X = ∅, then Hp(X)
coincides with the space of harmonic forms, i.e., the kernel of the Hodge–Laplace
operator.

However, if ∂X /= ∅, those spaces are diòerent, andwe refer to elements ofHp(X)
as harmonic ûelds and reserve the term harmonic form for elements of ker∆. Let
i∶ ∂X → X be an embedding of the boundary and let in denote the contraction of
a diòerential formwith the outer unit normal vector ûeld. _e form ω ∈ Ωp(X) satis-
ûes the Dirichlet (resp. Neumann) boundary condition if i∗ω = 0 (resp. inω = 0). We
use subscripts D and N to indicate spaces of forms satisfying Dirichlet or Neumann
boundary conditions. Finally, for ω ∈ Ωp(X), we denote by tω,nω ∈ Γ(Ωp(X)∣∂X)
the tangent and normal parts of ω on the boundary, i.e., tω is i∗ω considered as a
section of Ωp(X)∣∂X and nω = dn ∧ inω, where dn is a 1-form, dual to the outer unit
normal vector ûeld. In practice, the only diòerence between nω and inω is the way
the Hodge ∗-operator acts on them; see Proposition 3.1. In the following we use i∗

exclusively to denote the pullback of diòerential forms via map i as opposed to the
pullback of sections. For that reason, we write Ωp(X)∣∂X for the restriction of the
bundle.
For a subspace V ⊂ Ωp(X) we denote by HsV ⊂ HsΩp(X) the completion of

V with respect to the Sobolev Hs-norm. We write L2 instead of H0. For details
on Sobolev norms, see [15, §1.3]. We use angle brackets ⟨ ⋅ , ⋅ ⟩ to denote the point-
wise L2-inner product, double angle brackets ⟪ ⋅ , ⋅⟫ to denote the integrated L2-inner
product, round brackets ( ⋅ , ⋅ ) to denote theH−s ×Hs → R duality pairing and ∥ ⋅ ∥Hs

to denote Hs-norm. Usually, it is clear from the context whether we are working on
the boundary or on the manifold itself. In cases where it needs clariûcation, we add
subscripts indicating the ambient space, e.g., ∥ ⋅ ∥L2(X) or ∥ ⋅ ∥H1/2(∂X).
Finally, we note that for manifolds with boundary, Green’s formula states that for

α, β ∈ H1Ωp(M)

∫
M
⟨dα, β⟩ dV = ∫

M
⟨α, δβ⟩ dV + ∫

∂M
⟨i∗α, inβ⟩ dA(2.1)

= ∫
M
⟨α, δβ⟩ + ∫

∂M
i∗α ∧ ∗nβ.
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2.2 Maxwell’s Equations

In the modern form, Maxwell’s equations are usually written in the language of dif-
ferential forms on an orientable 3-dimensional Riemannian manifold [20]. In the
exposition below, we follow [11]. Maxwell’s equations have the following form:

dE = −∂tB, dH = ∂tD,
D(x , t) = ∗єE(x , t), B(x , t) = ∗µH(x , t),

dB = 0, dD = 0,

where E and H are 1-forms corresponding to electric and magnetic ûelds, B and D

are 2-forms corresponding to magnetic �ux density and electric displacements, ∗є
and ∗µ are Hodge operators for some metrics corresponding to electric permittivity
and magnetic permeability. When the 3-manifold has a boundary, there is a natu-
ral response operator R that sends the component of the electric ûeld tangent to the
boundary to the component of the magnetic ûeld tangent to the boundary. In pa-
per [11] the authors studied the inverse problem of recovering themanifold M given
the response operator.
Consider the simplest case ∗є = ∗µ = ∗ and the time-harmonic solution to Max-

well’s equations, i.e., the t variable is separated and solutions depend on t only via
factor e ik t for a ûxed angular frequency k ∈ R. _en Maxwell’s equations for E andB
becomes

−ikB = dE, d ∗B = ik ∗ E, dB = 0.

In terms of E this system has the form

(2.2) ∆E = k2E, δE = 0,

and the response operator sends tE↦ t∗B = i
k ∗ndE, i.e., it connects tEwith ndE. In

the next section we use this calculation to motivate the deûnition of the Dirichlet-to-
Neumann map on diòerential forms for Riemannian manifolds of arbitrary dimen-
sion.

2.3 Definition and Basic Properties

Let M be a compact orientablemanifoldwith smooth non-empty boundary ∂M. Mo-
tivated by the particular case k = 0 of (2.2), we deûne the Dirichlet-to-Neumann op-
erator Λ acting on the space of diòerential forms Ωp(∂M) in the followingway. First,
theHodge Laplacian on Ωp(M) is deûned by the formula ∆ = dδ+δd,where δ is the
formal adjoint of d with respect to themetric on Ωp(M) induced by g. _en for any
ϕ ∈ Ωp(∂M), consider the equations

(2.3) ∆ω = 0, δω = 0, i∗ω = ϕ.

Let us denote the space of solutions ω by L(ϕ). In Proposition 3.11 we prove that
L(ϕ) is an aõne vector space with an associated vector spaceHp

D(M). We set Λϕ ∶=
indω for any ω ∈ L(ϕ). Since dHp

D(M) = 0, the deûnition does not depend on the
choice of ω. Let us denote by λ(ϕ) ∈ L(ϕ) the unique solution of (2.3) satisfying
λ(ϕ) ⊥H

p
D(M).
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Remark 2.1 In [1] the Dirichlet-to-Neumann map is deûned up to a sign as ∗Λ.

Remark 2.2 Having in mind equation (2.2), it is more natural to consider the op-
erator Λ(λ) for λ ∈ R deûned in the same way as Λ, but instead of (2.3) one requires
ω to be the solution of

∆ω = λω, δω = 0, i∗ω = ϕ.

However, the study of Λ(λ) for λ /= 0 exceeds the scope of the present article.

Our starting point is the following theorem.

_eorem 2.3 Operator Λ is identically zero on the space Ep(∂M). Restricted to the
space cCp(∂M), it is a non-negative self-adjoint operator with compact resolvent. In
particular, its spectrum is discrete and is denoted by 0 ⩽ σ(p)

1 ⩽ σ(p)
2 ⩽ ⋅ ⋅ ⋅ ↗ ∞,

where the eigenvalues are written with multiplicity and all multiplicities are ûnite. _e
kernel satisûes kerΛ ∩ cCp(∂M) = i∗Hp

N(M) ∩ cCp(∂M) and has dimension Ip =
dim im{i∗∶Hp(M)→ Hp(∂M)}.

Moreover, the eigenvalues can be characterised by the following min-max formula,

σ(p)
k = max

E
min

ϕ⊥E ;i∗ ϕ̂=ϕ

∥dϕ̂∥2
L2(M)

∥ϕ∥2
L2(∂M)

,

where E runs over all (k − 1)-dimensional subspaces of cCp(∂M). _e maximum is
achieved for E = Vk−1, where Vk−1 is spanned by the ûrst (k− 1) eigenforms, ϕ being the
k-th eigenform and ϕ̂ ∈ L(ϕ).

Remark 2.4 An alternative way to prove the ûrst part of _eorem 2.3 is to show
that Λ∣cCp is an elliptic pseudo-diòerential operator. We intend to explore this route
in a subsequent paper.

2.4 Main Results

Ourmain results are concernedwith properties of eigenvalues of σ(p)
k . First,we prove

a comparison theorem between eigenvalues of Λ and eigenvalues of the Dirichlet-to-
Neumann map L deûned by Raulot and Savo [13]. For any ϕ ∈ Ωp(∂M), there exists
a unique solution ω to the following problem [15,_eorem 3.4.10]:

∆ω = 0, inω = 0, i∗ω = ϕ.

_en L(ϕ) isdeûned to be equal to indω. Moreover, L is an ellipticpseudo-diòerential
operator of order 1, so its spectrum is discrete and is denoted by

0 ⩽ µ(p)
1 ⩽ µ(p)

2 ⩽ ⋅ ⋅ ⋅↗∞.

We also use notations µ̃(p)
i and σ̃(p)

i to denote the i-th non-zero eigenvalue of the
corresponding operator.

_eorem 2.5 Let M be a compact orientable Riemannian manifold of dimension n
with boundary. _en for each 0 ⩽ p ⩽ n − 2 and all k ∈ N, one has µ̃(p)

k ⩽ σ̃(p)
k .
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Remark 2.6 Let us note that cCn−1(∂M) = Hn−1(∂M) is one-dimensional and
from the long exact cohomology sequence of the pair (M , ∂M)

⋅ ⋅ ⋅Ð→ Hn−1(M)Ð→ Hn−1(∂M)Ð→ Hn(M , ∂M)Ð→ Hn(M)Ð→ 0,

one sees that In−1 = 1, i.e., Λ ≡ 0 on Ωn−1(∂M).

Recently, there have been several papers [10, 12–14, 17, 18, 21, 22] concerned with
estimates for eigenvalues µ̃(p)

k . Most proofs of upper bounds in these papers can be
modiûed to yield upper bounds for σ(p)

k . In a sense, proofs of those bounds implicitly
make use of _eorem 2.5. In our last theorem, we illustrate that by proving a gener-
alisation of results of Yang and Yu [21].

_eorem 2.7 Let M be a compact oriented n-dimensional Riemannian manifold
with nonempty boundary. _en for any two positive integers m and r and for any
p = 0, . . . , n − 2, one has

(2.4) σ(p)
m+Ipσ

(n−2−p)
r+In−2−p

⩽ λ′(p)Ip+m+r+bn−p−1−1 ,

where λ′(p)k is the k-th eigenvalue of theHodge-Laplace operator on the space cCp(∂M).

Remark 2.8 _e theorem of Yang and Yu can be obtained from _eorem 2.7 by
setting p = 0 and applying_eorem 2.5 to the le�-hand side. For details, see Section 7.

Remark 2.9 It will be shown in Section 8 that inequality (2.4) is sharp on the Eu-
clidean ball at least for m, r = 1. In fact, it is sharp for a wider range of values of m, r;
see Section 8 for details.

2.5 Discussion

In this section we discuss a particular case of n even and p = n
2 − 1.

Proposition 2.10 Let n = 2p+2 and consider operatorΛ on the spaceΩp(∂M). _en
the eigenvalues σ(p)

k are invariant under conformal changes of metric with conformal
factor identically equal to 1 on the boundary.

Proof _e Rayleigh quotient
∥d ϕ̂∥L2(M)
∥ϕ∥L2(∂M)

is invariant under conformal changes of the
metric described in the statement.

_e case n = 2, p = 0 corresponds to Steklov eigenvalues on surfaces where con-
formal invariance is well known. Moreover, under the same relation between n and
p, the le�-hand side of the bound in _eorem 2.7 only contains the eigenvalues σ(p).
In particular, setting m = r yields the following theorem.

_eorem 2.11 Let M be a compact oriented (2p+ 2)-dimensional Riemannian man-
ifold with nonempty boundary. _en for any m > 0, one has the inequality

(2.5) (σ(p)
m+Ip)

2 ⩽ λ′(p)Ip+bp+1+2m−1 .
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_e case n = 2, p = 0 corresponds to a particular case of the Hersch–Payne–
Schiòer inequality that is sharp on the disk for all m [4].
From explicit computations of Λ on the unit ball given in Section 8, one can see

that inequality (2.5) is sharp on the ball for m ⩽ 1
2(

2p+2
p+1 ). It will be interesting to see

if the unit ball is the uniquemanifold with this property.

Conjecture 2.12 Suppose that for manifold M inequality (2.5) becomes an equality
for m ⩽ 1

2(
2p+2
p+1 ). _en M is a Euclidean ball.

Moreover, it seems that by using methods similar to the ones developed in [4], it is
possible to show that the inequality in _eorem 2.11 is sharp on the ball for all values
of m. We formulate it as a conjecture.

Conjecture 2.13 Inequality (2.5) is sharp for all values of m. To be more precise,
for any m and p there exists a sequence Mk of orientable Riemannian manifolds with
boundary such that the le�-hand side of inequality (2.5) tends to the right-hand side
as k → ∞. Moreover, manifolds Mk can be chosen to be a collection of N = N(m, p)
Euclidean balls of equal radii glued together in the right way.

Previous remarks indicate that eigenvalues σ(p) for (2p + 2)-dimensional man-
ifold M have many features similar to Steklov eigenvalues for surfaces. _ere is a
vast literature devoted to the geometric optimisation problem for Steklov eigenval-
ues [2–4, 6, 10]. Here we propose a similar problem for eigenvalues σ(p). Fix an
oriented closed Riemannian manifold (Σ, h) of dimension 2p + 1. Assume that the
orientable bordism class of Σ is trivial, i.e., there exists an orientable manifold W
such that ∂W = Σ. Denote by [Σ, h]m the set of all orientable Riemannian manifolds
(W , g) such that ∂W = Σ, g∣∂W = h, and bp+1 = m. According to _eorem 2.11, for
any element of [Σ, h]m , the eigenvalue σ(p)

k is bounded from above by a quantity de-
pending only on (Σ, h) and m. For ûxed k,m it would be interesting to understand
the quantity sup

[Σ ,h]m σ(p)
k . As we pointed out above, for (Σ, h) = (S2p+1 , gcan) and

m = 0, _eorem 2.11 yields a sharp bound for the ûrst several values of k and the
supremum is attained for (W , g) = (B2p+2 , gcan).

2.6 Organisation of the Paper

_e paper is organised in the following way. In Section 3 we show preliminary prop-
erties ofΛ thatwere essentially demonstrated in [1]. In Section 4we prove that Λ is an
operatorwith compact resolvent and Section 5 contains the corresponding variational
formulae. Sections 6 and 7 are devoted to proofs of_eorem 2.5 and_eorem 2.7, re-
spectively. Finally, in Section 8 we compute the eigenbasis of Λ in the case of the unit
ball in Rn+1.
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3 Preliminaries

3.1 The Hodge–Morrey–Friedrichs decomposition

_e cornerstone of our considerations is theHodge decomposition formanifoldswith
boundary. First, let us record an elementary result that can be proved by computation
in local coordinates.

Proposition 3.1 One has the following equalities: nδ = δn, td = dt, and ∗n = t∗.
Equivalently, inδ = ±δin , i∗d = d i∗, and ∗in = ±i∗∗.

Remark 3.2 It is possible to calculate the exact signs in the above expressions that
will depend on the degree of the form and dimension of themanifold. However, the
signs are not needed in the following and wouldmake the exposition more cumber-
some.

_is proposition, together with Green’s formula (2.1), clariûes the following theo-
rem.

_eorem 3.3 (Hodge–Morrey–Friedrichs decomposition [15]) Let M be a compact
orientable manifold with non-empty boundary. _en the space of diòerential p-forms
on M admits the following decomposition into a direct sum

Ωp(M) = dΩp−1
D (M)⊕ δΩp+1

N (M)⊕Hp(M).

Note that boundary conditions are taken before applying the operator so that

dΩp−1
D (M) = {ω ∈ Ωp(M) ∣ ω = dα, i∗α = 0}.

_e space of harmonic ûeldsHp(M) can be further decomposed in one of two diòerent
ways:

Hp(M) = EH
p(M)⊕H

p
N(M)

or

Hp(M) = cEHp(M)⊕H
p
D(M).

Moreover, Hp
N(M) is ûnite-dimensional and constitutes the concrete realisation of the

absolute de Rham cohomology group Hp(M ,R), i.e.,Hp
N(M) ≃ Hp(M ,R). Similarly,

H
p
D(M) is the concrete realisation of the relative cohomology group Hp(M , ∂M ,R).

In fact, one can say more regarding the connection between spaces Hp
D(M) and

H
p
N(M).

_eorem 3.4 (DeTurck, Gluck [19]) Let M be a compact orientable Riemannian
manifold with nonempty boundary ∂M. _en within the space Ωp(M),
(i) H

p
N(M) andHp

D(M) meet only at the origin;
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(ii) each of those spaces has decomposition into boundary and interior subspaces,

H
p
N(M) = cEHp

N(M)⊕ E∂H
p
N(M),

H
p
D(M) = EH

p
D(M)⊕ cE∂H

p
D(M),

where E∂(cE∂) denotes the spaces of forms ω such that i∗ω(inω) is a closed (co-
closed) form on ∂M;

(iii) cEHp
N(M) ⊥H

p
D(M) and EHp

D(M) ⊥H
p
N(M);

(iv) no larger subspace ofHp
N(M) is orthogonal to all ofHp

D(M) and no larger sub-
space ofHp

D(M) is orthogonal to all ofHp
N(M);

(v) dimE∂H
p
N(M) = dim cE∂H

p
D(M).

_eHodge–Morrey–Friedrichs decomposition (simply theHodge decomposition
in the following) can be used to solve boundary problems for diòerential forms. It is
the subject of Schwarz’s book [15]. Here we collect several results from that book.

_eorem 3.5 ([15,_eorem 3.1.1, Lemma 3.1.2]) _e system

dω = χ, δω = 0, i∗ω = ϕ,

has a solution if and only if d χ = 0, tχ = tdϕ, and for any λ ∈ H
p+1
D (M), ⟪χ, λ⟫ =

∫∂M ϕ ∧ ∗nλ. _e solution is unique up to an element ofHp
D .

As an immediate corollary we obtain the following.

Corollary 3.6 One has the following description.

i∗Hp(M) = {ψ ∈ Cp(∂M) ∣ ψ ⊥ inH
p+1
D (M)}.

Moreover, Ep(∂M) ⊂ i∗Hp(M).

Proof _e equality is a direct consequence of _eorem 3.5. _e inclusion follows
from the following calculation. For any dα ∈ Ep(∂M) and any λ ∈Hp+1

D (M), one has

⟪dα, inλ⟫ = ∫
∂M

dα ∧ ∗nλ = ∫
∂M

d(α ∧ ∗nλ) ± ∫
∂M
α ∧ ∗nδλ = 0,

where we used the Stokes theorem and identities nδ = δn, δλ = 0.

By applying the Hodge ∗-operator to the statement of _eorem 3.5, one obtains
the next theorem.

_eorem 3.7 ([15, Corollary 3.1.3]) _e system

dω = 0, δω = χ, inω = ϕ,

has a solution if and only if δχ = 0, nχ = nδϕ and for any λ ∈Hp−1
N (M),

⟪χ, λ⟫ = −∫
∂M

tλ ∧ ∗ϕ.

_e solution is unique up to an element ofHp
N(M).
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Corollary 3.8 One has the following equalities:

inHp(M) = {ψ ∈ cCp−1(∂M)∣ψ ⊥ i∗Hp−1
N (M)} ,(3.1)

inHp(M) = (i∗Hp−1(M))⊥ .(3.2)

Proof _e ûrst equality is a direct consequence of_eorem 3.7.
Let us prove the second. Note that i∗Hp−1(M) = i∗EHp−1(M) + i∗Hp−1

N (M),
where “+” denotes the sum of the subspaces (not necessarily direct). Moreover,

i∗EHp−1(M) ⊂ Ep−1(∂M),
and by Corollary 3.6, Ep−1(∂M) ⊂ i∗Hp−1(M). _erefore,

i∗Hp−1(M) = Ep−1(∂M) + i∗Hp−1
N (M).

Taking the orthogonal complement of both sides yields

(i∗Hp−1(M))⊥ = (Ep−1(∂M))⊥ ∩ (i∗Hp−1
N (M))⊥ = cCp−1(∂M) ∩ (i∗Hp−1

N (M))⊥ ,
which is exactly the right-hand side of equality (3.2).

3.2 Properties of the Dirichlet-to-Neumann Map

In this section we study elementary properties of themap Λ.

Proposition 3.9 Any solution of

∆ω = 0, i∗δω = 0,

satisûes δω = 0. Similarly, any solution of

∆ω = 0, indω = 0,

satisûes dω = 0.

Proof To prove the ûrst statement, note that the form ξ = δω satisûes

∆ξ = 0, δξ = 0, i∗ξ = 0.

_erefore, byGreen’s formula ∥dξ∥2 = ⟪δdξ, ξ⟫+∫∂M ξ∧∗n dξ = 0, i.e., ξ ∈Hp−1
D (M)

and by construction ξ ∈ cEHp−1(M). Since those spaces are orthogonal, δω = ξ = 0.
An application of the ûrst statement to the form ∗ω yields the second statement.

In view of this proposition, the requirement δω = 0 for the harmonic extension
is equivalent to i∗δω = 0. _us, equation (2.3) is a particular case of the following
theorem.

_eorem 3.10 ([15, Lemma 3.4.7]) _e system

∆ω = η, i∗δω = ψ, i∗ω = ϕ

has a solution if and only if, for any λ ∈ Hp
D(M), ⟪η, λ⟫ = ∫∂M ψ ∧ ∗nλ. _e solution

is unique up to an element ofHp
D(M).
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Belishev and Sharafutdinov proved the following proposition. Since the notations
in [1] slightly diòer from ours, the proofs are provided for the sake of completeness.

Proposition 3.11 _e space L(ϕ) of solutions ϕ to equation (2.3) is an aõne space
with an associated vector space Hp

D(M). _erefore there exists unique λ(ϕ) ∈ L(ϕ)
such that λ(ϕ) ⊥H

p
D(M).

Proof It suõces to check the solvability condition in_eorem 3.10,which is obvious
as η = 0 and ψ = 0.

Proposition 3.12 kerΛ = i∗Hp(M).

Proof _e inclusion i∗Hp(M) ⊂ kerΛ is obvious.
For the inverse, suppose ϕ ∈ kerΛ and let ω ∈ L(ϕ). _en ω satisûes ∆ω = 0 and

indω = 0. _erefore, by Proposition 3.9, dω = 0. Moreover, δω = 0 by deûnition of
L(ϕ). _us, ω ∈Hp(M)

Proposition 3.13 Operator Λ is symmetric with respect to the L2-inner product on
Ωp(M).

Proof Let ϕ,ψ ∈ Ωp(∂M). _en Green’s formula (2.1) implies

0 = ∫
M
⟨δdλ(ϕ), λ(ψ)⟩ = ⟪dλ(ϕ), dλ(ψ)⟫ − ∫

∂M
⟨ϕ,Λψ⟩,

i.e., ⟪dλ(ϕ), dλ(ψ)⟫ = ⟪ϕ,Λψ⟫. Switching ϕ and ψ in the computation above com-
pletes the proof.

3.3 Image of Λ

In this section, we identify the image of Λ. From the previous section, one has the
following sequence of inclusions

cEp(∂M) ⊂ (kerΛ)⊥ = (i∗Hp(M))⊥ = inHp+1(M) ⊂ cCp(∂M).

_ere are two naturalways to look at the domain of Λ. One can either set the domain
to be cCp(∂M),which re�ects intrinsic geometry of ∂M, or set it to be (i∗Hp(M))⊥ =
inHp+1(M), which emphasises the role of M. A nice feature of the latter is that Λ is
strictly positive on that domain. However, in most of this article we adapt the former
convention and consider Λ as an operator on cCp(∂M)
From symmetry, it follows that imΛ ⊂ (i∗Hp(M))⊥. In fact, this inclusion is an

equality.

Proposition 3.14 _e operator

(3.3) Λ∶ inHp+1(M)Ð→ inHp+1(M)

is a bijection.
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Proof It is suõcient to show surjectivity. Let ψ ∈ inHp+1(M). _en there exists
ξ ∈ Ωp+1(M) satisfying

dξ = 0, δξ = 0, in ξ = ψ.

According to theHodge decomposition for harmonic ûelds one can write ξ = dβ + γ,
where β ∈ Ωp(M) and γ ∈ H

p+1
N . Moreover, β can be chosen coclosed. Indeed,

consider itsHodge decomposition β = dα̃+δβ̃+γ̃,where d(dα̃+γ̃) = 0, i.e., dδβ̃ = dβ.
_us, replacing β with δβ̃ does not change ξ. _erefore, β solves the system

∆β = 0, δβ = 0, indβ = ψ,

i.e., Λi∗β = ψ.

In view of this proposition, in thenext sectionweuseΛ−1 to denote the inverse ofΛ
as an operator in (3.3). Our next goal is to prove compactness ofΛ−1 as an operator on
the Hilbert space L2(inHp+1(M)), that, together with symmetry, yields discreteness
of the spectrum.

4 Compactness of Λ−1

In order to prove the compactness of Λ−1 wewould like to use the following theorem.

_eorem 4.1 ([15, _eorem 3.4.9]) For any form ψ ∈ (i∗Hp(M))⊥, there exists a
unique solution ω to

(4.1) ∆ω = 0, i∗δω = 0, indω = ψ,

orthogonal to the spaceHp(M). Moreover, that solution satisûes the following Sobolev
bounds

(4.2) ∥ω∥Hs+2 ⩽ C∥ψ∥Hs+1/2 ,

for any s ∈ Z⩾0.

However, for our purposes we need inequality (4.2) for s = −1, which is not guar-
anteed by the theorem above.

_eorem 4.2 For the solution of equation (4.1), one has the following bound

(4.3) ∥ω∥H1 ⩽ C∥ψ∥H−1/2 .

_is theorem is proved below. For now assume that inequality (4.3) holds.

_eorem 4.3 Operator Λ−1∶ L2((i∗Hp(M))⊥) → L2((i∗Hp(M))⊥) is compact.
Moreover, it is a bounded operator from

Hs+1/2((i∗Hp(M))⊥) to Hs−1/2((i∗Hp(M))⊥)
for s ∈ Z⩾0.

Proof Note that Λ−1(ψ) = P(i∗ω), where ω is a solution to (4.1) and P is an L2-or-
thogonal projection from L2Ωp(∂M) onto L2((i∗Hp(M))⊥). Since

Hs(im δ) ⊂ Hs((i∗Hp(M))⊥) ⊂ Hs(ker δ)
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and Hs(im δ) ⊂ Hs(ker δ) is a ûnite codimension closed subspace in a closed space
for any s (Hodge decomposition theorem for closedmanifolds), then

H1/2((i∗Hp(M))⊥)

is a split subspace. _us, using (4.3) and trace formula one has

∥Λ−1(ψ)∥H1/2 ⩽ C∥i∗ω∥H1/2 ⩽ C′∥ω∥H1 ⩽ C′′∥ψ∥H−1/2 .

Bounds for Hs+1/2 normswith natural s are proved in a similar fashion using inequal-
ity (4.2). Compactness of Λ−1 follows from inclusion L2 ⊂ H−1/2 and compactness of
H1/2 ↪ L2.

_is completes the proof of the ûrst part of_eorem 2.3. Note that Sobolev bounds
for Λ−1 imply smoothness of Λ-eigenforms.

4.1 Proof of Theorem 4.2

First, let us provide a weak formulation of equation (4.1). For any

ψ ∈ H−1/2(Ωp(∂M)) ∶= (H1/2(Ωp(∂M)))∗

such that (ψ, ⋅ ) is identically zero on i∗Hp(M), ûnd ω ∈ H1(Hp(M)⊥) such that for
any η ∈ H1(Ωp(M)) one has

(4.4) ∫
M
(⟨dω, dη⟩ + ⟨δω, δη⟩) = (ψ, i∗η),

where the round brackets denote duality pairing.
First note that both sides of the equation are invariant under transformation

η z→ η + ξ,

where ξ ∈ Hp(M). _erefore, without loss of generality η ⊥L2 Hp(M). By [15,
Lemma 2.4.10.(i)] the le�-hand side of equation (4.4) deûnes a scalar product on
H1(Hp(M)⊥) equivalent to the usual H1-scalar product. Moreover, the right-hand
side is a bounded linear functional on H1(Ωp(M)) as by the trace formula

∣(ψ, i∗η)∣ ⩽ ∥ψ∥H−1/2∥i∗η∥H1/2 ⩽ C∥ψ∥H−1/2∥η∥H1 .

_us, by the Riesz representation theorem, there exists solution ω to (4.4) satisfying
bound (4.3).
Easy application of Green’s formula shows that if solution ω is in H2, then it is a

strong solution in the sense of_eorem 4.1 and ψ = indω ∈ H1/2(Ωp(∂M)).

5 Min-max Principle

_e goal of this section is to prove the second half of _eorem 2.3, i.e., to obtain a
min-max characterisation of eigenvalues similar to the one for Steklov eigenvalues on
functions. By Proposition 3.13, for ω1 ∈ L(ϕ1), ω2 ∈ L(ϕ2) one has

∫
∂M

⟨Λϕ1 , ϕ2⟩ = ∫
M
⟨dω1 , dω2⟩.
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_is equality suggests that the Rayleigh quotient for operator Λ is a ratio of squares
of L2-norms of dω i and ϕ i . _e following proposition makes it possible to omit the
condition ω i ∈ L(ϕ i).

Proposition 5.1 Any form ω in the spaceL(ϕ)minimises the quadratic form Q(ω) =
∥dω∥2

L2 in the class of p-forms ρ on M satisfying i∗ρ = ϕ.

Proof First note that Q(ω) is constant on L(ϕ) as dHp
D(M) = 0. _us, it is suõ-

cient to prove that for any ρ with i∗ρ = ϕ, one has Q(ρ) ⩾ Q(ω) for some ω ∈ L(ϕ).
Let ρ and ω be as above. _en dρ = d(ρ − ω) + dω, where i∗(ρ − ω) = 0 and

dω ∈Hp(M). _erefore, by Green’s formula d(ρ − ω) ⊥ dω and

Q(ρ) = Q(ρ − ω) + Q(ω) ⩾ Q(ω)
.

_eorem 5.2 (Min-max principle) _e k-th eigenvalue σ(p)
k of

Λ∶ cCp(∂M)Ð→ cCp(∂M)
can be characterised in the following way:

σ(p)
k = max

E
min

ϕ⊥E ; i∗ ϕ̂=ϕ

∥dϕ̂∥2
L2(M)

∥ϕ∥2
L2(∂M)

,

where E runs over all (k − 1)-dimensional subspaces of cCp(∂M). _e maximum is
achieved for E = Vk−1, where Vk−1 is spanned by the ûrst (k− 1) eigenforms, ϕ being the
k-th eigenform and ϕ̂ ∈ L(ϕ). In particular,

σ(p)
k ⩽

∥dϕ̂∥2
L2(M)

∥ϕ∥2
L2(∂M)

for any ϕ ⊥ Vk−1 and any ϕ̂ satisfying i∗ϕ̂ = ϕ.

Proof Application of themin-max theorem forpositive self-adjointoperatorΛguar-
antees that

σ(p)
k = max

E
min
ϕ⊥E

∥dλ(ϕ)∥2
L2(M)

∥ϕ∥2
L2(∂M)

,

where E runs over all (k−1)-dimensional subspaces ofH1/2(cCp(∂M)). Elliptic regu-
larity estimates of_eorem4.3 guarantee that it is suõcient to consider E ⊂ cCp(∂M).
_erefore, themin-max formula of the theorem follows from Proposition 5.1.

6 Proof of Theorem 2.5

Raulot and Savo deûned the operator L [13]. By [15, _eorem 3.4.10] for any ϕ ∈
Ωp(∂M) there exists a unique ω̂ ∈ Ωp(M) satisfying

(6.1) ∆ω̂ = 0, in ω̂ = 0, i∗ω̂ = ϕ.

_en Lϕ is deûned to be indω̂. Raulot and Savo demonstrated that L is an elliptic, self-
adjoint pseudo-diòerential operator of ûrst order. _erefore, its spectrum consists of
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eigenvalues that will be denoted by 0 ⩽ µ(p)
1 ⩽ µ(p)

2 ⩽ ⋅ ⋅ ⋅ . _e kernel of this map is
the space i∗Hp

N(M). Eigenvalues µ(p)
k have a min-max characterisation that is the

subject of the next theorem.

_eorem 6.1 (Min-max principle [13]) _e k-th eigenvalue µ(p)
k can be computed in

the following way:

µ(p)
k = max

E
min

ϕ⊥E ; i∗ ϕ̂=ϕ , in ϕ̂=0

∥dϕ̂∥2
L2(M)

+ ∥δϕ̂∥2
L2(M)

∥ϕ∥2
L2(∂M)

,

where E runs over (k−1)-dimensional subspaces ofΩp(∂M). _emaximum is achieved
for E = Vk−1, where Vk is spanned by the ûrst (k − 1)-eigenforms, ϕ being the k-th
eigenform and ϕ̂ is a solution to (6.1). In particular,

µ(p)
k ⩽

∥dϕ̂∥2
L2(M)

+ ∥δϕ̂∥2
L2(M)

∥ϕ∥2
L2(∂M)

for any ϕ ⊥ Vk−1 and i∗ϕ̂ = ϕ, in ϕ̂ = 0.

We turn to _eorem 2.5. Let us recall the statement.

_eorem 6.2 Let σ̃(p)
k and µ̃(p)

k denote the k-th non-zero eigenvalue of Λ and L,
respectively. _en for any 0 ⩽ p ⩽ (n − 2), µ̃(p)

k ⩽ σ̃(p)
k .

For completeness, let us state the same inequality for eigenvalueswithout the tilde.

Corollary 6.3 One has the following inequality µk+bp ⩽ σk+Ip , where

bp = dimHp(M) and Ip = dim im{ip ∶ Hp(M)→ Hp(∂M)}.

We start the proof with some preliminary results.

Proposition 6.4 For any ϕ ∈ Ep(∂M), there exists ξ ∈ EHp(M) satisfying i∗ξ = ϕ.

Proof Let ϕ = dα. _en ξ = dλ(α) is the form in question. Indeed, i∗ξ = d i∗λ(α) =
dα = ϕ and δξ = δdλ(α) = ∆λ(α) = 0.

Proposition 6.5 For any ϕ ∈ Ωp(∂M), there exists (not necessarily unique) ψ ∈
Ωp(∂M) such that ψ − ϕ ∈ i∗Hp(M), ψ ⊥ i∗Hp

N(M), and there exists a solution ω to

(6.2) ∆ω = 0, δω = 0, inω = 0, i∗ω = ψ.

Proof By Proposition 6.4 there exists χ ∈ EH
p+1(M) such that i∗χ = dϕ and χ is

unique up to EH
p+1
D (M). Let ω′ be a primitive of χ, i.e., dω′ = χ. Consider Hodge

decomposition ω′ = dα + δβ + γ. _en ω = δβ + γN solves

∆ω = 0, δω = 0, inω = 0,

430

https://doi.org/10.4153/CJM-2018-028-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-028-6


_e Steklov Problem on Diòerential Forms

for any γN ∈Hp
N(M). Set ωχ to be a unique choice of γN such that i∗ωχ ⊥ i∗Hp

N(M).
Consider the spaceW = {i∗ωχ − ϕ ∣ χ ∈ EHp+1(M), i∗χ = dϕ}. _en one has the
following properties.

● _e spaceW is an aõne space of dimension dimEH
p+1
D (M). Indeed, if i∗ωχ1 =

i∗ωχ2 , then ωχ1 − ωχ2 is a harmonic form with zero tangent and normal parts on the
boundary. By Green’s formula, ωχ1 − ωχ2 ∈ H

p
N(M) ∩H

p
D(M). _erefore, it is zero

by _eorem 3.4 (i).
● _ere exists ϕ0 ∈W such that ϕ0 ⊥ inEH

p+1
D (M).

● SinceW ⊂ Cp(∂M), Corollary 3.6 and_eorem 3.4 (ii) imply that

ϕ0 ∈ i∗Hp(M).

● By deûnition, ϕ+W ⊥ i∗Hp
N(M). _us ψ = ϕ+ϕ0 satisûes all the requirements

of the theorem.

Proof of_eorem 2.5 _e idea is that if for ψ there exists a solution to equation
(6.2), then Λ(ψ) = L(ψ), which allows us to connect operators Λ and L.

Let Vk be the space spanned by the eigenforms of Λ corresponding to the ûrst k
non-zero eigenvalues, i.e., Vk is spanned by ϕ1 , . . . , ϕk , where Λϕk = σ̃(p)

k . In partic-
ular,Vk ⊥ i∗Hp(M). Letψ i be forms constructed from ϕ by applying Proposition 6.5
and let Ṽk be the vector space spanned by ψ1 , . . . ,ψk . _en Proposition 6.5 implies
the following properties of Ṽk .

(i) For any ψ ∈ Ṽk there exists a solution to (6.2).
(ii) Ṽk ⊥ i∗Hp

N(M).
(iii) If ψ = ∑k

i=1 a iψ i ∈ Ṽk , then ϕ = ∑k
i=1 a iϕ i ∈ Vk satisûes ϕ − ψ ∈ i∗Hp(M). If

there exist non-trivial a is such that ψ = 0, then ϕ ∈ i∗Hp(M). But Vk ⊥ i∗Hp(M),
therefore, themap∑k

i=1 a iψ i ↦ ∑k
i=1 a iϕ i is an isomorphism.

(iv) dim Ṽk = k.
By property (iv), there exists ψ ∈ Ṽk orthogonal to the ûrst k − 1 eigenforms of L

corresponding to non-zero eigenvalues. By property (ii) ψ ⊥ ker L, and by property
(iii), there exists ϕ ∈ Vk such that ψ − ϕ ∈ kerΛ. Let ψ̂ ∈ L(ψ) be the solution to (6.2)
and let ϕ̂ belong to L(ϕ). _en i∗(dψ̂ − dϕ̂) = 0 and ind(ψ̂ − ϕ̂) = Λ(ϕ − ψ) = 0.
_erefore, dψ̂ = dϕ̂. _emin-max theorem yields the following estimates:

µ̃(p)
k ⩽

∥dψ̂∥2
L2(M)

+ ∥δψ̂∥2
L2(M)

∥ψ∥2
L2(∂M)

=
∥dψ̂∥2

L2(M)

∥ψ∥2
L2(∂M)

=
∥dψ̂∥2

L2(M)

∥ϕ∥2
L2(∂M)

+ ∥ψ − ϕ∥2
L2(∂M)

⩽
∥dψ̂∥2

L2(M)

∥ϕ∥2
L2(∂M)

=
∥dϕ̂∥2

L2(M)

∥ϕ∥2
L2(∂M)

⩽ sup
ϕ∈Vk

∥dλ(ϕ)∥2
L2(M)

∥ϕ∥2
L2(∂M)

= σ̃(p)
k .

7 Proof of Theorem 2.7

Yang and Yu [21] used the concept of conjugate harmonic forms to generalise the
famous result ofHersch, Payne, and Schiòer [7]. _ey proved the following theorem.
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_eorem 7.1 Let M be a compact oriented n-dimensional Riemannianmanifoldwith
nonempty boundary. Let λm be the m-th eigenvalue for the Laplacian operator on ∂M.
_en for any two positive integers m and r, one has µ(0)

m+1µ
(n−2)
bn−2+r ⩽ λm+r+bn−1 .

Let λ′(p)k denote the k-th eigenvalue of the Hodge Laplacian ∆∂ on ∂M restricted
to the space cCp(∂M). We will prove the following.

_eorem 7.2 Let M be a compact oriented n-dimensionalRiemannianmanifoldwith
nonempty boundary. _en for any two positive integers, m and r, and for any p =
0, . . . , n − 2, one has σ(p)

m+Ipσ
(n−2−p)
r+In−2−p

⩽ λ′(p)Ip+m+r+bn−p−1−1.

_e proof is based on the notion of conjugate harmonic ûelds. Two harmonic ûelds
ω1 ∈ Ωp(M) andω2 ∈ Ωn−p−2(M) are calledharmonic conjugates if∗dω1 = dω2. _is
is a higher-dimensional generalisation of the notion of harmonic conjugate functions
on the plane.

We deûne a duality relation between (i∗Hp(M))⊥ and (i∗Hn−p−2(M))⊥. We say
that ϕ is dual to ψ if λ(ϕ) and λ(ψ) are harmonic conjugates.

Proposition 7.3 Let ϕ ⊥ i∗Hp(M). _ere exists ψ dual to ϕ if and only if ∗dλ(ϕ) ⊥
H

n−p−1
N (M). If it exists, then ψ is unique, depends linearly on ϕ, and is nonzero unless

ϕ is zero.

Proof Let ξ = ∗dλ(ϕ) ∈ Hn−p−1(M). If ϕ has a dual, then ξ is exact. At the same
time, by the Hodge decomposition theorem ξ is exact if and only if ξ ⊥H

n−p−1
N (M).

_is proves implication⇒.
Assume ξ ⊥ H

n−p−1
N (M). _en ξ is exact. Let ρ0 be a primitive of ξ and let

its Hodge decomposition be ρ0 = dα + δβ + γ, where γ ∈ Hn−2−p(M) and β ∈
Ωn−p−1

N (M). _ere exists γ0 ⊥ Hn−p−2(M) such that i∗(δβ + γ0) ⊥ i∗Hn−p−2(M).
We set ψ = i∗(δβ + γ0). Let ρ = δβ + γ0. _en δρ = 0 and ∆ρ = δdρ = δξ = 0, i.e.,
ρ ∈ L(ψ). In particular, dρ = dλ(ψ) = ∗dλ(ϕ). _is proves implication⇐.

Suppose thatψ1 andψ2 are both dual to ϕ. _en d(λ(ψ1)−λ(ψ2)) = 0, i.e.,ψ1−ψ2 ∈
kerΛ. At the same time, (ψ1 − ψ2) ⊥ kerΛ, therefore ψ1 = ψ2. Linearity is obvious.

If ψ = 0, then dϕ = 0 and similar arguments as above assert that ϕ = 0.

Proof of_eorem 7.2 Suppose that ψ is dual to ϕ. _en

∥dλ(ψ)∥4
L2(M)

= (∫
∂M

⟨ψ, in dλ(ψ)⟩)
2
⩽ ∫

∂M
∣ψ∣2 ∫

∂M
∣indλ(ψ)∣2(7.1)

= ∫
∂M

∣ψ∣2 ∫
∂M

∣dϕ∣2 ,

where we used Green’s formula, the Cauchy–Schwarz inequality, and

indλ(ψ) = in ∗ dλ(ϕ) = ± ∗ i∗dλ(ϕ) = ±dϕ.
Let ϕ i be the eigenforms of ∆∂ . Since the kernel of the Hodge Laplacian is the

space of harmonic p-forms on ∂M, one can choose ϕ i to satisfy ϕ1 , . . . , ϕIp ∈ kerΛ,
ϕ j ⊥ kerΛ for j > Ip . Let ψ

(q)
i be eigenforms of Λ on cCq(∂M). Let ϕ belong to the
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space span{ϕIp+1 , . . . , ϕIp+m+r−1+bn−p−1} such that ϕ ⊥ span{ψ(p)
Ip+1 , . . . ,ψ

(p)
Ip+m−1} and

∗dλ(ϕ) ⊥ H
n−p−1
N (M). _e latter guarantees the existence of the form ψ dual to ϕ.

Moreover, ϕ can be chosen so thatψ ⊥ span{ψ(n−p−2)
In−p−2+1 , . . . ,ψ

(n−p−2)
In−p−2+r−1}. Bydimension

count, it is easy to see that such a nonzero ϕ exists. _en ψ is also non-zero and by
min-max principles for Λ and ∆∂ and inequality (7.1) one has

σ(p)
m+Ipσ

(n−2−p)
r+In−2−p

⩽
∥dλ(ϕ)∥2

L2(M)
∥dλ(ψ)∥2

L2(M)

∥ψ∥2
L2(∂M)

∥ϕ∥2
L2(∂M)

=
∥dλ(ψ)∥4

L2(M)

∥ψ∥2
L2(∂M)

∥ϕ∥2
L2(∂M)

⩽
∥dϕ∥2

L2(∂M)

∥ϕ∥2
L2(∂M)

⩽ λ′(p)Ip+m+r−1+bn−p−1
,

where in the ûrst equality we used the isometry property of Hodge star and equality
∗d(λ(ϕ)) = dλ(ψ).

_e combination of_eorem 2.5 and_eorem 2.7 yields the following generalisa-
tion of_eorem 7.1.

Corollary 7.4 Let M be a compact oriented n-dimensional Riemannian manifold
with nonempty boundary. _en for any two positive integers m and r and for any p =
0, . . . , n − 2, one has µ(p)

m+bp µ
(n−2−p)
r+bn−2−p

⩽ λ′(p)Ip+m+r+bn−p−1−1.

Note that I0 = 1; so for p = 0, this corollary yields the statement of_eorem 7.1.

8 Eigenvalues of the Unit Euclidean Ball Bn+1

In this section, we compute an eigenbasis and eigenvalues for Λ on Sn = ∂Bn+1. We
follow [14]whereRaulot and Savo computed eigenspaces and eigenvalues for operator
L on Sn = ∂Bn+1. Note that in order to preserve notations from [14], we deviate from
the convention that the ambientmanifold has dimension n and instead in this section
the ambient manifold has dimension n + 1. In the case of the ball Bn+1, operators L,
Λ, and ∆ have a common basis of eigenforms that we describe below.

Let Pk ,p denote the space of homogeneous polynomial p-forms of degree k inRn+1.
We introduce the following subspaces of Pk ,p :
● Hk ,p = {ω ∈ Pk ,p ∣ ∆Rn+1ω = 0, δRn+1ω = 0},
● H′

k ,p = {ω ∈ Hk ,p ∣ dRn+1ω = 0},
● H′′

k ,p = {ω ∈ Hk ,p ∣ inω = 0}.

Assume 1 ⩽ p ⩽ (n − 1). _en Hp(Sn) = 0 and Ωp(Sn) = Ep(Sn)⊕ cEp(Sn). It was
shown in [8] that Ep(Sn) =⊕k(i∗H′

k ,p), cEp(Sn) =⊕k(i∗H′′

k ,p) and

δ∶ i∗H′

k ,p Ð→ i∗H′′

k+1,p−1

is an isomorphism. _us, dim i∗H′′

1,p = dim i∗H′

0,p+1 = (n+1
p+1) as all forms with con-

stant coeõcients lie in H′

0,p+1.
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We see that H′

k ,p ⊂ Hp(Bn+1); therefore Λ is identically zero on each i∗(H′

k ,p).
Moreover, for ϕ ∈ i∗(H′′

k ,p), the form λ(ϕ) satisûes inλ(ϕ) = 0. _erefore, L(ϕ) =
Λ(ϕ).

We summarise the above observations and results of [8, 14] in the following theo-
rem.

_eorem 8.1 Spaces i∗H′

k−1,p and i∗H′′

k ,p for k ⩾ 1 form common eigenbases of Λ, L
and ∆. _e corresponding eigenvalues are given below.

● If ϕ ∈ i∗H′

k−1,p , then Λϕ = 0, Lϕ = (k + p − 1) n+2k+1
n+2k−1ϕ, and ∆ϕ = (k + p − 1)(n +

k − p)ϕ.
● If ϕ ∈ i∗H′′

k ,p , then Λϕ = Lϕ = (k + p)ϕ and ∆ϕ = (k + p)(n + k − p − 1)ϕ.

_is theorem implies the sharpness properties of inequality (2.4) stated in Sec-
tion 2.5 and Remark 2.9. Indeed, according to _eorem 8.1, inequality (2.4) is sharp
for m = r = 1. Moreover, it is sharp as long as the eigenvalues involved coincide with
the ûrst eigenvalue. _e statement a�er _eorem 2.11 follows from the fact that the
multiplicities of σ(p)

1 and λ′(p)1 are equal to dim i∗H′′

1,p = dim i∗H′

0,p+1 = dimH′

0,p+1 =
(n+1
p+1).
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