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Abstract

Since 1984, many authors have studied the dynamics of maps of the form Ea(z) = ez − a,
with a > 1. It is now well-known that the Julia set of such a map has an intricate topological
structure known as a Cantor bouquet, and much is known about the dynamical properties of
these functions.

It is rather surprising that many of the interesting dynamical properties of the maps Ea

actually arise from their elementary function theoretic structure, rather than as a result of
analyticity. We show this by studying a large class of continuous R2 maps, which, in general,
are not even quasiregular, but are somehow analogous to Ea. We define analogues of the
Fatou and the Julia set and we prove that this class has very similar dynamical properties
to those of Ea, including the Cantor bouquet structure, which is closely related to several
topological properties of the endpoints of the Julia set.

2020 Mathematics Subject Classification: 37F10 (Primary); 30D05 (Secondary)

1. Introduction

Let f : Rn →R
n be a function, and let f n denote the nth iterate of f . In this paper we are

interested in the iteration of a continuous function f : R2 →R
2, which need not be analytic,

and throughout we identify R
2 with the complex plane C in the obvious way. A special case

of such a function is when f : C→C is transcendental entire. Then we define the Julia set
J(f ) as the set of points z ∈C where the iterates {f n}n∈N fail to form a normal family in any
neighbourhood of z; roughly speaking, the iterates of f are chaotic near a point in the Julia
set. For an introduction to the properties of the Julia set, and the dynamics of transcendental
entire functions, see, for example, [3,16].

In the study of the dynamics of transcendental entire functions, many authors have
considered maps of the form

Ea(z) := ez − a, for a > 1. (1)
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It is straightforward to show that Ea has an attracting fixed point ξ ∈R. We denote by F the
set of points that are attracted to ξ ; in other words

F := {z ∈C : En
a (z) −→ ξ as n → ∞}.

It can be shown that J(Ea) =C \ F. (Clearly F here is the Fatou set of Ea, but we do not use
this fact.)

The first study of the dynamics of maps of the form (1) was by Devaney and Krych [7].
Many authors since then have investigated these maps, and in the following we summarise
some of the most important results that are known concerning their dynamical properties.
Before stating the result we need a number of definitions.

We say that a component γ of J(Ea) is a Devaney hair if it is a simple curve γ : [0, ∞) →
C with the properties that:

(i) γ (t) → ∞ as t → ∞.

(ii) for each n ≥ 0, En
a (γ ) is a simple curve that connects En

a (γ (0)) to ∞. We call γ (0) the
endpoint of the curve γ .

(iii) for each t > 0, En
a → ∞ as n → ∞ uniformly on γ ([t, ∞)).

Note that there are other definitions of a Devaney hair in the literature; we have used the
definition first used in [14], although, unlike in that paper, we do not formally specify that
the hairs lie in the Julia set.

A subset of C is a Cantor bouquet if it is ambiently homeomorphic to a topological
object known as a straight brush; see [1] for a precise definition. We say that X ⊂ Ĉ is
totally separated if for all a, b ∈ X, with a �= b, there exists a relatively open and closed set
U ⊂ X such that a ∈ U and b /∈ U.

We are now able to state the results.

THEOREM A. Let Ea be the transcendental entire function defined in (1). Then the
following all hold.

(a) J(Ea) has uncountably many components, each of which is a Devaney hair.

(b) J(Ea) is a Cantor bouquet.

(c) Write E for the set of endpoints of the Devaney hairs in J(Ea). Then E is totally
separated, but E ∪ {∞} is connected.

Remarks. Part (a) seems to be a combination of results from [8,9,12]. Part (b) is a result of
[1]; although the term “Cantor bouquet” had been used previously, this was the first paper
to give a precise topological definition of such an object. Part (c) is from [10]; this result
can also be stated that ∞ is an explosion point for the set E ∪ {∞}. Note that many of the
authors cited above considered, in fact, the transcendental entire functions Ẽλ(z) := λez, for
λ �= 0. The functions Ea and Ẽe−a have the same dynamics, as they are conjugate via the map
z 
→ z − a.

Our aim in this paper is to show that there is a large class of continuous functions f : R2 →
R

2 that are analogous to the map Ea and also have the dynamical properties listed above.
This shows that, in some sense, the properties listed in Theorem A derive from elementary
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function theoretic properties of Ea rather than its analyticity. We stress that the functions in
our class are continuous but not necessarily quasiregular.

To define our maps, we observe that if z = x + iy, then ez = ex( cos y + i sin y). So we
begin by considering a map

Z : C−→C; Z(x + iy) := g(x)h(y),

where g : R→R and h : R→C are continuous functions defined in such a way that g has
behaviour analogous to the real exponential function, and h has behaviour analogous to the
map y 
→ cos y + i sin y.

We first specify the map h. We suppose that h : R→C is a 2π-periodic function such that
h : [0, 2π) →C is biLipschitz, such that arg h(y) is a strictly monotonic increasing function
of y, and such that the origin lies in the bounded complementary component of h([0, 2π)).

It is also useful to set h(y) := h1(y) + ih2(y), for real valued functions h1 and h2. Note also
that it follows from the above that there exists hα ∈ (0, 1) and hβ ∈ (1, ∞) such that

hα ≤ |h(y)| ≤ hβ , for y ∈R. (2)

Next we specify the function g. We let g : R→ (0, ∞) be a convex function such that
g(x) → 0 as x → −∞. In addition, to ensure that g grows sufficiently quickly, we suppose
that there exists c > hβ/hα > 1 such that,

g′(x) ≥ c − 1

2π
g(x), a.e. for x sufficiently large. (3)

Note that, since c > 1, we must have that g′(x) → ∞, as x → ∞, where defined. In addition,
it is easy to deduce from (3), together with the convexity of g, that there is a constant x0 > 0
such that

g(x + 2π) ≥ cg(x), for x ≥ x0. (4)

We then define the map Z mentioned earlier by

Z(x + iy) := g(x)h(y) = g(x)h1(y) + ig(x)h2(y). (5)

Note that it follows from the definition of h that Z can also be written in the form

Z(x + iy) = g(x)k(y)eim(y),

where k(y) and m(y) are real, positive, Lipschitz and bi-Lipschitz functions respectively.
However we do not use this fact. Note that when g(x) = ex, the function Z in (5) is quasireg-
ular, and is known as a Zorich map. If, in addition, h(y) = cos y + i sin y, then we have
Z ≡ exp.

Finally we define the function we are going to iterate. We let a > 0 and set

f (z) := Z(z) − a. (6)

We will later ensure that a is sufficiently large for various conditions to hold. We then make
the following definition.

Definition 1·1. Suppose that f is as defined in (6), where Z is as defined in (5) for func-
tions g, h that satisfy all the conditions listed earlier. Then we say that f is a generalised
exponential.
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Although not necessarily quasiregular, f is continuous, open, discrete, and, by
Rademacher’s theorem, differentiable almost everywhere. Note also that it follows from
these definitions that any local inverse of f is also continuous and differentiable almost
everywhere. The name for the generalised exponentials can be further justified by the fact
that no polynomial can satisfy condition (3).

For a generalised exponential, f , there is no obvious definition of a Julia set; although the
Julia set can be defined for quasiregular maps [6], we do not want to assume that f is even
quasiregular. The following result allows us, nonetheless, to establish a set analogous to the
Julia set. Here we define

Hr := {x + iy : x ≤ r}, for r ∈R.

THEOREM 1·2. Suppose that f is a generalised exponential. Then, there exist m < 0 and
M > 0 such that whenever a is sufficiently large, f has a unique attracting fixed point ξ ∈Hm,
f (HM) ⊂Hm, and all points of HM tend to ξ under iteration.

We can now use Theorem 1·2 to make the following natural definition.

Definition 1·3 If the conditions of Theorem 1·2 hold, then we let F denote the set of points
that iterate to the unique attracting fixed point, and set J :=C \ F.

Our main result is then an extension of Theorem A to the class of generalised exponentials.

THEOREM 1·4. Suppose that f is a generalised exponential. Then, for all sufficiently large
values of a, the following all hold.

(a) J has uncountably many components, each of which is a Devaney hair.

(b) J is a Cantor bouquet.

(c) If E is the set of endpoints of the Devaney hairs in J, then E is totally separated, but
E ∪ {∞} is connected.

Note that the fact that J has uncountably many components is also a consequence of (b).
However, it seems worth emphasising this fact.

Structure The structure of the paper is as follows. First in Section 2 we prove Theorem 1·2.
The proof of Theorem 1·4 is then spread across the rest of the paper.

2. Existence of the sets F and J

In this section we give the proof of Theorem 1·2, and so establish the existence of the sets
F and J from Definition 1·3. Firstly, we need a form of expansion for Z, which is given in
the following lemma. Here, for f : C→C differentiable a.e., we define

�(Df (x)) := inf|w|=1
|Df (x)(w)|.

LEMMA 2·1. There exist constants μ > 1 and M > 0 such that

�(DZ(z)) ≥ μ > 1, a.e. for Re z ≥ M. (7)
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Proof. For the derivative of Z we have, whenever it exists, that

DZ(x + iy) := A :=
(

g′(x)h1(y) g(x)h′
1(y)

g′(x)h2(y) g(x)h′
2(y)

)
=
(

h1(y) h′
1(y)

h2(y) h′
2(y)

)
·
(

g′(x) 0

0 g(x)

)
.

The fact that h is biLipschitz yields, again by Rademacher’s theorem, that h′ exists almost
everywhere.

It is well known that

inf|w|=1
|A · w| · sup

|w|=1
|A · w| = det A.

It follows by the definition of A and [4, section 2] that for a suitable constant ch > 0, which
depends only on the Lipschitz constant of h

det A ≥ g(x)g′(x)ch.

Since |h(y)| ≥ hα > 0, and since both g′(x) (where defined) and g(x) tend to infinity as x
tends to infinity, the result then follows by a simple exercise, which we omit.

Proof of Theorem 1·2. Let M > 0 be the constant from Lemma 2·1. Since h is biLipschitz,
there exists a constant L ≥ 1 such that

|h′(y)| ≤ L, a.e. for y ∈R.

Since g(x) and g′(x) (where defined) both tend to 0 as x tends to −∞, we can choose m < 0
sufficiently small that

g(x) + g′(x) ≤ 1

2(1 + L)
, a.e. for x ≤ m.

We deduce that

|DZ(x + iy)| ≤ |g′(x)h1(y)| + |g(x)h′
1(y)| + |g′(x)h2(y)| + |g(x)h′

2(y)|
≤ (L + 1)(g′(x) + g(x))

≤ 1

2
, a.e. for x ≤ m.

Since DZ(x + iy) = Df (x, y) it follows that

|f (z1) − f (z2)| ≤ 1

2
|z1 − z2|, for z1, z2 ∈Hm.

Now choose

a > max{0, hβg(M) − m}. (8)

(Note that the choice of a here is stronger than is required in this proof, but convenient for
use in later results).

If x ≤ M, then

Re f (x + iy) = g(x)h1(y) − a ≤ hβg(M) − a ≤ m.
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Fig. 1. An illustration of J for the generalised exponential with a = 2, with g(x) = ex, and with
h being the obvious extension of the linear maps from [0, π/2] to [1, i], [π/2, π ] to [i, −1], and
so on.

Fig. 2. An illustration of J for the function with a = 1, with h(y) = ( cos y, sin y), and with
g(x) = 0 in the left half-plane and g(x) = x3 in the right half-plane. Note that this function is
not covered by the results of this paper. However, it is still possible to define J in a similar way,
and we still observe some of the features of J that we might expect.

In other words, f (HM) ⊂Hm. Hence f is a contraction mapping on Hm, and so Hm contains
a unique attracting fixed point ξ by the Banach fixed point theorem. Since f is expanding in
the complement of HM , by Lemma 2·1, the uniqueness of ξ is immediate.

In the remainder of the paper we will assume that f , g, h, Z are as defined above, that f is
a generalised exponential, and that a has been chosen such that (8) holds.

3. Symbolic dynamics

In this section we define tracts and external addresses, and then use these to estab-
lish symbolic dynamics on J. We begin by defining the tracts of the function g. Since
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−a < 0 < M, we have that H−a ⊂HM , and so points with imaginary part in an interval
[(4k + 1)π/2, (4k + 3)π/2], for some k ∈Z, necessarily lie in F.

Definition 3·1 Let t1 ∈ [0, 2π] be such that Re h(t1) = 0, and Im h(t1) > 0. Similarly let
t2 ∈ [0, 2π] be such that Re h(t2) = 0, and Im h(t1) < 0. If t2 > t1, then we replace t2 with
t2 − 2π . (It is easy to see from the definition of h that these exist and are unique. For each
k ∈Z, define the tract Tk by

Tk := {x + iy ∈C : x > M and 2kπ + t2 < y < 2kπ + t1} .

Also set

H := f (T0). (9)

Clearly H is the image of any tract. Geometrically H is the right half-plane with a bounded
set removed; in particular

H = {z ∈C : Re z > a} \ f ({x + iy ∈C : x ∈ (0, M) and y ∈ (t2, t1)}).
We stress that the sets Tk are not tracts in the sense usually defined for functions in the

class B. However, if Tk, Tk′ are both tracts, then it follows by (8) that Tk′ ⊂ f (Tk) = H;
abusing slightly the terminology of class B maps, f is of disjoint type.

Note also that if Tk is a tract, then f : Tk → H is a continuous bijection, and in fact the same
is true for f : Tk → H. (This follows from the definitions of g and h; in fact f is a bijection
on a set slightly larger than Tk.) Since Tk is compact in Ĉ, and since H is a Hausdorff space,
it follows that f : Tk → H is a homeomorphism. We denote the inverse of this restriction
by f −1

k .
More generally, if k1k2 · · · kn is a finite sequence of integers, then we define

f −n
k1k2···kn

:= f −1
k1

◦ · · · ◦ f −1
kn

.
Next we consider the components of J and define the notion of external addresses.

PROPOSITION 3·2 Every component of J is unbounded.

Proof. Note that if Y ⊂ H is connected and unbounded, and k ∈Z, then f −1
k (Y) is con-

nected and unbounded; connectedness follows from continuity, and unboundedness is a
consequence of the fact that f is a homeomorphism of the closure of each tract.

For each n ∈N, consider the set

Fn =
⋃

k1···kn∈Zn

f −n
k1···kn

(H) ∪ {∞}.

Then, considered as a subset of the Riemann sphere, Fn is connected, by the above remark,
and compact; in other words, Fn is a continuum. It follows that

J ∪ {∞} =
⋂
n∈N

Fn

is a nested intersection of continua, and so is itself a continuum. The result then follows by
the “Boundary bumping theorem”; see, for example, [11, theorem 5·6].

We write N0 =N∪ {0}.
Definition 3·3 Observe that z ∈ J if and only if there is an external address s = s0s1 · · · ∈

Z
N0 such that f n(z) ∈ Tsn , for n ≥ 0. We write s = addr(z). We also write Js for the set of
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points with external address s. Finally we let Ĵs denote the closure of Js in Ĉ. If s is an
external address such that Js �= ∅, then we say that s is admissible.

The conclusions of the following observation are straightforward, and the proof is omitted.
Here σ is the Bernoulli shift map defined by σ (s0s1s2 · · · ) = s1s2 · · · .

Observation 3·4 Suppose that s = s0s1 · · · and s′ are admissible external addresses, with
s �= s′. Then all the following hold:

(i) Js =⋂
n∈N f −n

s0s1···sn−1
(H)

(ii) Js and Js′ are disjoint

(iii) if n ∈N, then f n(Js) = Jσ n(s).

Our next step is to characterise the admissible external addresses.

Definition 3·5 We say that an external address s ∈Z
N0 is g-bounded if there exists x′

0 ≥ 0
such that

2π |sn| ≤ gn(x′
0), for n ∈N0. (10)

Note that the constant 2π in (10) can, in fact, be replaced by any positive constant; indeed,
this comment also applies to the choice of the constant 2π in the definition of admissible
external addresses in [7]. We have used 2π here for consistency.

We show that the admissible external addresses are identically the external addresses that
are g-bounded, provided that g satisfies (4).

THEOREM 3·6 Suppose that (4) holds, and that s ∈Z
N0 . Then s is admissible if and only

if s is g-bounded.

Proof. First, suppose that s = s0s1 · · · is admissible, and so there exists a point
z = x + iy ∈C with external address s. Note that

Im f (z) ≤ |Z(z)| = g(x)|h(y)| ≤ g(x),

and indeed

Im f n(z) ≤ |Zn(z)| ≤ gn(x), for n ∈N0.

Observe that it follows from (4) that there exists x′
0 > 0 such that

gn(x + 2π) ≥ gn(x) + 2π , for x ≥ x′
0, n ∈N0.

Hence, for n ∈N0,

2π |sn| ≤ Im f n(z) + 2π ≤ gn(x) + 2π ≤ gn(x + x′
0) + 2π ≤ gn(x + x′

0 + 2π),

and so s is indeed g-bounded.
In the other direction, suppose that s = s0s1 · · · ∈Z

N0 is g-bounded. Recalling that
c > hβ/hα , we can choose κ > 0 small enough that

κ2 <
c2h2

α

h2
β

− 1.
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Let g̃(x) := hβg(x). It can be deduced from (4) and (10) that there exists x′′
0 ≥ 0 such that

max{3π , 4π |sn|} ≤ κ g̃n(x), for x ≥ x′′
0 and n ∈N0. (11)

Choose δ > 0 sufficiently small that

(1 + δ)2 <
c2h2

α

h2
β

− κ2.

We also choose

r0 > max

{
M, x0, x′′

0,
2π + a

δ

}
,

where x0 is the constant from (4) and M > 0 is the constant from Lemma 2·1.
Increasing r0, if necessary, we can also assume that all points of real part at least r0 lie

in H. We then set rk+1 = g̃(rk), for k ∈N0.
For each n ∈N0, let Dn be the closed square of side 2π , with sides parallel to the axes,

and with bottom left vertex at the point rn + 2π4sn.
We claim that f (Dn) ⊃ Dn+1, for n ∈N0. To prove the claim, first fix n ∈N0. Observe that

the image under Z of the left-hand side of Dn contains points of modulus at most hβg(rn).
Similarly, by (4), the image under Z of the right-hand side of Dn contains points of modulus
at least hαcg(rn). We can deduce that f (Dn) contains the annulus

An := {z ∈C : hβg(rn) ≤ |z + a| ≤ chαg(rn)}.

Since hβg(rn) = rn+1, we can see that Dn+1 does not lie inside the inner radius of An.
Hence it remains to prove that Dn+1 does not lie outside the outer radius of this annulus.
Without loss of generality we can assume that sn+1 is non-negative. A furthermost point of
Dn+1 from (− a, 0) is the point rn+1 + 2π + 2π i(sn+1 + 1). Hence the square of the distance
from (− a, 0) to any point of Dn+1 is at most

(rn+1 + a + 2π)2 + (2π(sn+1 + 1))2 ≤ r2
n+1(1 + δ)2 + r2

n+1κ
2 ≤ r2

n+1 · c2h2
α

h2
β

,

where we have used (11), together with the choices of δ and κ . Since the outer radius of An

is chαg(rn) = chαrn+1/hβ , this completes the proof of the claim.
It follows by, for example, [15, lemma 1], that there is point z such that f n(z) ∈ Dn, for

n ∈N0. Since Dn \ Tsn maps to the complement of H, we in fact have that f n(z) ∈ Tsn , for
n ∈N0. In other words, z ∈ Js, which completes the proof.

4. Devaney Hairs

Our goal in this section is to show that each component of J is a Devaney hair. Part (a)
of Theorem 1·4 follows, since there are uncountably many g-bounded, and hence admissi-
ble, external addresses. Note that this requires that we establish the three properties (i), (ii)
and (iii).
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We first show that our function f satisfies a uniform head-start condition; this terminology
is from [13]. This is a key ingredient in the arguments we use in the remainder of this paper.
We require the following expansion estimate, which follows from (7); recall that μ > 1.

PROPOSITION 4·1 Suppose that f is a generalised exponential function, that n ∈N, and that
U is a component of f −n(C \HM). Then

|f n(z) − f n(w)| ≥ μn|z − w|, for z, w ∈ U.

Proof. Let φ : C \HM → U be the inverse to f n. Since C \HM is convex, it follows by (7)
that, if z′, w′ ∈C \HM , then

|φ(z′) − φ(w′)| ≤
∫

[z′,w′]
|φ′(ζ )||dζ | ≤ |z′ − w′|ess sup

ζ∈[z′,w′]|Dφ(ζ )| ≤ 1

μn
|z′ − w′|,

where [z′, w′] denotes the line segment from z′ to w′. The result follows.
We now prove that f satisfies a uniform head-start condition.

LEMMA 4·2. Suppose that f is generalised exponential function. Then there exists K > 1
with the following properties.

(i) Suppose that T, T′ are tracts. If z0, z1 ∈ T and f (z0), f (z1) ∈ T ′, then

Re z1 ≥ K Re z0 =⇒ Re f (z1) ≥ K Re f (z0).

(ii) Suppose that z0, z1 have the same external address. Then there exist k ∈N and
j ∈ {0, 1} such that

Re f p(zj) ≥ K Re f p(z1−j), for p ≥ k.

Proof. Note first that

|f (z)| − a ≤ |Z(z)| ≤ hβg( Re z), for z ∈C, (12)

and

|f (z)| + a ≥ |Z(z)| ≥ hαg( Re z), for z ∈C. (13)

First we prove (i). Suppose that T , T ′ are two tracts, that z0, z1 ∈ T , and that f (z0),
f (z1) ∈ T ′. Suppose that q ∈N, that K ≥ 2πq, and finally that Re z0 ≥ K Re z1. Then,
by (4) and (13),

Re f (z1) ≥ |f (z1)| − | Im f (z1)|,
≥ hαg( Re z1) − a − | Im f (z0)| − π ,

≥ hαcqg( Re z0) − a − |f (z0)| − π .

We then consider two possibilities. Suppose first that |f (z0)| ≥ 2a. It follows, by (12), that
g( Re z0) ≥ (|f (z0)| − a)/hβ ≥ (1/2hβ )|f (z0)|. Hence, since Re f (z0) ≥ M,

Re f (z1) ≥
(

hαcq

2hβ

− 1

)
|f (z0)| − a − π ≥

(
hαcq

2hβ

− 1

)
M − a − π .
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On the other hand, if |f (z0)| < 2a, then

Re f (z1) ≥ hαcqg(M) − 3a − π .

Since Re f (z0) ≥ M, the conclusion (i) follows provided that q, and hence K, is chosen
sufficiently large. (Note that the choice of q can be made independently of z0 and z1.)

For (ii), suppose that z0 �= z1 have the same external address. Fix p ∈N. Since z0 and
z1 have the same external address, there exists a component U of f −p(C \HM), containing
both z0 and z1, that maps injectively to C \HM . It follows by Proposition 4·1 that |f p(z0) −
f p(z1)| ≥ μp|z0 − z1|. The result then follows by (i), since f p(z0) and f p(z1) lie in the same
tract, and p was arbitrary.

Next we use the uniform head-start condition to prove the existence of unbounded simple
curves in J; in other words, we prove that J consists of simple curves that satisfy (i) and (ii).
We defer the proof of (iii) until a little later.

Next we introduce a so-called speed ordering. For each z, w ∈ Js we say that z � w if there
exists k ∈N with the property that Re f k(z) > K Re f k(w), where K > 1 is the constant from
Lemma 4·2. We extend this order to the closure of Js in Ĉ, which we denote by Ĵs, by the
convention that ∞ � z for all z ∈ Js. We then have the following.

LEMMA 4·3 Suppose that f is a generalised exponential function, and that s is an admissi-
ble external address. Then

(
Ĵs, �

)
is a totally ordered space, and Js has a unique unbounded

component, which is a simple closed arc to infinity.

Proof. The fact that
(
Ĵs, �

)
is a totally ordered space is a straightforward consequence of

Lemma 4·2.
We then claim that each component of Ĵs is homeomorphic to a compact interval, which

may be degenerate. The proof of this fact is exactly as in the proof of [13, proposition 4·4(a)];
it is first shown that the identity map from Ĵs to

(
Ĵs, �

)
is continuous, and the result then

follows from a well-known characterisation of an arc. We omit the details.
Now, since s is admissible, we know that Js �= ∅. We also know, by Proposition 3·2, that

each component of Js is unbounded. Uniqueness then follows from the fact that ∞ is the
maximal element of

(
Ĵs, �

)
.

Note that (i) and (ii) and are now an immediate consequence of Lemma 4·3, together
with Observation 3·4. It remains to show that the uniform escape property (iii) holds on the
components of J. In fact, this is a consequence of Lemma 4·3, together with the following.

LEMMA 4·4 Suppose that f is a generalised exponential function. If z, w ∈ J have the
same external address, then

lim
k→∞ max{Re f k(z), Re f k(w)} = ∞.

Proof. We omit the proof of this lemma, which is essentially the same as the proof of [13,
lemma 3·2], using Proposition 4·1 to give expansion.

5. Cantor bouquets

In this section we show that J is a Cantor bouquet; in other words, we prove part (b) of
Theorem 1·4. It was observed in [2] that the result of [10] holds for all Cantor bouquets.
Hence part (c) of Theorem 1·4 is a direct consequence of this. Note that the arguments in
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this section are essentially topological, and very similar to those of [5]. Accordingly we give
only brief details, and refer to that paper for more detailed explanations and definitions.

In fact, we shall construct a so-called one-sided hairy arc. This is a topological object
defined as follows (see also [1] and [5]).

Definition 5·1 A one-sided hairy arc is a continuum X ⊂R
2 containing an arc B (called

the base of X), and a total order ≺ on B, such that:

(i) the closure of every connected component of X \ B is an arc, with exactly one end-
point in B. In particular, for each x ∈ X \ B, there exists a unique arc γx : [0, 1] → X
such that γx(0) = x, γx(t) /∈ B for t < 1, and γx(1) ∈ B. In this case, we say that x
belongs to the hair attached at γx(1).

(ii) all the hairs are attached at the same side of the base.

(iii) distinct components of X \ B have disjoint closures, and X \ B is dense in X.

(iv) if x0 ∈ X \ B and xn ∈ X \ B is a sequence of points converging to x0, then γxn → γx0

in the Hausdorff metric.

(v) if b ∈ B and x belongs to the hair attached at b, then there exist sequences x+
n , x−

n ,
attached respectively at points b+

n , b−
n ∈ B, such that b−

n ≺ b ≺ b+
n and x−

n , x+
n → x as

n → ∞.

It is known that if X is a one-sided hairy arc, then X \ B is homeomorphic to a topological
object known as a straight brush; we omit the definition, which can be found at [1]. Our goal
is to construct a suitable base B so that J ∪ B is a one-sided hairy arc. Since a Cantor bouquet
is, by definition, a set ambiently homeomorphic to a straight brush, the result follows.

We follow the construction in [5, section 5], although our construction is slightly easier
since (up to 2π i translation) we only have one tract. First we define intermediate addresses,
which are used in our construction. Let T denote the set of tracts of f equipped with a natural
total order.

Definition 5·2 For k ∈Z, an intermediate entry is a pair (k, k + 1) where Tk, Tk+1 ∈ T are
consecutive tracts with respect to the total order of tracts.

Note that this procedure of considering intermediate entries simply adds an intermediate
entry between any pair of adjacent tracts. Now we can define intermediate external addresses
as follows.

Definition 5·3 A (finite) sequence s = T0T1 · · · Tn−1Sn, where n ≥ 0, Tj ∈ T for 0 ≤ j ≤
n − 1, and where Sn is an intermediate entry, is called an intermediate external address.

We now define B to be the union of:

(i) the set ZN0 of all external addresses;

(ii) the set of all intermediate external addresses;

(iii) the set {−∞, ∞}.
We then let H̃ = H ∪ B; recall that H is the image of the tracts, defined in (9). Exactly

as in [5, section 5] we can define a topology on H̃ by specifying a neighbourhood base for
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every s ∈ B. It then follows from [5, Proposition 5·6], that H̃ is homeomorphic to the closed
unit disc, and B is homeomorphic to an arc.

First, we show that the set of admissible external addresses (see Definition 3·3) is dense
in the set of all external addresses.

PROPOSITION 5·4 The set of admissible external addresses is dense in ZN0 .

Proof. We know from Theorem 3·6 that g-bounded external addresses are admissible.
Hence, since periodic external addresses are certainly g-bounded, we deduce that periodic
external addresses are admissible. The result follows since periodic external addresses are
dense in ZN0 .

Let J̃ denote the closure of J in the space H̃. Our goal is to show that J̃ is a one-sided
hairy arc. To achieve this we need some results which together imply that properties (i)-(v)
from definition 5·1 hold.

PROPOSITION 5·5. The set J̃ is a continuum with J = J̃ \ B. Moreover, the closure of every
component of J is an arc, with exactly one endpoint in B, distinct components of J have
disjoint closures in J̃, and J is dense in J̃.

We know that B is an arc. Note that this proposition gives properties (i) and (iii). Moreover,
J̃ is one-sided by construction, hence property (ii) is satisfied.

Proof of Proposition 5·5. Recall from Lemma 4·3 that each component of J is a simple
closed arc to infinity, Js, for some external address s. Suppose that s is an admissible external
address. We can deduce from the topology on H̃ that points of Js cannot accumulate on any
element of B apart from s. Hence Js ∪ {s} is a compact subset of H̃. Moreover, Js ∪ {s} is
connected.

It follows from Proposition 5·4 that B ⊂ J̃. Hence J̃ is the disjoint union

J̃ =
⋃

admissible s

Js ∪ B, (14)

where the union is taken over the admissible external addresses.
B is homeomorphic to an arc, and so connected. Also, H̃ is a compact metric space, and

hence so is J̃. The claims of the proposition follow from these facts, together with (14).
In order to prove the accumulation of hairs, i.e., property (v), we use the following result.

PROPOSITION 5·6. Suppose that z0 ∈ J. Then there are sequences z−
n , z+

n ∈ J, with
addr (z−

n ) < addr (z0) < addr (z+
n ), for n ∈N, and z−

n → z0, z+
n → z0 as n → ∞.

Proof. Choose p ∈N. Let U be the component of f −p(H) containing z0, and let φ : H → U
be the inverse to f −p. Define a pair of points z±

p = φ(f p(z0) ± 2π i), so that, by definition, we
have addr (z−

p ) < addr (z0) < addr (z+
p ), for p ∈N. It follows by Proposition 4·1 that z±

n → z0

as n → ∞, as required.
The following proposition is analogous to [5, proposition 6·1] and we omit the proof.

PROPOSITION 5·7. Suppose that an ∈ J converges to a point a ∈ J, and that, for each n,
bn ∈ Jaddr(an) has the same external address as an and satisfies bn � an in the speed ordering
of f. If b ∈ J is an accumulation point of the sequence bn, then b � a.
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We use Proposition 5·7 as a tool to prove property (iv), as shown below.

PROPOSITION 5·8. If x0 ∈ X \ B and xn ∈ X \ B is a sequence of points converging to x0,
then γxn → γx0 in the Hausdorff metric.

Proof. Passing to a subsequence, we may assume that γxn converges in the Hausdorff
metric to a limit γ . Then γ ⊂ Js ∪ {s}, where s = addr (z0). Note that γ is connected as the
Hausdorff limit of compact connected subsets of the compact space J̃, and also it contains
both z0 and s. Hence we have that γz0 ⊂ γ . It remains to show that γ ⊂ γz0 . Note that this
inclusion follows from Proposition 5·7.

We have shown that J̃ = J ∪ B is a one-sided hairy arc. Hence, for the reasons noted
earlier, J is a Cantor bouquet, which completes the proof of Theorem 1·4.
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