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1. Introduction

Let X be a set and J the semigroup (under composition) of all total transforma-
tions from X into itself. In ([6], Theorem 3) Howie characterised those elements of
that can be written as a product of idempotents in J different from the identity. We
gather from review articles that his work was later extended by Evseev and Podran
[3, 4] (and independently for finite X by Sullivan [15]) to the semigroup % of all
partial transformations of X into itself. Howie’s result was generalized in a different
direction by Kim [8], and it has also been considered in both a topological and a
totally ordered setting (see [11] and [14] for brief summaries of this latter work). In
addition, Magill [10] investigated the corresponding idea for endomorphisms of a
Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear
transformations of a finite-dimensional vector space.

In this paper we return to Howie’s original article and first determine the ideals of the
semigroup &y generated by the idempotents in 7 different from the identity. Next we
characterise Green’s relations on &y and use our result to produce a new class of 0-
bisimple regular semigroups. Finally we consider the extension of our work to the
partial case.

2. Ideal structure

Throughout this paper we shall in the main use the notation of [1] but occasionally
abbreviate it for the purpose of convenience. In particular, if a € 7y we write r(oz)=[Xa|
and can call this the rank of a.

Howie showed in ([6], Theorem 1) that if X is finite then &y={aeTy:r(a)<|X]}.
Since the ideals of this semigroup are well-known (cf. [1], Vol. 2, Theorem 10.59) we
assume for the remainder of this section that |[X|=x2=R,. In [6] Howie described the
elements of &y in this case via three concepts: if xe 7y we put

D(0) =X\ X« and d(a)= |D(a)|
S(e)={x€e X: xa# x} and s(a) = |[S(a)|
C@=ufta™:|ta™ |22} and c(a)=|C(a)|
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and we refer to the cardinals d(a), s(x) and c(«) as the defect, shift and collapse of a,
respectively. Howie proved in ([6], Theorem 3) that &y is the disjoint union of two
semigroups:

V={ae Ty s(®) <¥, and d(a) #0}
H={ae Ty s(0) =d(e) =c() 2 N}.

That V is in fact a semigroup follows from ([6], Lemmas 2 and 5), and that H is a
semigroup follows from ([6], Lemmas 6 and 7). Since we will need to refer to the last of
these Lemmas quite often, we re-state it here for convenience (and note in passing that
the original proof contained a significant error that was neatly corrected in [7]).

Lemma 1. If aeH, €T, and s(B)<s(x) then both aff and Pa have shift, defect and
collapse equal to that of a.

In this section we aim to describe the ideals I of &,: note that I=(InV)u (I n H)
and if InV and I~ H are non-empty they are ideals of ¥V and H respectively; hence
our first task will be to determine the ideals of V and of H. It seems that Vorobev [18]
has described the ideals of a semigroup closely allied to V: namely, the set of all xe Iy
with s(a) <Ny ([17] may also be relevant: it is listed in [9] but has not been reviewed
and was unavailable to us). For completeness we provide a proof of the following,

Theorem 1. Let neZ* and V,={aeV:d(a)=n}. Then V, is an ideal of V and every
ideal of V equals some V,. Moreover, each V, is principal and generated by an element
with defect n.

Proof. Let aeV, and BeV. Since D(a)<D(fa), we have foe V,. Although after some
reflection it is intuitively clear that also a«feV,, a convincing argument is somewhat
longer. Firstly we assert that

[S(B) v D(2)] " XaB<[S(B\D(«)1B.
For, if xeS(f)v D(x) and x=yaf for some ye X then yaeS(f): otherwise, x=(yu)f=
yo ¢ S(B) implies x=yaxe D(a), a contradiction. Hence yaeS(f)\D(x), and our assertion

follows. Now we put Y =_S8(f) u D(«) and note that

|Y n Xap|<|S(BH\D(@)
where
|Y|=|Y n Xap|+|Y n D(aB)|

Hence we have

d@B)Z|Y N D(aB)|=|Y|—|Y n Xaf|Z|Y|—|S(B\D(®)|=d(e) 2 1.
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For the converse we assume [ is an ideal of V, choose ael with minimal defect, and
put d(a)=n. Then I<V,. Let BeV, and put Z=E(a)u E(f), where E(y) denotes
S(y) v S(y)y for each yeV. Note that both « and § map Z into itself, and fix X\Z
pointwise. Hence D(a) u D(B)<Z. Put a1=a|Z and B,=pB|Z, and note that since a,
fixes E(B)\E(x), we have d(a,)=d(x). Likewise d(B,)=d(f) and, since

r(oy) +d(oy) =r(By) +d(By) =|Z| <Xo

where d(B,)2d(a,)#0, we conclude that r(f,) <r(x;)<|Z|. At this point we can invoke
the well-known characterisation of Green’s #-relation on 4, (cf. [1], Vol. 1, pp. 52-53)
to assert that f, =24,x,u, for some A,,u, €7 ,. In fact, since r(a1)<|Z|, we can ensure
that d(4,) and d(u,) are both non-zero. So, by extending 1, and g, to the whole of X in
an obvious way, we obtain f=Aau for some A, ueV; that is, el and we have shown
I=V,. That V, is a principal ideal is clear from the foregoing discussion.

According to ([1], Vol. 2, Theorem 10.59) the ideals of J take the form I, where for
<&k,

I,={aeTy:r(a) <&}

If £ is finite then the Rees quotient semigroup I, /I, is completely O-simple ([1], Vol. 2,
Lemma 10.54). We assert that this is also true for the semigroups V,/V,., where
1Z£n<Ny=«. To show this we again use the set E(a)=S(cx) U S(e)a (called by Symons
[16] the essential domain of aeTy); namely, if a,feV with d(a)=d(f)=n, we put
Y=E(x)UE(f) and observe that a,=a|Y and B,=B|Y are elements of 7, with
Ho)=r(f)< |Y| We can now follow the proof of ([1], Vol. 2, Lemma 10.54) to eventually
conclude that V,/V, ., is O-simple. Clearly, V,\V, ., contains idempotents. To show each
of these is primitive, we again put Y = E(a) U E(f) where o, f are idempotents in V with
af=Pfa=a and d(a)=d(B). Then o,f,=p,a;=a, for idempotents «,,f, €7, with
r(o)=r(f,) <N,. An argument similar to that in the reference already cited eventually leads
us to a=f. We have therefore shown

Theorem 2. If 1<n<N, then V,/V,., is a completely 0-simple semigroup.

We assert that V,/V,,, is not isomorphic to any I,,,/I,, with m finite ... simply
because the cardinal of the first is k¥ while that of the second is 2*. To see this, recall
that the set & of all finite subsets of X has cardinal « ([12], Theorem 22.17). If & is
any finite subset of X such that |F|=n+122 then V,/V,,, contains an idempotent that
is constant on F and fixes X\F; hence, if |V,/V,.|=¢ then e>k. Now, to each
ae V\V,,., we can associate in a one-to-one fashion the element a|E(oc) of Tg. Hence
if my denotes the (finite) cardinal of J for each Fe# then ¢ XX¥mp=x. On the other
hand, if Fe# and |F|=m then I,,,,/I,, contains all maps from X onto F and there are
2* such maps (since there are (2¥)"=2* ways of partitioning X into a family of m subsets
of X: cf. [12], Exercise 22.20). However the cardinal of J is 2* and so we have
|Im+l/1m|=2x'

It will become apparent after we have determined Green’s 5 -relation on V in Section
3 that V,/V,., and I, ,,/I, are non-isomorphic for a less trivial reason: namely, the
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non-zero group s -classes of I,,,,/I,, are all isomorphic to the symmetric group %,, on
m letters (as observed in [1], Vol. 2, p. 226) whereas those of V,/V, ., are all isomorphic
to the group %(k, 8,) of all permutations of x letters with finite shift (as can be readily
checked by mimicking the proof of Theorem 2.10(ii) in [1], Vol. 1).

We now turn to the problem of describing the ideal of H: it happens that, just as in V,
they form a chain, even though two cardinals are required for their description. To
show this, we let

H(5,)={acH:d®)26 and r(o)<¢}
where Xy <d<x and 2<¢<«".

Lemma 2. Each H(J,¢) is an ideal of H and the set of all such distinct ideals forms a
chain: .

H(x,2)< - CH(x, &)< -~ CH(x,K) < - - SH(,, &) < H(Ry, ) *)

Proof. Let ac H(3,¢) and feH, and suppose s(a)=d(a)=c(a)=a and s(f)=d(f)=
c(f)=>b. If b<a then ([6], Lemmas 6 and 7) imply that both af and fa have defect
equal to a (26). If a>b then Lemma 1 above implies that both «f and fo have defect
equal to b>a=4. Since r(xf) <min{r(x), 7(f)} it therefore follows that af, o H(d, £) and

- H(5,¢) is an ideal of H.

Now consider an arbitrary H(5, £). If 6=k (and 2<¢<«’) we have an ideal in the first
portion of the above chain, and if £ =x" (and ¥, <6 =<x) we are in the second portion of
the chain. On the other hand, since |X |=K;N0 and X=Xau(X\Xa) for each aeH,
we must have d(x) =« if H{o) <€ <Zk; that is if d<k, £<k and ae H(J, ) then ae H(k,&).
Since H(x, &)< H(4, ), we deduce that H(J, &)= H(x, ) when d <k and {<«x.

Following ([1], Vol. 2, p. 241), for each a€ Iy, we write

C

xm
where Xo={x,:meM} for some index set M and C,=x,0""' for each me M. To
abbreviate notation, we adopt the convention (as in the reference just cited) of writing

{x,} for {x,:meM}, taking the subscript m to signify the index set M within a specific
context.

Theorem 3. Every ideal of H has the form H(6,&) for some 6, In particular, the
principal ideals of H are H(x,n') and H(e,k') for some n,e satisfying 1<n<x and
No=Ze=k.

Proof, Suppose I is an ideal of H. Let 6 be the defect of an element of I with
minimal defect and let ¢ be the least cardinal greater than the ranks of all the elements
of I. We assert that I=H(6,¢). Since 1< H(J, &), we therefore proceed to show that if
BeH(d,¢) then there exist ael and A, ue H such that f=JAau. So, let fe H(J, ) and note
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that r(a) <r(B) <& for all ael contradicts the choice of £. Hence there exists ael with

r(B) Sr(a). Put
() = ()
X Yn

and choose a cross-section {a,} of {4,}. Write {a,} ={a,,} U {a,}, which is possible since
r(«) 2 r(B), and put

Now suppose d(a)=d(f)=«. Since fe H, we have ¢(f) =« and this means ¢(1)=s(})=«
(using [6], Lemma 3). If r(f) <« then |X\{a,}|=x and so d(1)=x; that is, Ae H. I on
the other hand r(f)=x then r(@)=x and we can ensure that |S|=x; that is, {a,} SD(4)
and again AeH. To define p, put C=X\{y,} and note that D(a)=C. Hence if we

choose ze C and define
(y,.. C)
u=
X, Z

then c(u) =s(p) =«. In addition, D(f)\z< D(¢) and so d(u) =«. That is, ue H and we have
B=Aau as required.

Before considering the next case, note that if r(f)<r(a)<xk then d(a)=d(f)=x« as
above. Hence we may suppose r(a) =«. Suppose further that d(f)=x. In this case, with
the same notation as before, we immediately have ¢(A) =s(1) = k. Moreover, since )=«
we can ensure that |S|=«. Then d(1)=x and, since {y,} =C, we also have c(u)=s(p)=x
together with d(u) =« (as before).

Hence we may now assume H{a)=« and é <d(f) <x. This implies r(f)=k. In addition,
by choice of 4, there exists y el with d(y)=4J<k (in this case) and so r(y)=k; that is, we
can assume without loss of generality that d(a)=0 <d(f)=¢, say. Given all this, we now
restrict o, § (as in the proof of Theorem 1) to Y = E(x) U E(f) and obtain «,, f, € 7y with
the same shift, defect and collapse as o,  respectively. However, |Y| =¢ and so, from our
very first case, f, =4,0,u, for some A,,u, €7, where both 4, and u, have equal infinite
shift, defect and collapse. By extending this equation to the whole of X in an obvious
way, we have = Aau for some 4, ue H and so fiel.

Finally, observe that we have indirectly proved

H(d,,8,)= H(J,,¢,) if and only if 6,26, and §; £¢,,

and H(d(«),r{))=H'aH! for each a € H.

As noted in ([1], Vol. 2, p. 227, Exercise 3), each I./I, is a 0-bisimple semigroup for
No=¢=x. Hence, since I./I, contains non-zero idempotents, it is also regular (by [1],
Vol. 1, Theorem 2.11). We shall consider the Rees factor semigroups corresponding to
the ideals in (*) after we have determined Green’s &2 and # relations on H in Section 3.
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At this point we simply remark that H(x,¢)=I, for each ¢ satisfying 1<&<«. For. if
ael, and 1<&<k then d(x)=k and, since D(x)=S(), we also have s(a)=k. But a can
be written as

where Cl)=u{A4,,meM}, a,#x, for all neN and {a,}=X\[C(e)u S(2)]. Since
|M U N|<x and s(«) =«, we must have |C(2)\{x,}| = and so ae H(x, &).

On the other hand, H(x,«') is a proper subset of I,.. For, if £{ <x we can partition X
into sets 4 and By, B,, Bs,... where |4|=¢ and |B|=x for each i21, choose bijections
0;: B;—B;,, and a€ A, and then define a € 7y by

xa=a If xeA,

=x8, if xeB,.
Then D(x)=B,, S(e) =u{B;:i=1} and C(0)=A4; that is a ¢ H(x, k).

Theorem 4. The ideals of &y are precisely the ideals of H together with the sets
V,uH fornz1.

Proof. By Lemma 1 and Theorem 3 the ideals of H, as well as the sets V, U H, are
all ideals of &%. Conversely, suppose I is an ideal of &y; the desired result follows
immediately from Theorem 1 since if I ~ H is a proper subset of H we can use Lemma 1
to obtain a contradiction.

3. Green’s Relations

For convenience we start this section by re-stating certain information from ([1], Vol.
1, pp. 52-53).

Lemma 3. If a,feJy then
(@) B=Aa for some Ae Ty if and only if X< Xa,
(b) B=apu for some ue Ty if and only if aca”'cBof™!,
(¢) B=Aou for some A, ue Ty if and only if r(e) <r(p),
d 2=74.

Comparable statements can be made for #y and the symmetric inverse semigroup $y
on X (see [5] for a brief summary of this idea and its extension to a categorical setting).
Our task in this section is to show that statements analogous to (a), (b) and (d) hold for
both V and H, but that something different occurs for (c).

Theorem 5. If a,BeV then
(a) B=2a for some AecV if and only if Xf< Xa,
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(b) B=au for some peV if and only if aca " *<Spop™?,
(¢) B=4Aau for some i,ueV if and only if d(B)=d(a),
d 2=7.

Proof. Suppose Xo < X B where Xf is a proper subset of X. Put Y =E(a)u E(B) and
restrict o, f to Y to produce «,,f,€Jy where YB, is a proper subset of ¥ Now Y is
finite and Y B, < Ya,: since if ye Y and yf=xa for xe X then xa+# x (and so x€ Y) or xa=x
(and so x=yBeY). By Lemma 3(a), f,=4,a, for some i, €7, which moreover can be
chosen with d(4,)#0 (since d(f,)#0). Then f=Aa where 1eV and part (a) follows; a
similar argument establishes part (b).

Suppose f=Aau where d(a)=n. By Theorem 1, V'aV'=V, and so d(B)=n. Converse-
ly, suppose d(f) = d(«). Then, using our customary notation, r(f;) Sr{a,) and Lemma 3(c)
implies B, =A,a,u, for some A;,u, € Jy. In fact, since Y is finite and d(B,)+0, both A,
and p, can be chosen with non-zero defect; hence we have f=JAap with L pueV, as
required.

Finally, if V'aV!=V'BV! then d(«)=d(B)#0 and so r(a,)=r(B,)#|Y| By Lemma
3(d), this implies a,.#y,%B, for some y, €y which can in fact be chosen with non-zero
defect. Hence, a.yZf for some ye V and the proof is complete.

The proof of the corresponding result for H is much longer since our technique of
restricting o, f€ Ty to Y = E(x) U E(f) does not seem to help matters.
Theorem 6. If a,feH then
(a) B=2Aa for some AeH if and only if X< Xa,
(b) B=au for some peH if and only if x ca 1S Bop™?,
(¢) B=Aau for some A,ue H if and only if r(B)=<r(a) and d(f)=d(x),
d 2=4.

Proof. Suppose XBcXa and put Z=X\[C(f)vw S(F)]. Then d(B)=d(e) and
|Z A S(e)| < s(@) < s(B). Now write
b, b,,)
b, b,

_ BP bq
ﬂ_<xp Xq

where C(B)=U{B,:peP}, b,#x, for all geQ, {b,}=Z N S(«), and Z={b,,} U {b,}. Then

b,a=b, for all ne N and we can write

A, A, A, A, A,)
o=
X, Xg b, b, x

where b,e 4, for each ne N and {x,} = Xa\Xp (if non-empty). We now choose a partial
cross-section {a,} U {a,} U {a,} U {b,} of X/xoa~! and put

1 (B b, b, b,,'
a, a, a, b,
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Note that since [M|<s(f), we have c(4) =s(4) = s(f). In addition, we have

DAY=LC(B) v S(B) v {bm}I\[{a,} L {45} U {an}]

and so d(4)<s(f). If d(o) <d(p) then |S|=d(B) and so, since U{A,:seS}<D(4), we have
d(%) =s(p). Hence, we may suppose d(o)=d(f)=¢ say. Now write C(a)=U{A,:te T} and
note that, when selecting the partial cross-section of X/aoa™! to form A, we choose at
most one element from each A,. Consider the worst case and suppose we have in fact
chosen some a,€ 4, for each te T. Since each A4, contains at least 2 elements, we have
|C(0)\{a,}| =¢. However, C(«)\{a,} =D(4) and so d(2)=e. That is, le H and B=Ax.

For part (b), we now suppose aoa” ' < foB~ ! and write

= B, B, x; w, w,
bm b Yi W, W

B,. B, xi w, w
o=
Com € Zi U W
where the sets B, and B, contain at least 2 elements, B,=uU{B,, neN,} for some
index set N, and x;# y;, w,#v, (note that possibly x;=z; for some i, and also some B,,,
may consist of a single element). The above display is possible since each fo ™ !-class is

the union of one or more aoo '-classes; the sets N, are therefore chosen to satisfy
2<|N,|=c(B). Put C,,={cp:neN,} and D=D(a), choose de D and let

(Cw ¢ z v, wy D
w= b, b, yi w, w, d

Then f=au and D(u)=D(B)\d: that is, d(u) =d(f). In addition, C(z)=(uC,,)w D and

S(we(uCy)uictu{ziu{n}ub.

However, C(0)=C() and so d(«) <d(B); also, [M U P|<c(B), |I|<s(B), |R|<s(¢) and
|C.| c(B) for each m. Hence both c(u) and s(u) are at most d(f). In fact, it is clear
from the very definition of u that c(u)=s(u)=d(f) when d(ax)=4d(f). So, suppose
d(@) <d(B). This implies |UB,|=c(f) since |UB,|Sc(); also [(UB,) N S(«)| <c(B). Hence,
|(U B,) " F(0)| = (B) where F(a) = X\S(«). But U B,, = J,u| ), B,.» and so in this case there are
c(B) elements in UC,, that are fixed by a. Consequently, |UC,|=c(B) and so c(u)=c(f).
Moreover, each C, contains at least 2 elements and |M|<c(B). So, |U(C,\b,)|=c(B)
and therefore s(u) = (). That is, ue H as required.

To prove parts (c) and (d), we first show that a2 in H if and only if r(a)=r(f) and
d(e) =d(p). Suppose a.Ly&f for some ye H. By parts (a) and (b), Xa=Xy and yoy 1=
BopB~*. Hence, () =r(f) and d(a)=d(y)=c(y)=c(B)=d(B). For the converse we assume
Hoa)=r(f) and d(a)=d(f), and consider two cases. If d(a)=x we choose any yeJy
with Xa=Xy and yoy '=BoB™! (such y’s exist since Ha)=r(B)). Then d(y)=d(a)=x
(and so s(y)=« since D(y)=S(y)) and c(y)=c(f)=x; that is, ye H and we are finished.
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If on the other hand d(a)=06 <« then r(a) =k and our task of finding a suitable y is much
harder. However, before accomplishing this we note in passing that this case cannot be
reduced to the one already considered by restricting o, f to Y =E(x) U E(f). For, we

might now have
vuVv U V ¢,
U “
X Cn y zZ C,

where U,V and {c,} partition X, |[U|=|V|=d<x, and x,y,z are distinct elements of
U v V; if this were so then Y=U u V and d(a,)=d(8,) =0 but r{a,)#r(B,).
Now let A=Xa\[C(B)uS(B)] and note that |[A|=« and af=a for all ae 4. Put

B=Xan[C(B) v S(B)]
C=D(a) u C(B) L S(B)
g=max(|B|,|CB|, R,)

and note that ¥,<e<d<x since |[C|=5. Choose a subset D of A with |D|=¢ and let
E=CuD, F=BuD. Now |EB|=|CB|+|DB|=¢ (since DB=D) and |F|=e. Let 6: EB—F
be any bijection and define ye 7y by

xy=x ifxeA\D
=xf0 if xeE.

The domain of y is X since Eu(A\D) contains Cu A which equals Xau D(a).
Moreover, if xy=yy then either (1) x=ye A\D, or (2) xe A\D, ye E and x=yf#0, or (3)
x,yeE and xf6=yp0l (we omit the dual of (2)). If (1) occurs then xf=yp; if (2) occurs
then xe F and so xe B (since x¢ D), contradicting the assumption that x e 4; and if (3)
occurs then xB=yf since 0 is one-to-one. That is, yey < B0 1. On the other hand, if
xf=yf then either x=y (and so xy=yy) or x#y (in which case x,ye C(f)<E and so
xy=xp60=ypO=yy). Hence, yoy 1 =fo B~ !. In addition,

Xy=[Eu(A\D)]y=Fu(A\D)=A v B=Xao.

Thus, o(y)=c(f)=d(@)=d(y). Clearly, S(y)<E and |E|=4. But D(y)=S(y) and d(y)=3;
thus, s(y) =0 and we have found some ye H such that a.#yZp.

Having characterised Green’s 2 relation on H, we now consider part (c) and suppose
B=Aop. Then r(B) <r(x) and d(B) =d(u). Hence, if d(f) <d(«) then d(ou) =d(x) (by Lemma
1) as well as d(f) =d(ap), a contradiction. Therefore d(f) = d(a). For the converse suppose
o,feH, {f)<r(a) and d(B)=d(«). This means fe H(d(a),r(2)) which by Theorem 3
equals H'aH*, and so part (c) is proved. Finally, a # B implies H'aH'=H'BH" and this
in turn implies d(a)=d(f) and r(e)=r(f); from the foregoing, we deduce a2f, and of
course 2 < ¢ always.

It may be worthwhile illustrating the choice of y for the «, 8 displayed in (**) above.
Using the notation introduced in the second last paragraph of the proof, we have
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A={c,}, B={x}, C=U UV and ¢=¥,. Then we in effect “blow-up” rH«,) and r(f,) until
they are equal by suitably enlarging the domain of «, and ;. That is, we choose
D={c,} in A with |M|=e=N, and note that Ef={y,x} U {c,} has the same cardinal
as F={x} U {c,}. If {c,} = A\D then y is the map
(U V e ¢
yo z86 c,0 cp)
where 8 is any bijection between Ef and F. .

Before proceeding we note that the significance of Theorem 6 (especially part (d)) lies
in the fact that it gives some hope of determining the congruences on H in a manner
akin to that developed by Clifford and Preston for 7 in ([1], Vol. 2, Section 10.8); we
shall explore this possibility in a subsequent paper.

We now consider the Rees quotient semigroup H(d,«x')/H(d', ') for 8, <6 <«. Clearly,
each non-zero element of this semigroup has defect 6 and rank x. Moreover, a close
perusal of the proof of Theorem 6 shows that if d(a)=d(f) and r(a)=r(f) for o, feH
then there exists ye H such that «.#yZf and d(y)=d(z). In addition, if «.#y in H then
there exist 4,,4,e H with a=4,y, y=4,a and d(4,)=d(®), d(4,) =d(y); likewise, if yZf in
H then there exist u,,u, € H with y=pu,, f=yu, and d(p,)=4d(y), d(u,)=d(B). In other
words, each H(d,x')/H(¢,k’) is O-bisimple when d<k. Each such semigroup is also
regular since it contains non-zero idempotents and ({1], Vol. 1, Theorem 2.11) can be

applied. However, none of them is completely O-simple since they always contain non-
zero non-primitive idempotents; for example, if :

A b, b, Auf{b,} b,
““(a b, b,,) ﬁ‘( a b,,)

where |A|=|{b,}|=5 and ae A4, then o, § are distinct idempotents satisfying aff = fa=p.

Unfortunately we cannot decide whether these O-bisimple quotients in the “top half”
of (*) are isomorphic to any of the quotients in the “bottom half” of (*). For, an
argument similar to that applied to V,/V, ., in Section 2 can be used to show that for
d<k, H(8,x')/H(&', k') has cardinal x° (this is because the set of all subsets of X with
cardinal é has cardinal x% see [12], Exercise 22.25). It can also be readily shown that
the non-zero group s -classes of H(J,x')/H(d',x’) are all isomorphic to the group %(x, §)
of all permutations of k letters with shift at most 6. On the other hand, for {<x, I./I,
has cardinal 2 and its non-zero group .#-classes are all isomorphic to %,. However,

without GCH, we may have 2°=2¢ even though 6+ ¢ ([13], pp. 119 and 130).
Our final result in this section in effect determines Green’s relations on &y.

Theorem 7. If a,fec8x and are related under one of Greenw’s relations on &y then
a,feV ora,feH.

Proof. Suppose acV, peH and a=I1f for some Ae&y Then, by Lemma 1,

s(A)=s(p) and this means Ae H which in turn implies «€ H, a contradiction. A similar
argument can be applied if a=fu or if a=Afu for some A, ue &y.
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4. Partial Transformations

In this section we consider the way in which the results of Sections 2 and 3 can be
extended to the semigroup &% that is generated by all the idempotent partial
transformations of X different from the identity (it is clear that the identity cannot be
written as a product of idempotents in &, different from the identity).

For finite X, the elements of &% were characterised by Evseev and Podran [3] (and
independently by Sullivan [15]). As one might expect (by analogy with 73), if |X|=n
then &% ={aePy:r(®) <n} and moreover each a€ &% can in fact be written as a product
of idempotents in £, with defect 1 (note that such idempotents can equal 1y for some
Y <X with |Y| =n—1). Given this, it is easy to see what the ideals and Green’s relations
on &% must be when X is finite.

Hence we again assume throughout this section that |X |=K§N0. It seems from a
review that Evseev and Podran [4] have also investigated &% in this case. Since we need
a straight forward characterisation of the clements of &% in order to describe the ideals
of &%, we now present such a characterisation and for completeness we include a short
proof based on Howie’s Theorem.

However, before proceeding to do this we recall Lyapin’s method of representing 2y
as a semigroup of total transformations: namely, let 0¢ X, put Y=X u 0 and

Fo={Be7y:08=0},

and define 0:%,—F,, a—af, where x(af)=xo if xedoma and x(af)=0 otherwise.
Clearly 0 is an isomorphism. We extend the notions of defect, collapse and shift of
ae Ty to elements of 2y as follows: for each ae Py, let

D*(a)=X\Xa and d*(0)=|D*()|
C*(a) = C(ar) u (X \dom ) and c*(a)=|C¥«)|

S*(@)={xedoma: xa#x} U(X\doma) and s*a)=|S*(a)|

Theorem 8. An element o of Py can be written as a product of idempotents in Py
different from the identity if and only if either s*(a) <¥, and d*(0)#0 or s*(a)=c*(a)=
d* () = N,.

Proof. Suppose ac&% and f=af. Then fe &y and so, by Howie’s Theorem, either
s(B)<¥, and d(f)#0 or s(f)=c(f)=d(f)=¥N,. Since Y\YS=X\Xa, C(f)=C*) and
S(B)=S*(«), this produces the desired result. Now suppose a € %y and « satisfies s*(a) =
c*a)=d*(x)2N,. Then f=ab e F, and f satisfies the corresponding condition in Howie’s

Theorem. Suppose
B, C y; a,
p= (xi 0 z a,,)

J
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where each B; contains at least 2 elements and y;#z; for each j. Choose b;€ B; and let

A=B,~Cyja,, “=b,-0yja,,D

b, 0 y; a, x; 0 z; a, d

where D=(C\0) v (C(B)\{b;}) and deD. Then B=Au where A>=1eF, Now since c(B)
equals either |UB,| or |C|, we have |D|=c(B). Thus, since |I|<c(B) and |J|<s(B), we have
c(u) =s(u)=c(p). Moreover, D(u)=D(f)\d and so d(u)=s(f). Therefore, by Howie’s
Theorem, u | X is a product of idempotents in Jy, each of which can be extended in an
obvious way to an idempotent in F,. By applying the isomorphism 6~!, we obtain a
product of idempotents in 25 that equals o.

Since the proof for the case when s*(a) <, and d*(«)#0 can be carried through in
an entirely similar manner, we omit the details. However we note that in this case f

cannot look like
0 yj a,
0 z a,

where ]JI<N0 for this would mean f is a permutation, contradicting d(f)+#0. In other
words, either |C|22 or I+ []: this fact can be used to ensure that defects are non-zero.
We can now write &% =V* U H* where

V¥={aePy:s*(a) <N, and d*(x)+0}
H* = {0 € Px:s*(o) =d*(a) =c*(a) 2N, }

and [Je H*. Using the results of Section 2 and the isomorphism 6, it is a simple matter
to check that the ideals of V'* take the form

Vi={aeV*:d*a)=n}
where n=1, and the ideals of H* equal
H*(0,¢)={acH*:d*(0)=6 and r(a)<(}

for some §,¢ satisfying N, <0<k and 1 <é<Lk' In addition, Green’s relations on V*
and on H* are precisely what one would expect given the results of Section 3.

REFERENCES

1. A. H. Cuirrorp and G. B. PrestoN, The Algebraic Theory of Semigroups (Math. Surveys, no.
7, Amer. Math. Soc.,, Providence, RI, Vol. 1, 1961; Vol. 2, 1967).

2. J. A. Erpos, On products of idempotent matrices, Glasgow Math. J. 8 (1967), 118-122.

3. A. E. Evseev and N. E. Popran, Semigroups of transformations generated by idempotents
with given projection characteristics, Isv. Vyss. Ucebn. Zaved. Mat. 12 (103), 1970, 30-36.

https://doi.org/10.1017/50013091500017132 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017132

IDEMPOTENT-GENERATED TRANSFORMATION SEMIGROUPS 331

4. A. E. Evseev and N. E. Popran, Semigroups of transformations generated by idempotents
with given defect, Izv. Vyss. Ucebn. Zaved. Mat. 2 (117) 1972, 44-50.

5. D. G. Frrzgeraip and G. B. Preston, Divisibility of binary relations, Bull. Austral. Math. Soc.
5 (1971), 75-86.

6. J. M. Howie, The subsemigroup generated by the idempotents of a full transformation
semigroup, J. London Math. Soc. 41 (1966), 707-716.

7. J. M. Howig, Some subsemigroups of infinite full transformation semigroups, Proc. Royal
Soc. Edin. 88A (1981), 159-167.

8. Jiw Bar Kim, Idempotents in symmetric semigroups, J. Combin. Theory 13 (1972), 155-161.

9. E. S. LiapriN, Semigroups, 3 ed. (Vol. 3, Translations Math. Monographs, Amer. Math. Soc.,
Providence, RI, 1974).

10. K. D. MagiLt, Jr.,, The semigroup of endomorphisms of a Boolean ring, J. Austral. Math.
Soc. (Series A) 11 (1970), 411-416.

11. K. D. MagiLy, Jr., K-structure spaces of semigroups generated by idempotents, J. London
Math. Soc. 3 (1971), 321-325.

12. J. D. Monk, Introduction to Set Theory (McGraw-Hill, NY, 1969).
13. J. B. Rosser, Simplified Independence Proofs (Academic, NY, 1969).

14. B. M. Scuem, Products of idempotent order-preserving transformations of arbitrary chains,
Semigroup Forum 11 (1975/76), 297-309.

15. R. P. SuLLivan, A study in the theory of transformation semigroups (Ph.D. thesis, Monash
University, 1969).

16. J. S. V. Symons, Normal transformation semigroups, J. Austral. Math. Soc. (Series A) 22
(1976), 385-390.

17. N. N. Vorosev, Defect ideals of associative systems, Leningrad Gos. Univ. Ucen. Zap., Ser.
Mat. Nauk 16 (1949), 47-53.

18. N. N. Vorosev, On symmetric associative systems, Leningrad Gos. Ped. Inst. Ucen. Zap. 89
(1953), 161-166.

MATHEMATICS DEPARTMENT
UNIVERSITY OF WESTERN AUSTRALIA
NEebpLANDS, 6009

WESTERN AUSTRALIA

https://doi.org/10.1017/50013091500017132 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500017132

