THE IDEAL STRUCTURE OF IDEMPOTENT-GENERATED TRANSFORMATION SEMIGROUPS

by M. A. REYNOLDS and R. P. SULLIVAN

(Received 29th August 1984)

1. Introduction

Let X be a set and \mathcal{F}_X the semigroup (under composition) of all total transformations from X into itself. In ([6], Theorem 3) Howie characterised those elements of \mathcal{F}_X that can be written as a product of idempotents in \mathcal{F}_X different from the identity. We gather from review articles that his work was later extended by Evseev and Podran [3, 4] (and independently for finite X by Sullivan [15]) to the semigroup \mathcal{F}_X of all partial transformations of X into itself. Howie's result was generalized in a different direction by Kim [8], and it has also been considered in both a topological and a totally ordered setting (see [11] and [14] for brief summaries of this latter work). In addition, Magill [10] investigated the corresponding idea for endomorphisms of a Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear transformations of a finite-dimensional vector space.

In this paper we return to Howie's original article and first determine the ideals of the semigroup \mathscr{E}_X generated by the idempotents in \mathscr{T}_X different from the identity. Next we characterise Green's relations on \mathscr{E}_X and use our result to produce a new class of 0-bisimple regular semigroups. Finally we consider the extension of our work to the partial case.

2. Ideal structure

Throughout this paper we shall in the main use the notation of [1] but occasionally abbreviate it for the purpose of convenience. In particular, if $\alpha \in \mathcal{T}_X$ we write $r(\alpha) = |X\alpha|$ and can call this the rank of α .

Howie showed in ([6], Theorem 1) that if X is finite then $\mathscr{E}_X = \{\alpha \in \mathscr{F}_X : r(\alpha) < |X|\}$. Since the ideals of this semigroup are well-known (cf. [1], Vol. 2, Theorem 10.59) we assume for the remainder of this section that $|X| = \kappa \ge \aleph_0$. In [6] Howie described the elements of \mathscr{E}_X in this case via three concepts: if $\alpha \in \mathscr{F}_X$ we put

$$D(\alpha) = X \setminus X\alpha \qquad \text{and } d(\alpha) = |D(\alpha)|$$

$$S(\alpha) = \{x \in X : x\alpha \neq x\} \qquad \text{and } s(\alpha) = |S(\alpha)|$$

$$C(\alpha) = \bigcup \{t\alpha^{-1} : |t\alpha^{-1}| \ge 2\} \qquad \text{and } c(\alpha) = |C(\alpha)|$$

and we refer to the cardinals $d(\alpha)$, $s(\alpha)$ and $c(\alpha)$ as the defect, shift and collapse of α , respectively. Howie proved in ([6], Theorem 3) that \mathscr{E}_X is the disjoint union of two semigroups:

$$V = \{ \alpha \in \mathcal{T}_X : s(\alpha) < \aleph_0 \text{ and } d(\alpha) \neq 0 \}$$

$$H = \{ \alpha \in \mathcal{F}_{\mathbf{X}} : s(\alpha) = d(\alpha) = c(\alpha) \geq \aleph_0 \}.$$

That V is in fact a semigroup follows from ([6], Lemmas 2 and 5), and that H is a semigroup follows from ([6], Lemmas 6 and 7). Since we will need to refer to the last of these Lemmas quite often, we re-state it here for convenience (and note in passing that the original proof contained a significant error that was neatly corrected in [7]).

Lemma 1. If $\alpha \in H$, $\beta \in \mathcal{T}_X$ and $s(\beta) < s(\alpha)$ then both $\alpha\beta$ and $\beta\alpha$ have shift, defect and collapse equal to that of α .

In this section we aim to describe the ideals I of \mathscr{E}_X : note that $I = (I \cap V) \cup (I \cap H)$ and if $I \cap V$ and $I \cap H$ are non-empty they are ideals of V and H respectively; hence our first task will be to determine the ideals of V and of H. It seems that Vorobev [18] has described the ideals of a semigroup closely allied to V: namely, the set of all $\alpha \in \mathscr{F}_X$ with $s(\alpha) < \aleph_0$ ([17] may also be relevant: it is listed in [9] but has not been reviewed and was unavailable to us). For completeness we provide a proof of the following.

Theorem 1. Let $n \in \mathbb{Z}^+$ and $V_n = \{\alpha \in V : d(\alpha) \ge n\}$. Then V_n is an ideal of V and every ideal of V equals some V_n . Moreover, each V_n is principal and generated by an element with defect n.

Proof. Let $\alpha \in V_n$ and $\beta \in V$. Since $D(\alpha) \subseteq D(\beta \alpha)$, we have $\beta \alpha \in V_n$. Although after some reflection it is intuitively clear that also $\alpha \beta \in V_n$, a convincing argument is somewhat longer. Firstly we assert that

$$[S(\beta) \cup D(\alpha)] \cap X\alpha\beta \subseteq [S(\beta) \setminus D(\alpha)]\beta.$$

For, if $x \in S(\beta) \cup D(\alpha)$ and $x = y\alpha\beta$ for some $y \in X$ then $y\alpha \in S(\beta)$: otherwise, $x = (y\alpha)\beta = y\alpha \notin S(\beta)$ implies $x = y\alpha \in D(\alpha)$, a contradiction. Hence $y\alpha \in S(\beta) \setminus D(\alpha)$, and our assertion follows. Now we put $Y = S(\beta) \cup D(\alpha)$ and note that

$$|Y \cap X\alpha\beta| \leq |S(\beta) \setminus D(\alpha)|$$

where

$$|Y| = |Y \cap X\alpha\beta| + |Y \cap D(\alpha\beta)|$$

Hence we have

$$d(\alpha\beta) \ge |Y \cap D(\alpha\beta)| = |Y| - |Y \cap X\alpha\beta| \ge |Y| - |S(\beta) \setminus D(\alpha)| = d(\alpha) \ge n.$$

For the converse we assume I is an ideal of V, choose $\alpha \in I$ with minimal defect, and put $d(\alpha) = n$. Then $I \subseteq V_n$. Let $\beta \in V_n$ and put $Z = E(\alpha) \cup E(\beta)$, where $E(\gamma)$ denotes $S(\gamma) \cup S(\gamma)\gamma$ for each $\gamma \in V$. Note that both α and β map Z into itself, and fix $X \setminus Z$ pointwise. Hence $D(\alpha) \cup D(\beta) \subseteq Z$. Put $\alpha_1 = \alpha \mid Z$ and $\beta_1 = \beta \mid Z$, and note that since α_1 fixes $E(\beta) \setminus E(\alpha)$, we have $d(\alpha_1) = d(\alpha)$. Likewise $d(\beta_1) = d(\beta)$ and, since

$$r(\alpha_1) + d(\alpha_1) = r(\beta_1) + d(\beta_1) = |Z| < \aleph_0$$

where $d(\beta_1) \ge d(\alpha_1) \ne 0$, we conclude that $r(\beta_1) \le r(\alpha_1) < |Z|$. At this point we can invoke the well-known characterisation of Green's \mathscr{J} -relation on \mathscr{T}_Z (cf. [1], Vol. 1, pp. 52-53) to assert that $\beta_1 = \lambda_1 \alpha_1 \mu_1$ for some $\lambda_1, \mu_1 \in \mathscr{T}_Z$. In fact, since $r(\alpha_1) < |Z|$, we can ensure that $d(\lambda_1)$ and $d(\mu_1)$ are both non-zero. So, by extending λ_1 and μ_1 to the whole of X in an obvious way, we obtain $\beta = \lambda \alpha \mu$ for some $\lambda, \mu \in V$; that is, $\beta \in I$ and we have shown $I = V_n$. That V_n is a principal ideal is clear from the foregoing discussion.

According to ([1], Vol. 2, Theorem 10.59) the ideals of \mathcal{T}_X take the form I_{ξ} where for $1 < \xi \le \kappa'$,

$$I_{\xi} = \{ \alpha \in \mathcal{F}_{X} : r(\alpha) < \xi \}.$$

If ξ is finite then the Rees quotient semigroup $I_{\xi+1}/I_{\xi}$ is completely 0-simple ([1], Vol. 2, Lemma 10.54). We assert that this is also true for the semigroups V_n/V_{n+1} where $1 \le n < \aleph_0 \le \kappa$. To show this we again use the set $E(\alpha) = S(\alpha) \cup S(\alpha)\alpha$ (called by Symons [16] the essential domain of $\alpha \in \mathcal{T}_X$); namely, if $\alpha, \beta \in V$ with $d(\alpha) = d(\beta) = n$, we put $Y = E(\alpha) \cup E(\beta)$ and observe that $\alpha_1 = \alpha \mid Y$ and $\beta_1 = \beta \mid Y$ are elements of \mathcal{T}_Y with $r(\alpha_1) = r(\beta_1) < |Y|$. We can now follow the proof of ([1], Vol. 2, Lemma 10.54) to eventually conclude that V_n/V_{n+1} is 0-simple. Clearly, V_n/V_{n+1} contains idempotents. To show each of these is primitive, we again put $Y = E(\alpha) \cup E(\beta)$ where α, β are idempotents in V with $\alpha\beta = \beta\alpha = \alpha$ and $d(\alpha) = d(\beta)$. Then $\alpha_1\beta_1 = \beta_1\alpha_1 = \alpha_1$ for idempotents $\alpha_1, \beta_1 \in \mathcal{T}_Y$ with $r(\alpha_1) = r(\beta_1) < \aleph_0$. An argument similar to that in the reference already cited eventually leads us to $\alpha = \beta$. We have therefore shown

Theorem 2. If $1 \le n < \aleph_0$ then V_n/V_{n+1} is a completely 0-simple semigroup.

We assert that V_n/V_{n+1} is not isomorphic to any I_{m+1}/I_m with m finite ... simply because the cardinal of the first is κ while that of the second is 2^{κ} . To see this, recall that the set $\mathscr F$ of all finite subsets of X has cardinal κ ([12], Theorem 22.17). If $\mathscr F$ is any finite subset of X such that $|F| = n+1 \ge 2$ then V_n/V_{n+1} contains an idempotent that is constant on F and fixes $X \setminus F$; hence, if $|V_n/V_{n+1}| = \varepsilon$ then $\varepsilon \ge \kappa$. Now, to each $\alpha \in V_n \setminus V_{n+1}$ we can associate in a one-to-one fashion the element $\alpha \mid E(\alpha)$ of $\mathscr F_{E(\alpha)}$. Hence if m_F denotes the (finite) cardinal of $\mathscr F_F$ for each $F \in \mathscr F$ then $\varepsilon \le \Sigma m_F = \kappa$. On the other hand, if $F \in \mathscr F$ and |F| = m then I_{m+1}/I_m contains all maps from X onto F and there are 2^{κ} such maps (since there are $(2^{\kappa})^m = 2^{\kappa}$ ways of partitioning X into a family of M subsets of X: cf. [12], Exercise 22.20). However the cardinal of $\mathscr F_X$ is 2^{κ} and so we have $|I_{m+1}/I_m| = 2^{\kappa}$.

It will become apparent after we have determined Green's \mathcal{H} -relation on V in Section 3 that V_n/V_{n+1} and I_{m+1}/I_m are non-isomorphic for a less trivial reason: namely, the

non-zero group \mathcal{H} -classes of I_{m+1}/I_m are all isomorphic to the symmetric group \mathcal{G}_m on m letters (as observed in [1], Vol. 2, p. 226) whereas those of V_n/V_{n+1} are all isomorphic to the group $\mathcal{G}(\kappa, \aleph_0)$ of all permutations of κ letters with finite shift (as can be readily checked by mimicking the proof of Theorem 2.10(ii) in [1], Vol. 1).

We now turn to the problem of describing the ideal of H: it happens that, just as in V, they form a chain, even though two cardinals are required for their description. To show this, we let

$$H(\delta, \xi) = \{ \alpha \in H : d(\alpha) \ge \delta \text{ and } r(\alpha) < \xi \}$$

where $\aleph_0 \leq \delta \leq \kappa$ and $2 \leq \xi \leq \kappa'$.

Lemma 2. Each $H(\delta, \xi)$ is an ideal of H and the set of all such distinct ideals forms a chain:

$$H(\kappa, 2) \subseteq \cdots \subseteq H(\kappa, \xi) \subseteq \cdots \subseteq H(\kappa, \kappa') \subseteq \cdots \subseteq H(\aleph_1, \kappa') \subseteq H(\aleph_0, \kappa') \tag{*}$$

Proof. Let $\alpha \in H(\delta, \xi)$ and $\beta \in H$, and suppose $s(\alpha) = d(\alpha) = c(\alpha) = a$ and $s(\beta) = d(\beta) = c(\beta) = b$. If $b \le a$ then ([6], Lemmas 6 and 7) imply that both $\alpha\beta$ and $\beta\alpha$ have defect equal to $a \ge \delta$. If a > b then Lemma 1 above implies that both $\alpha\beta$ and $\beta\alpha$ have defect equal to $b > a \ge \delta$. Since $r(\alpha\beta) \le \min\{r(\alpha), r(\beta)\}$ it therefore follows that $\alpha\beta, \beta\alpha \in H(\delta, \xi)$ and $H(\delta, \xi)$ is an ideal of H.

Now consider an arbitrary $H(\delta, \xi)$. If $\delta = \kappa$ (and $2 \le \xi \le \kappa'$) we have an ideal in the first portion of the above chain, and if $\xi = \kappa'$ (and $\aleph_0 \le \delta \le \kappa$) we are in the second portion of the chain. On the other hand, since $|X| = \kappa \ge \aleph_0$ and $X = X\alpha \cup (X \setminus X\alpha)$ for each $\alpha \in H$, we must have $d(\alpha) = \kappa$ if $r(\alpha) < \xi \le \kappa$; that is if $\delta < \kappa$, $\xi \le \kappa$ and $\alpha \in H(\delta, \xi)$ then $\alpha \in H(\kappa, \xi)$. Since $H(\kappa, \xi) \subseteq H(\delta, \xi)$, we deduce that $H(\delta, \xi) = H(\kappa, \xi)$ when $\delta < \kappa$ and $\xi \le \kappa$.

Following ([1], Vol. 2, p. 241), for each $\alpha \in \mathcal{F}_X$, we write

$$\alpha = \begin{pmatrix} C_m \\ x_m \end{pmatrix}$$

where $X\alpha = \{x_m : m \in M\}$ for some index set M and $C_m = x_m \alpha^{-1}$ for each $m \in M$. To abbreviate notation, we adopt the convention (as in the reference just cited) of writing $\{x_m\}$ for $\{x_m : m \in M\}$, taking the subscript m to signify the index set M within a specific context.

Theorem 3. Every ideal of H has the form $H(\delta, \xi)$ for some δ, ξ . In particular, the principal ideals of H are $H(\kappa, \eta')$ and $H(\varepsilon, \kappa')$ for some η, ε satisfying $1 \le \eta \le \kappa$ and $\aleph_0 \le \varepsilon \le \kappa$.

Proof. Suppose I is an ideal of H. Let δ be the defect of an element of I with minimal defect and let ξ be the least cardinal greater than the ranks of all the elements of I. We assert that $I = H(\delta, \xi)$. Since $I \subseteq H(\delta, \xi)$, we therefore proceed to show that if $\beta \in H(\delta, \xi)$ then there exist $\alpha \in I$ and $\lambda, \mu \in H$ such that $\beta = \lambda \alpha \mu$. So, let $\beta \in H(\delta, \xi)$ and note

that $r(\alpha) < r(\beta) < \xi$ for all $\alpha \in I$ contradicts the choice of ξ . Hence there exists $\alpha \in I$ with $r(\beta) \le r(\alpha)$. Put

$$\beta = \begin{pmatrix} B_m \\ x_m \end{pmatrix}$$
 and $\alpha = \begin{pmatrix} A_n \\ y_n \end{pmatrix}$

and choose a cross-section $\{a_n\}$ of $\{A_n\}$. Write $\{a_n\} = \{a_m\} \cup \{a_s\}$, which is possible since $r(\alpha) \ge r(\beta)$, and put

$$\lambda = \binom{B_m}{a_m}$$
.

Now suppose $d(\alpha) = d(\beta) = \kappa$. Since $\beta \in H$, we have $c(\beta) = \kappa$ and this means $c(\lambda) = s(\lambda) = \kappa$ (using [6], Lemma 3). If $r(\beta) < \kappa$ then $|X \setminus \{a_m\}| = \kappa$ and so $d(\lambda) = \kappa$; that is, $\lambda \in H$. If on the other hand $r(\beta) = \kappa$ then $r(\alpha) = \kappa$ and we can ensure that $|S| = \kappa$; that is, $\{a_s\} \subseteq D(\lambda)$ and again $\lambda \in H$. To define μ , put $C = X \setminus \{y_m\}$ and note that $D(\alpha) \subseteq C$. Hence if we choose $z \in C$ and define

$$\mu = \begin{pmatrix} y_m & C \\ x_m & z \end{pmatrix}$$

then $c(\mu) = s(\mu) = \kappa$. In addition, $D(\beta) \setminus z \subseteq D(\mu)$ and so $d(\mu) = \kappa$. That is, $\mu \in H$ and we have $\beta = \lambda \alpha \mu$ as required.

Before considering the next case, note that if $r(\beta) \le r(\alpha) < \kappa$ then $d(\alpha) = d(\beta) = \kappa$ as above. Hence we may suppose $r(\alpha) = \kappa$. Suppose further that $d(\beta) = \kappa$. In this case, with the same notation as before, we immediately have $c(\lambda) = s(\lambda) = \kappa$. Moreover, since $r(\alpha) = \kappa$ we can ensure that $|S| = \kappa$. Then $d(\lambda) = \kappa$ and, since $\{y_s\} \subseteq C$, we also have $c(\mu) = s(\mu) = \kappa$ together with $d(\mu) = \kappa$ (as before).

Hence we may now assume $r(\alpha) = \kappa$ and $\delta \le d(\beta) < \kappa$. This implies $r(\beta) = \kappa$. In addition, by choice of δ , there exists $\gamma \in I$ with $d(\gamma) = \delta < \kappa$ (in this case) and so $r(\gamma) = \kappa$; that is, we can assume without loss of generality that $d(\alpha) = \delta \le d(\beta) = \varepsilon$, say. Given all this, we now restrict α, β (as in the proof of Theorem 1) to $Y = E(\alpha) \cup E(\beta)$ and obtain $\alpha_1, \beta_1 \in \mathcal{F}_Y$ with the same shift, defect and collapse as α, β respectively. However, $|Y| = \varepsilon$ and so, from our very first case, $\beta_1 = \lambda_1 \alpha_1 \mu_1$ for some $\lambda_1, \mu_1 \in \mathcal{F}_Y$ where both λ_1 and μ_1 have equal infinite shift, defect and collapse. By extending this equation to the whole of X in an obvious way, we have $\beta = \lambda \alpha \mu$ for some $\lambda, \mu \in H$ and so $\beta \in I$.

Finally, observe that we have indirectly proved

$$H(\delta_1, \xi_1) \subseteq H(\delta_2, \xi_2)$$
 if and only if $\delta_1 \ge \delta_2$ and $\xi_1 \le \xi_2$,

and $H(d(\alpha), r(\alpha)') = H^1 \alpha H^1$ for each $\alpha \in H$.

As noted in ([1], Vol. 2, p. 227, Exercise 3), each $I_{\xi'}/I_{\xi}$ is a 0-bisimple semigroup for $\aleph_0 \le \xi \le \kappa$. Hence, since $I_{\xi'}/I_{\xi}$ contains non-zero idempotents, it is also regular (by [1], Vol. 1, Theorem 2.11). We shall consider the Rees factor semigroups corresponding to the ideals in (*) after we have determined Green's \mathcal{D} and \mathcal{J} relations on H in Section 3.

At this point we simply remark that $H(\kappa, \xi) = I_{\xi}$ for each ξ satisfying $1 < \xi \le \kappa$. For, if $\alpha \in I_{\xi}$ and $1 < \xi \le \kappa$ then $d(\alpha) = \kappa$ and, since $D(\alpha) \subseteq S(\alpha)$, we also have $s(\alpha) = \kappa$. But α can be written as

$$\alpha = \begin{pmatrix} A_m & a_n & a_p \\ x_m & x_n & a_p \end{pmatrix}$$

where $C(\alpha) = \bigcup \{A_m : m \in M\}$, $a_n \neq x_n$ for all $n \in N$ and $\{a_p\} = X \setminus [C(\alpha) \cup S(\alpha)]$. Since $|M \cup N| < \kappa$ and $s(\alpha) = \kappa$, we must have $|C(\alpha) \setminus \{x_n\}| = \kappa$ and so $\alpha \in H(\kappa, \xi)$.

On the other hand, $H(\kappa, \kappa')$ is a proper subset of $I_{\kappa'}$. For, if $\xi < \kappa$ we can partition X into sets A and B_1, B_2, B_3, \ldots where $|A| = \xi$ and $|B_i| = \kappa$ for each $i \ge 1$, choose bijections $\theta_i : B_i \to B_{i+1}$ and $a \in A$, and then define $\alpha \in \mathcal{T}_X$ by

$$x\alpha = a$$
 if $x \in A$,
= $x\theta_i$ if $x \in B_i$.

Then $D(\alpha) = B_1$, $S(\alpha) = \bigcup \{B_i : i \ge 1\}$ and $C(\alpha) = A$; that is $\alpha \notin H(\kappa, \kappa')$.

Theorem 4. The ideals of \mathscr{E}_X are precisely the ideals of H together with the sets $V_n \cup H$ for $n \ge 1$.

Proof. By Lemma 1 and Theorem 3 the ideals of H, as well as the sets $V_n \cup H$, are all ideals of \mathscr{E}_X . Conversely, suppose I is an ideal of \mathscr{E}_X ; the desired result follows immediately from Theorem 1 since if $I \cap H$ is a proper subset of H we can use Lemma 1 to obtain a contradiction.

3. Green's Relations

For convenience we start this section by re-stating certain information from ([1], Vol. 1, pp. 52-53).

Lemma 3. If $\alpha, \beta \in \mathcal{F}_x$ then

- (a) $\beta = \lambda \alpha$ for some $\lambda \in \mathcal{F}_X$ if and only if $X\beta \subseteq X\alpha$,
- (b) $\beta = \alpha \mu$ for some $\mu \in \mathcal{T}_X$ if and only if $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$,
- (c) $\beta = \lambda \alpha \mu$ for some $\lambda, \mu \in \mathcal{F}_X$ if and only if $r(\alpha) \leq r(\beta)$,
- (d) $\mathscr{D} = \mathscr{J}$.

Comparable statements can be made for \mathscr{P}_X and the symmetric inverse semigroup \mathscr{I}_X on X (see [5] for a brief summary of this idea and its extension to a categorical setting). Our task in this section is to show that statements analogous to (a), (b) and (d) hold for both V and H, but that something different occurs for (c).

Theorem 5. If $\alpha, \beta \in V$ then

(a) $\beta = \lambda \alpha$ for some $\lambda \in V$ if and only if $X\beta \subseteq X\alpha$,

- (b) $\beta = \alpha \mu$ for some $\mu \in V$ if and only if $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$,
- (c) $\beta = \lambda \alpha \mu$ for some $\lambda, \mu \in V$ if and only if $d(\beta) \ge d(\alpha)$,
- (d) $\mathcal{D} = \mathcal{J}$.

Proof. Suppose $X\alpha \subseteq X\beta$ where $X\beta$ is a proper subset of X. Put $Y = E(\alpha) \cup E(\beta)$ and restrict α, β to Y to produce $\alpha_1, \beta_1 \in \mathcal{T}_Y$ where $Y\beta_1$ is a proper subset of Y. Now Y is finite and $Y\beta_1 \subseteq Y\alpha_1$: since if $y \in Y$ and $y\beta = x\alpha$ for $x \in X$ then $x\alpha \neq x$ (and so $x \in Y$) or $x\alpha = x$ (and so $x = y\beta \in Y$). By Lemma 3(a), $\beta_1 = \lambda_1 \alpha_1$ for some $\lambda_1 \in \mathcal{T}_Y$ which moreover can be chosen with $d(\lambda_1) \neq 0$ (since $d(\beta_1) \neq 0$). Then $\beta = \lambda \alpha$ where $\lambda \in V$ and part (a) follows; a similar argument establishes part (b).

Suppose $\beta = \lambda \alpha \mu$ where $d(\alpha) = n$. By Theorem 1, $V^1 \alpha V^1 = V_n$ and so $d(\beta) \ge n$. Conversely, suppose $d(\beta) \ge d(\alpha)$. Then, using our customary notation, $r(\beta_1) \le r(\alpha_1)$ and Lemma 3(c) implies $\beta_1 = \lambda_1 \alpha_1 \mu_1$ for some $\lambda_1, \mu_1 \in \mathcal{F}_Y$. In fact, since Y is finite and $d(\beta_1) \ne 0$, both λ_1 and μ_1 can be chosen with non-zero defect; hence we have $\beta = \lambda \alpha \mu$ with $\lambda, \mu \in V$, as required.

Finally, if $V^1 \alpha V^1 = V^1 \beta V^1$ then $d(\alpha) = d(\beta) \neq 0$ and so $r(\alpha_1) = r(\beta_1) \neq |Y|$. By Lemma 3(d), this implies $\alpha_1 \mathcal{L} \gamma_1 \mathcal{R} \beta_1$ for some $\gamma_1 \in \mathcal{T}_Y$ which can in fact be chosen with non-zero defect. Hence, $\alpha \mathcal{L} \gamma \mathcal{R} \beta$ for some $\gamma \in V$ and the proof is complete.

The proof of the corresponding result for H is much longer since our technique of restricting $\alpha, \beta \in \mathcal{F}_X$ to $Y = E(\alpha) \cup E(\beta)$ does not seem to help matters.

Theorem 6. If $\alpha, \beta \in H$ then

- (a) $\beta = \lambda \alpha$ for some $\lambda \in H$ if and only if $X\beta \subseteq X\alpha$,
- (b) $\beta = \alpha \mu$ for some $\mu \in H$ if and only if $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$,
- (c) $\beta = \lambda \alpha \mu$ for some $\lambda, \mu \in H$ if and only if $r(\beta) \le r(\alpha)$ and $d(\beta) \ge d(\alpha)$,
- (d) $\mathcal{D} = \mathcal{J}$.

Proof. Suppose $X\beta \subseteq X\alpha$ and put $Z = X \setminus [C(\beta) \cup S(\beta)]$. Then $d(\beta) \ge d(\alpha)$ and $|Z \cap S(\alpha)| \le s(\alpha) \le s(\beta)$. Now write

$$\beta = \begin{pmatrix} B_p & b_q & b_m & b_n \\ x_p & x_q & b_m & b_n \end{pmatrix}$$

where $C(\beta) = \bigcup \{B_p : p \in P\}$, $b_q \neq x_q$ for all $q \in Q$, $\{b_m\} = Z \cap S(\alpha)$, and $Z = \{b_m\} \cup \{b_n\}$. Then $b_n \alpha = b_n$ for all $n \in N$ and we can write

$$\alpha = \begin{pmatrix} A_p & A_q & A_m & A_n & A_s \\ x_p & x_q & b_m & b_n & x_s \end{pmatrix}$$

where $b_n \in A_n$ for each $n \in N$ and $\{x_s\} = X\alpha \setminus X\beta$ (if non-empty). We now choose a partial cross-section $\{a_n\} \cup \{a_n\} \cup \{a_n\} \cup \{b_n\}$ of $X/\alpha \circ \alpha^{-1}$ and put

$$\lambda = \begin{pmatrix} B_p & b_q & b_m & b_n \\ a_p & a_q & a_m & b_n \end{pmatrix}.$$

Note that since $|M| \le s(\beta)$, we have $c(\lambda) = s(\lambda) = s(\beta)$. In addition, we have

$$D(\lambda) \subseteq [C(\beta) \cup S(\beta) \cup \{b_m\}] \setminus [\{a_p\} \cup \{a_a\} \cup \{a_m\}]$$

and so $d(\lambda) \le s(\beta)$. If $d(\alpha) < d(\beta)$ then $|S| = d(\beta)$ and so, since $oldsymbol{\cup} \{A_s : s \in S\} \subseteq D(\lambda)$, we have $d(\lambda) = s(\beta)$. Hence, we may suppose $d(\alpha) = d(\beta) = \varepsilon$ say. Now write $C(\alpha) = oldsymbol{\cup} \{A_i : t \in T\}$ and note that, when selecting the partial cross-section of $X/\alpha \circ \alpha^{-1}$ to form λ , we choose at most one element from each A_t . Consider the worst case and suppose we have in fact chosen some $a_t \in A_t$ for each $t \in T$. Since each A_t contains at least 2 elements, we have $|C(\alpha)\setminus \{a_t\}| = \varepsilon$. However, $C(\alpha)\setminus \{a_t\} \subseteq D(\lambda)$ and so $d(\lambda) = \varepsilon$. That is, $\lambda \in H$ and $\beta = \lambda \alpha$.

For part (b), we now suppose $\alpha \circ \alpha^{-1} \subseteq \beta \circ \beta^{-1}$ and write

$$\beta = \begin{pmatrix} B_m & B_p & x_i & w_r & w_s \\ b_m & b_p & y_i & w_r & w_s \end{pmatrix}$$

$$\alpha = \begin{pmatrix} B_{mn} & B_p & x_i & w_r & w_s \\ c_{mn} & c_p & z_i & v_r & w_s \end{pmatrix}$$

where the sets B_m and B_p contain at least 2 elements, $B_m = \bigcup \{B_{mn}: n \in N_m\}$ for some index set N_m , and $x_i \neq y_i$, $w_r \neq v_r$ (note that possibly $x_i = z_i$ for some i, and also some B_{mn} may consist of a single element). The above display is possible since each $\beta \circ \beta^{-1}$ -class is the union of one or more $\alpha \circ \alpha^{-1}$ -classes; the sets N_m are therefore chosen to satisfy $2 \leq |N_m| \leq c(\beta)$. Put $C_m = \{c_{mn}: n \in N_m\}$ and $D = D(\alpha)$, choose $d \in D$ and let

$$\mu = \begin{pmatrix} C_m & c_p & z_i & v_r & w_s & D \\ b_m & b_p & y_i & w_r & w_s & d \end{pmatrix}$$

Then $\beta = \alpha \mu$ and $D(\mu) = D(\beta) \setminus d$: that is, $d(\mu) = d(\beta)$. In addition, $C(\mu) = (\bigcup C_m) \cup D$ and

$$S(\mu) \subseteq (\cup C_m) \cup \{c_p\} \cup \{z_i\} \cup \{v_r\} \cup D.$$

However, $C(\alpha) \subseteq C(\beta)$ and so $d(\alpha) \le d(\beta)$; also, $|M \cup P| \le c(\beta)$, $|I| \le s(\beta)$, $|R| \le s(\alpha)$ and $|C_m| \le c(\beta)$ for each m. Hence both $c(\mu)$ and $s(\mu)$ are at most $d(\beta)$. In fact, it is clear from the very definition of μ that $c(\mu) = s(\mu) = d(\beta)$ when $d(\alpha) = d(\beta)$. So, suppose $d(\alpha) < d(\beta)$. This implies $|\cup B_m| = c(\beta)$ since $|\cup B_p| \le c(\alpha)$; also $|(\cup B_m) \cap S(\alpha)| < c(\beta)$. Hence, $|(\cup B_m) \cap F(\alpha)| = c(\beta)$ where $F(\alpha) = X \setminus S(\alpha)$. But $\cup B_m = \bigcup_m \bigcup_n B_{mn}$ and so in this case there are $c(\beta)$ elements in $\cup C_m$ that are fixed by α . Consequently, $|\cup C_m| = c(\beta)$ and so $c(\mu) = c(\beta)$. Moreover, each C_m contains at least 2 elements and $|M| \le c(\beta)$. So, $|\cup (C_m \setminus b_m)| = c(\beta)$ and therefore $s(\mu) \ge c(\beta)$. That is, $\mu \in H$ as required.

To prove parts (c) and (d), we first show that $\alpha \mathcal{D}\beta$ in H if and only if $r(\alpha) = r(\beta)$ and $d(\alpha) = d(\beta)$. Suppose $\alpha \mathcal{L}\gamma \mathcal{R}\beta$ for some $\gamma \in H$. By parts (a) and (b), $X\alpha = X\gamma$ and $\gamma \circ \gamma^{-1} = \beta \circ \beta^{-1}$. Hence, $r(\alpha) = r(\beta)$ and $d(\alpha) = d(\gamma) = c(\gamma) = c(\beta) = d(\beta)$. For the converse we assume $r(\alpha) = r(\beta)$ and $d(\alpha) = d(\beta)$, and consider two cases. If $d(\alpha) = \kappa$ we choose any $\gamma \in \mathcal{T}_X$ with $X\alpha = X\gamma$ and $\gamma \circ \gamma^{-1} = \beta \circ \beta^{-1}$ (such γ 's exist since $r(\alpha) = r(\beta)$). Then $d(\gamma) = d(\alpha) = \kappa$ (and so $s(\gamma) = \kappa$ since $D(\gamma) \subseteq S(\gamma)$) and $c(\gamma) = c(\beta) = \kappa$; that is, $\gamma \in H$ and we are finished.

If on the other hand $d(\alpha) = \delta < \kappa$ then $r(\alpha) = \kappa$ and our task of finding a suitable γ is much harder. However, before accomplishing this we note in passing that this case cannot be reduced to the one already considered by restricting α, β to $Y = E(\alpha) \cup E(\beta)$. For, we might now have

$$\alpha = \begin{pmatrix} U \cup V & c_n \\ x & c_n \end{pmatrix} \qquad \beta = \begin{pmatrix} U & V & c_n \\ y & z & c_n \end{pmatrix} \tag{**}$$

where U, V and $\{c_n\}$ partition X, $|U| = |V| = \delta < \kappa$, and x, y, z are distinct elements of $U \cup V$; if this were so then $Y = U \cup V$ and $d(\alpha_1) = d(\beta_1) = \delta$ but $r(\alpha_1) \neq r(\beta_1)$.

Now let $A = X\alpha \setminus [C(\beta) \cup S(\beta)]$ and note that $|A| = \kappa$ and $a\beta = a$ for all $a \in A$. Put

$$B = X\alpha \cap [C(\beta) \cup S(\beta)]$$

$$C = D(\alpha) \cup C(\beta) \cup S(\beta)$$

$$\varepsilon = \max(|B|, |C\beta|, \aleph_0)$$

and note that $\aleph_0 \le \varepsilon \le \delta < \kappa$ since $|C| = \delta$. Choose a subset D of A with $|D| = \varepsilon$ and let $E = C \cup D$, $F = B \cup D$. Now $|E\beta| = |C\beta| + |D\beta| = \varepsilon$ (since $D\beta = D$) and $|F| = \varepsilon$. Let $\theta: E\beta \to F$ be any bijection and define $\gamma \in \mathscr{T}_X$ by

$$xy = x$$
 if $x \in A \setminus D$
= $x\beta\theta$ if $x \in E$.

The domain of γ is X since $E \cup (A \setminus D)$ contains $C \cup A$ which equals $X\alpha \cup D(\alpha)$. Moreover, if $x\gamma = y\gamma$ then either (1) $x = y \in A \setminus D$, or (2) $x \in A \setminus D$, $y \in E$ and $x = y\beta\theta$, or (3) $x, y \in E$ and $x\beta\theta = y\beta\theta$ (we omit the dual of (2)). If (1) occurs then $x\beta = y\beta$; if (2) occurs then $x \in F$ and so $x \in B$ (since $x \notin D$), contradicting the assumption that $x \in A$; and if (3) occurs then $x\beta = y\beta$ since θ is one-to-one. That is, $\gamma \circ \gamma^{-1} \subseteq \beta \circ \beta^{-1}$. On the other hand, if $x\beta = y\beta$ then either x = y (and so $x\gamma = y\gamma$) or $x \neq y$ (in which case $x, y \in C(\beta) \subseteq E$ and so $x\gamma = x\beta\theta = y\beta\theta = y\gamma$). Hence, $\gamma \circ \gamma^{-1} = \beta \circ \beta^{-1}$. In addition,

$$Xy = \lceil E \cup (A \setminus D) \rceil y = F \cup (A \setminus D) = A \cup B = X\alpha.$$

Thus, $c(\gamma) = c(\beta) = d(\alpha) = d(\gamma)$. Clearly, $S(\gamma) \subseteq E$ and $|E| = \delta$. But $D(\gamma) \subseteq S(\gamma)$ and $d(\gamma) = \delta$; thus, $s(\gamma) = \delta$ and we have found some $\gamma \in H$ such that $\alpha \mathcal{L} \gamma \mathcal{R} \beta$.

Having characterised Green's \mathscr{D} relation on H, we now consider part (c) and suppose $\beta = \lambda \alpha \mu$. Then $r(\beta) \le r(\alpha)$ and $d(\beta) \ge d(\mu)$. Hence, if $d(\beta) < d(\alpha)$ then $d(\alpha \mu) = d(\alpha)$ (by Lemma 1) as well as $d(\beta) \ge d(\alpha \mu)$, a contradiction. Therefore $d(\beta) \ge d(\alpha)$. For the converse suppose $\alpha, \beta \in H$, $r(\beta) \le r(\alpha)$ and $d(\beta) \ge d(\alpha)$. This means $\beta \in H(d(\alpha), r(\alpha)')$ which by Theorem 3 equals $H^1 \alpha H^1$, and so part (c) is proved. Finally, $\alpha \mathscr{J}\beta$ implies $H^1 \alpha H^1 = H^1 \beta H^1$ and this in turn implies $d(\alpha) = d(\beta)$ and $r(\alpha) = r(\beta)$; from the foregoing, we deduce $\alpha \mathscr{D}\beta$, and of course $\mathscr{D} \subseteq \mathscr{J}$ always.

It may be worthwhile illustrating the choice of γ for the α , β displayed in (**) above. Using the notation introduced in the second last paragraph of the proof, we have

 $A = \{c_n\}, B = \{x\}, C = U \cup V \text{ and } \varepsilon = \aleph_0$. Then we in effect "blow-up" $r(\alpha_1)$ and $r(\beta_1)$ until they are equal by suitably enlarging the domain of α_1 and β_1 . That is, we choose $D = \{c_m\}$ in A with $|M| = \varepsilon = \aleph_0$ and note that $E\beta = \{y, x\} \cup \{c_m\}$ has the same cardinal as $F = \{x\} \cup \{c_m\}$. If $\{c_n\} = A \setminus D$ then γ is the map

$$\begin{pmatrix}
U & V & c_m & c_p \\
y\theta & z\theta & c_m\theta & c_p
\end{pmatrix}$$

where θ is any bijection between $E\beta$ and F.

Before proceeding we note that the significance of Theorem 6 (especially part (d)) lies in the fact that it gives some hope of determining the congruences on H in a manner akin to that developed by Clifford and Preston for \mathcal{T}_X in ([1], Vol. 2, Section 10.8); we shall explore this possibility in a subsequent paper.

We now consider the Rees quotient semigroup $H(\delta,\kappa')/H(\delta',\kappa')$ for $\aleph_0 \le \delta < \kappa$. Clearly, each non-zero element of this semigroup has defect δ and rank κ . Moreover, a close perusal of the proof of Theorem 6 shows that if $d(\alpha) = d(\beta)$ and $r(\alpha) = r(\beta)$ for $\alpha, \beta \in H$ then there exists $\gamma \in H$ such that $\alpha \mathcal{L}\gamma \mathcal{R}\beta$ and $d(\gamma) = d(\alpha)$. In addition, if $\alpha \mathcal{L}\gamma$ in H then there exist $\lambda_1, \lambda_2 \in H$ with $\alpha = \lambda_1 \gamma$, $\gamma = \lambda_2 \alpha$ and $d(\lambda_1) = d(\alpha)$, $d(\lambda_2) = d(\gamma)$; likewise, if $\gamma \mathcal{R}\beta$ in H then there exist $\mu_1, \mu_2 \in H$ with $\gamma = \beta \mu_1$, $\beta = \gamma \mu_2$ and $d(\mu_1) = d(\gamma)$, $d(\mu_2) = d(\beta)$. In other words, each $H(\delta, \kappa')/H(\delta', \kappa')$ is 0-bisimple when $\delta < \kappa$. Each such semigroup is also regular since it contains non-zero idempotents and ([1], Vol. 1, Theorem 2.11) can be applied. However, none of them is completely 0-simple since they always contain non-zero non-primitive idempotents; for example, if

$$\alpha = \begin{pmatrix} A & b_m & b_n \\ a & b_m & b_n \end{pmatrix} \qquad \beta = \begin{pmatrix} A \cup \{b_m\} & b_n \\ a & b_n \end{pmatrix}$$

where $|A| = |\{b_m\}| = \delta$ and $a \in A$, then α, β are distinct idempotents satisfying $\alpha\beta = \beta\alpha = \beta$. Unfortunately we cannot decide whether these 0-bisimple quotients in the "top half" of (*) are isomorphic to any of the quotients in the "bottom half" of (*). For, an argument similar to that applied to V_n/V_{n+1} in Section 2 can be used to show that for $\delta < \kappa$, $H(\delta, \kappa')/H(\delta', \kappa')$ has cardinal κ^{δ} (this is because the set of all subsets of X with cardinal δ has cardinal κ^{δ} : see [12], Exercise 22.25). It can also be readily shown that the non-zero group \mathscr{H} -classes of $H(\delta, \kappa')/H(\delta', \kappa')$ are all isomorphic to the group $\mathscr{G}(\kappa, \delta')$ of all permutations of κ letters with shift at most δ . On the other hand, for $\xi \le \kappa$, $I_{\xi'}/I_{\xi}$ has cardinal 2^{κ} and its non-zero group \mathscr{H} -classes are all isomorphic to \mathscr{G}_{ξ} . However, without GCH, we may have $2^{\delta} = 2^{\xi}$ even though $\delta \ne \xi$ ([13], pp. 119 and 130).

Our final result in this section in effect determines Green's relations on \mathscr{E}_{x} .

Theorem 7. If $\alpha, \beta \in \mathscr{E}_X$ and are related under one of Green's relations on \mathscr{E}_X then $\alpha, \beta \in V$ or $\alpha, \beta \in H$.

Proof. Suppose $\alpha \in V$, $\beta \in H$ and $\alpha = \lambda \beta$ for some $\lambda \in \mathscr{E}_X$. Then, by Lemma 1, $s(\lambda) \ge s(\beta)$ and this means $\lambda \in H$ which in turn implies $\alpha \in H$, a contradiction. A similar argument can be applied if $\alpha = \beta \mu$ or if $\alpha = \lambda \beta \mu$ for some $\lambda, \mu \in \mathscr{E}_X$.

4. Partial Transformations

In this section we consider the way in which the results of Sections 2 and 3 can be extended to the semigroup \mathscr{E}_X^* that is generated by all the idempotent partial transformations of X different from the identity (it is clear that the identity cannot be written as a product of idempotents in \mathscr{P}_X different from the identity).

For finite X, the elements of \mathscr{E}_X^* were characterised by Evseev and Podran [3] (and independently by Sullivan [15]). As one might expect (by analogy with \mathscr{T}_X), if |X| = n then $\mathscr{E}_X^* = \{\alpha \in \mathscr{P}_X : r(\alpha) < n\}$ and moreover each $\alpha \in \mathscr{E}_X^*$ can in fact be written as a product of idempotents in \mathscr{P}_X with defect 1 (note that such idempotents can equal ι_Y for some $Y \subseteq X$ with |Y| = n - 1). Given this, it is easy to see what the ideals and Green's relations on \mathscr{E}_X^* must be when X is finite.

Hence we again assume throughout this section that $|X| = \kappa \ge \aleph_0$. It seems from a review that Evseev and Podran [4] have also investigated \mathscr{E}_X^* in this case. Since we need a straight forward characterisation of the elements of \mathscr{E}_X^* in order to describe the ideals of \mathscr{E}_X^* , we now present such a characterisation and for completeness we include a short proof based on Howie's Theorem.

However, before proceeding to do this we recall Lyapin's method of representing \mathscr{P}_X as a semigroup of total transformations: namely, let $0 \notin X$, put $Y = X \cup 0$ and

$$F_0 = \{ \beta \in \mathcal{F}_Y : 0\beta = 0 \},$$

and define $\theta: \mathscr{P}_X \to F_0$, $\alpha \to \alpha\theta$, where $x(\alpha\theta) = x\alpha$ if $x \in \text{dom } \alpha$ and $x(\alpha\theta) = 0$ otherwise. Clearly θ is an isomorphism. We extend the notions of defect, collapse and shift of $\alpha \in \mathscr{F}_X$ to elements of \mathscr{P}_X as follows: for each $\alpha \in \mathscr{P}_X$, let

$$D^*(\alpha) = X \setminus X\alpha \qquad \text{and} \quad d^*(\alpha) = |D^*(\alpha)|$$

$$C^*(\alpha) = C(\alpha) \cup (X \setminus \text{dom } \alpha) \qquad \text{and} \quad c^*(\alpha) = |C^*(\alpha)|$$

$$S^*(\alpha) = \{x \in \text{dom } \alpha : x\alpha \neq x\} \cup (X \setminus \text{dom } \alpha) \quad \text{and} \quad s^*(\alpha) = |S^*(\alpha)|$$

Theorem 8. An element α of \mathcal{P}_X can be written as a product of idempotents in \mathcal{P}_X different from the identity if and only if either $s^*(\alpha) < \aleph_0$ and $d^*(\alpha) \neq 0$ or $s^*(\alpha) = c^*(\alpha) = d^*(\alpha) \geq \aleph_0$.

Proof. Suppose $\alpha \in \mathscr{E}_X^*$ and $\beta = \alpha \theta$. Then $\beta \in \mathscr{E}_Y$ and so, by Howie's Theorem, either $s(\beta) < \aleph_0$ and $d(\beta) \neq 0$ or $s(\beta) = c(\beta) = d(\beta) \geq \aleph_0$. Since $Y \setminus Y\beta = X \setminus X\alpha$, $C(\beta) = C^*(\alpha)$ and $S(\beta) = S^*(\alpha)$, this produces the desired result. Now suppose $\alpha \in \mathscr{P}_X$ and α satisfies $S^*(\alpha) = c^*(\alpha) = d^*(\alpha) \geq \aleph_0$. Then $\beta = \alpha \theta \in F_0$ and β satisfies the corresponding condition in Howie's Theorem. Suppose

$$\beta = \begin{pmatrix} B_i & C & y_j & a_n \\ x_i & 0 & z_j & a_n \end{pmatrix}$$

where each B_i contains at least 2 elements and $y_i \neq z_i$ for each j. Choose $b_i \in B_i$ and let

$$\lambda = \begin{pmatrix} B_i & C & y_j & a_n \\ b_i & 0 & y_j & a_n \end{pmatrix} \qquad \mu = \begin{pmatrix} b_i & 0 & y_j & a_n & D \\ x_i & 0 & z_j & a_n & d \end{pmatrix}$$

where $D = (C \setminus 0) \cup (C(\beta) \setminus \{b_i\})$ and $d \in D$. Then $\beta = \lambda \mu$ where $\lambda^2 = \lambda \in F_0$. Now since $c(\beta)$ equals either $|\cup B_i|$ or |C|, we have $|D| = c(\beta)$. Thus, since $|I| \le c(\beta)$ and $|J| \le s(\beta)$, we have $c(\mu) = s(\mu) = c(\beta)$. Moreover, $D(\mu) = D(\beta) \setminus d$ and so $d(\mu) = s(\beta)$. Therefore, by Howie's Theorem, $\mu \mid X$ is a product of idempotents in \mathcal{F}_X , each of which can be extended in an obvious way to an idempotent in F_0 . By applying the isomorphism θ^{-1} , we obtain a product of idempotents in \mathcal{P}_X that equals α .

Since the proof for the case when $s^*(\alpha) < \aleph_0$ and $d^*(\alpha) \neq 0$ can be carried through in an entirely similar manner, we omit the details. However we note that in this case β cannot look like

$$\begin{pmatrix} 0 & y_j & a_n \\ 0 & z_j & a_n \end{pmatrix}$$

where $|J| < \aleph_0$ for this would mean β is a permutation, contradicting $d(\beta) \neq 0$. In other words, either $|C| \geq 2$ or $I \neq \square$: this fact can be used to ensure that defects are non-zero.

We can now write $\mathscr{E}_X^* = V^* \cup H^*$ where

$$V^* = \{ \alpha \in \mathcal{P}_X : s^*(\alpha) < \aleph_0 \text{ and } d^*(\alpha) \neq 0 \}$$

$$H^* = \{ \alpha \in \mathscr{P}_X : s^*(\alpha) = d^*(\alpha) = c^*(\alpha) \ge \aleph_0 \}$$

and $\Box \in H^*$. Using the results of Section 2 and the isomorphism θ , it is a simple matter to check that the ideals of V^* take the form

$$V_n^* = \{ \alpha \in V^* : d^*(\alpha) \ge n \}$$

where $n \ge 1$, and the ideals of H^* equal

$$H^*(\delta, \xi) = \{ \alpha \in H^* : d^*(\alpha) \ge \delta \text{ and } r(\alpha) < \xi \}$$

for some δ, ξ satisfying $\aleph_0 \le \delta \le \kappa$ and $1 \le \xi \le \kappa'$. In addition, Green's relations on V^* and on H^* are precisely what one would expect given the results of Section 3.

REFERENCES

- 1. A. H. CLIFFORD and G. B. PRESTON, The Algebraic Theory of Semigroups (Math. Surveys, no. 7, Amer. Math. Soc., Providence, RI, Vol. 1, 1961; Vol. 2, 1967).
 - 2. J. A. Erdos, On products of idempotent matrices, Glasgow Math. J. 8 (1967), 118-122.
- 3. A. E. Evseev and N. E. Podran, Semigroups of transformations generated by idempotents with given projection characteristics, *Isv. Vyss. Ucebn. Zaved. Mat.* 12 (103), 1970, 30–36.

- 4. A. E. Evseev and N. E. Podran, Semigroups of transformations generated by idempotents with given defect, *Izv. Vyss. Ucebn. Zaved. Mat.* 2 (117) 1972, 44-50.
- 5. D. G. FITZGERALD and G. B. PRESTON, Divisibility of binary relations, Bull. Austral. Math. Soc. 5 (1971), 75–86.
- 6. J. M. Howie, The subsemigroup generated by the idempotents of a full transformation semigroup, J. London Math. Soc. 41 (1966), 707-716.
- 7. J. M. Howie, Some subsemigroups of infinite full transformation semigroups, *Proc. Royal Soc. Edin.* 88A (1981), 159–167.
 - 8. JIN BAI KIM, Idempotents in symmetric semigroups, J. Combin. Theory 13 (1972), 155-161.
- 9. E. S. LJAPIN, Semigroups, 3 ed. (Vol. 3, Translations Math. Monographs, Amer. Math. Soc., Providence, RI, 1974).
- 10. K. D. MAGILL, JR., The semigroup of endomorphisms of a Boolean ring, J. Austral. Math. Soc. (Series A) 11 (1970), 411-416.
- 11. K. D. MAGILL, JR., K-structure spaces of semigroups generated by idempotents, J. London Math. Soc. 3 (1971), 321-325.
 - 12. J. D. Monk, Introduction to Set Theory (McGraw-Hill, NY, 1969).
 - 13. J. B. Rosser, Simplified Independence Proofs (Academic, NY, 1969).
- 14. B. M. Schein, Products of idempotent order-preserving transformations of arbitrary chains, Semigroup Forum 11 (1975/76), 297-309.
- 15. R. P. Sullivan, A study in the theory of transformation semigroups (Ph.D. thesis, Monash University, 1969).
- 16. J. S. V. Symons, Normal transformation semigroups, J. Austral. Math. Soc. (Series A) 22 (1976), 385–390.
- 17. N. N. Vorobev, Defect ideals of associative systems, Leningrad Gos. Univ. Ucen. Zap., Ser. Mat. Nauk 16 (1949), 47-53.
- 18. N. N. Vorobev, On symmetric associative systems, Leningrad Gos. Ped. Inst. Ucen. Zap. 89 (1953), 161-166.

MATHEMATICS DEPARTMENT
UNIVERSITY OF WESTERN AUSTRALIA
NEDLANDS, 6009
WESTERN AUSTRALIA