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Abstract. Here, I combine the semantics of Mares and Goldblatt [20] and Seki [29, 30] to
develop a semantics for quantified modal relevant logics extending B. The combination requires
demonstrating that the Mares–Goldblatt approach is apt for quantified extensions of B and
other relevant logics, but no significant bridging principles are needed. The result is a single
semantic approach for quantified modal relevant logics. Within this framework, I discuss the
requirements a quantified modal relevant logic must satisfy to be “sufficiently classical” in its
modal fragment, where frame conditions are given that work for positive fragments of logics.
The roles of the Barcan formula and its converse are also investigated.

§1. Introduction. Quantified modal relevant logics (QMRLs) have received little
attention over the years.1 Moreover, development on a unified approach to relational
semantics for QMRLs has been slowed by a number of some setbacks. This includes the
fact that, on a more traditional approach to modeling the quantifiers, RQ is incomplete
for a constant domain semantics [9]. Fine [8] does give a semantics for which RQ
is complete; however, several have been trying to develop a simpler semantics for
quantified relevant logics.

Mares and Goldblatt [20] give a general frame semantics for both quantified relevant
logics RQ◦t and QR◦t , successfully constructing a semantics using models simpler than
Fine’s brilliant but complex models.2 Their alternative semantics for quantified logics
models the universal quantifier by a new operator inspired by both an interpretation
of the universal quantifier and the functional polyadic algebra of [15]. The resulting
semantics for quantified relevant logics is fairly natural, but more importantly powerful.
The same approach can be used for completeness results for a range of quantified
modal classical logics as shown in Goldblatt and Mares [14], and for exploring the
role of the Barcan Formula, its converse, and several other sentence schemes in [11].
The Mares-Goldblatt style semantics is thus ripe for extending to quantified modal
relevant logics.

Relational semantics for modal relevant logics have been developed by Fuhrmann
[10] and Mares and Meyer [22] (see also [17–19]). More recently, Seki [29, 30] has
constructed general frame semantics for modal relevant logics based on the relatively
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QUANTIFIED MODAL RELEVANT LOGICS 211

weak logic B and the usually considered extensions. Here, I develop a semantics for
quantified modal relevant logics extending B by combining the semantics of Mares–
Goldblatt and Seki, along the way demonstrating that the Mares–Goldblatt approach
is apt for quantified extensions of B and other relevant logics. This provides a unified
semantic foundation of quantified modal relevant logics.

§2. Basic quantified modal relevant logics. For quantified modal relevant logics,
we begin with a denumerable set of variables, Var, which will be conveniently denoted
by lowercase letters near the end of the alphabet (e.g., x, y, z, xn, w1). A possibly
denumerable set L of predicate symbols, and individual constants shall be called a
signature. Each predicate symbol is of the formPn, where n is the arity of the predicate.
Often I will omit the superscript if either the arity is obvious or the arity is irrelevant.
Each signature is denumerable at most, so the set of predicate symbols can be ordered.
For every signature L, its set of individual constants shall be denoted by Con. I shall
denote individual constants by c, with or without subscripts.

A term will be denoted by � with or without subscripts. An L-term, relative to a
signature L, is defined as follows. Every variable vn is an L-term. Every member c of
Con is an L-term. No other expression is a term. A term is closed when it contains no
variables. A term is open when it is not closed.

For a given signature L, the atomic formulas (atomic L-formulas) are those of
the form Pn(�1, ... , �n), where Pn ∈ L and each of �1, ... , �n is an L-term. The set
of well-formed formula of a quantified logic with signature L (denoted by wffL
or simply wff ) is defined inductively using the connectives → (relevant implication),
∧ (extensional conjunction), ∨ (extensional disjunction), ¬ (negation), ◦ (fusion or
intensional conjunction), t (intensional truth) and, for modal propositional logics, �
(possibility),� (necessity) and ∀x and ∃x, for each variable x ∈Var. The biconditional,
↔, is taken to be defined in the usual way. In general, I will use capital letters near the
beginning of the English alphabet to denote or range over the well-formed formulas of
a language.

An instance of a variable x is bound in the wff A if either (1) the instance is the x
of an expression ∀x or ∃x occurring in A or (2) the instance of x occurs within the
scope of a quantifier, ∀x or ∃x. An instance of a variable is free when it is not bound.
A formula with no free variables is called a sentence.

A term � is free for (or freely substitutable for) x in wff A if, for every variable y in
�, there are no free occurrences of x in A that are within the scope of a quantifier ∀y
or ∃y.

A shorthand for substitutions will be convenient for our purposes. We shall write
A[�/x] for the result of replacing every free occurrence of x in A with the term �. It
will also be convenient to have a notation for the operation of several simultaneous
substitutions. We will use A[�0/v0, ... , �n/vn] for the result of simultaneously replacing
v0 through vn with �0 through �n respectively.

A variable assignment, f, assigns to each variable an element of the domain of
individuals, U, as follows. There are a denumerable number of variables which can
be ordered as x1, x2, ... , and a variable assignment is an ordered denumerable list of
individuals. In other words, a variable assignment is a member of U� , where the nth
individual in the ordering is the individual assigned to the variable xn. The set of all
variable assignments, relative to a domain U, is the set U� .
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212 NICHOLAS FERENZ

An x-variant of a variable assignment f ∈ U� for a domain of individuals U is a
variable assignment that differs from f only in the individual assigned to the variable
x. The set of all x-variants of f will be denoted by xf.

By convention, we write:

R2xyzw =df ∃v(Rxyv ∧Rvzw),

S2xy =df ∃z(Sxz ∧ Szy).

§3. The logics QB.C�� and BQ.C��. Here, the base quantified modal relevant
logic is QB.C��, the implicational fragment of which is the basic affixing logic B.3 The
logic QB.C�� extends the regular modal relevant logic B.C as defined in [30]. The logic
BQ.C��, as we will see, extends QB.C�� so that the quantifiers are more classical.

The following axioms schemes and rules define QB.C��.

(A1) A → A Identity
(A2) A → (A ∨ B) Disjunction Introduction (left)
(A3) B → (A ∨ B) Disjunction Introduction (right)
(A4) (A ∧ B) → A Conjunction Elimination (left)
(A5) (A ∧ B) → B Conjunction Elimination (right)
(A6) A ∧ (B ∨ C) → ((A ∧ B) ∨ (A ∧ C)) ∧∨-Distribution
(A7) ((A → B) ∧ (A → C)) → (A → (B ∧ C)) Conjunction Introduction
(A8) ((A → C) ∧ (B → C)) → ((A ∨ B) → C) Disjunction Elimination
(A9) ¬¬A → A Double Negation Elimination
(A10) ∀xA → A[�/x], where � is free for x in A Universal Instantiation
(A11) A[�/x] → ∃xA, where � is free for x in A Existential Introduction
(A12) (�A ∧�B) → �(A ∧ B) �∧–-Distribution
(A13) �(A ∨ B) → (�A ∨�B) �∨-Distribution
(A14) ∀x(A → B) → (∃xA → B) where x is not free in B


 A 
 A → B (MP)
 B

 A 
 B (ADJ)
 A ∧ B


 A → ¬B (Contraposition)
 B → ¬A


 A → B (Prefix)
 (C → A) → (C → B)

 A → B (Suffix)
 (B → C) → (A → C)


 A (t-I)
 t → A

 t → A (t-E)
 A

3 B is a basic relevant logic that lacks the Law of Excluded Middle (A ∨ ¬A). Some denote
by B the logic defined here extended by the Law of Excluded Middle. Here, we take B to be
the “weaker” logic that excludes the Law of Excluded middle.
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QUANTIFIED MODAL RELEVANT LOGICS 213


 A → (B → C)
(◦-I)
 (A ◦ B) → C


 (A ◦ B) → C
(◦-E)
 A → (B → C)


 A → B (�-M)
 �A → �B

 A → B (�-M)
 �A → �B


 A → B ∃-Intro
 ∃xA → B

 A → B ∀-Intro4


 A → ∀xB

The conditions on ∃-Intro and ∀-Intro are that x is not free in B for ∃-Intro and x
is not free in A for ∀-Intro. The rules �-M and �-M stand for �-Monotonicity and
�-Monotonicity.

Note that axiom (A14) is provable from the other axioms is systems whose
propositional fragment includes the axiom form of contraposition, (A → B) → (¬B →
¬A), given the duality of the quantifiers (see Lemma 3.3). A related formula,
∀x(A → B) → (A → ∀xB), where x is not free in A, is derivable in the defined system
due to the presence of fusion. Moreover, (A14) is derivable in the system defined as
QB.C�� plus the left arrow governed by following rules:


 A → (B → C)
(←-I)
 B → (C ← A)


 B → (C ← A)
(←-E).
 A → (B → C)

QB.C�� is defined with fusion and without the left arrow, so (A14) is adopted as
an axiom, and the related ∀x(A → B) → (A → ∀xB) is not.

The logic BQ.C�� results from adding to QB.C�� the extensional confinement
axiom scheme (EC∀), or any equivalent scheme.

EC∀ ∀x(A ∨ B) → (A ∨ ∀xB), where x is not free in A,
EC∃ (A ∧ ∃xB) → ∃x(A ∧ B), where x is not free in A.

Strictly speaking, the existential (or universal) quantifier can be taken as defined,
and the resulting logic will contain the same theorems (under the usual translation).
Under the usual translation, the axiom schemes and rules for the defined quantifier
are derivable.

The propositional logic B, the basis over which we get QB.C��, is defined using a
propositional language by axioms (A1)–(A9), and rules MP, AJD, Prefix, Suffix, and
Contraposition. B◦t defined by extending B with the rules for t and ◦.

For first order relevant logics QB◦t , we extend B◦t with (A10) and (A11) with rules
∀-Intro and ∃-Intro. The logic BQ◦t extends QB◦t with the extensional confinement
axioms.

Seki uses the phrase “regular modal logic over L” to describe the modal relevant
logics including the axioms and rules of L, axioms (A12) and (A13), and rules �-M
and �-M. The least regular modal logic over L is denoted L.C. Here, I will generally
omit the adjective ‘regular’, opting instead for “quantified modal logic over L.”

In the least regular modal logic over QB◦t , and over B◦t , the formulas �A ↔ ¬�¬A
and �A ↔ ¬�¬A are not theorems. Thus, two additional modalities are introduced

3 This rule is called RIC for “rule of intensional confinement” by Mares and Goldblatt, due
to the relation to the formula ∀x(A ∨ B) → (A ∨ ∀xB), where x is not free in A in RQ◦t
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214 NICHOLAS FERENZ

by Seki by definitions:

�· A =def ¬�¬A,
�A =def ¬�¬A.

It is worth noting that modal relevant logics, especially stronger ones, are often
defined taking only one modality as primitive, and defining the other. Strictly speaking,
these logics employ the modalities � and �· (or � and �). In the frames for these logics,
we typically only only see a single binary relation for both modalities, which is sufficient
to guarantee the kind of duality/interdefinability that the modalities share.4 However,
in general the classical behavior of the primitive � and � in regular modal relevant
logics requires addition axioms.

The dot in the name of the logics signifies that the modal fragment is not “sufficiently
classical,” which means here that there are identifiable formulas that are theorems
of the modal classical logic that are not theorems (under suitable translation) of
the corresponding modal relevant logic. The axiom �(A ∨ B) → (�A ∨�B), for
example, has been added to the modal relevant logic NR and logic of entailment
E in order to capture modal fragment of S4 (see [25], p. 69–70). Mares has pointed
out that this axiom, first suggested by Belnap, bears a striking resemblance to the
confinement axioms for the quantifiers. As we will only have means to analyze
what it means for a logic to be sufficiently classical in this sense when we consider
extensions to the modal fragments in Section 8, the explanation of the dot/dotless
convention is left until Section 9 where I will further discuss the interactions between
� and �.

3.1. Some Proofs. Given the relative weakness of the logic B◦t , it is worth noting a
few theorems of QB.C��. In particular, note the duality of the quantifiers. In contrast,
as just noted, the modalities � and � are not provably dual. The following lemmas
serve to highlight features of QB.C��, some of which will be used in later proofs.

The rules ∀-Intro(con), UG(con), and ∃-Intro(Con) are as follows:


 A → B[c/x]
∀-Intro(Con) 
 A → ∀xB


 A[c/x]
UG(Con) 
 ∀xA


 A[c/x] → B
∃-Intro(Con) 
 ∃xA → B

The rule ∀-Intro(Con) has the requirement that c is not in A or B and x is not free
in A, UG(Con) the requirement that c is not in A, and ∃-Intro(Con) the requirement
that c is not in A or B and x is not free in B.

The following lemmas will be useful in completeness proofs below.

4 I will use ‘dual’ in multiple senses, which will be distinguishable by context. First, there is the
duality of logical operators, including both modalities and quantifiers, which refers to their
interdefinability in the usual way using negation. Second, is the duality of sentences, which is
derivative from the duality of logical operators. Often I will refer to sentences as dual despite
the underlying logic lacking the required duality between the operators. This is to highlight
a relationship between the sentences, which is sometimes duality.
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Lemma 3.1. For both QB.C�� and BQ.C��,

1. ∀y(A[y/x]) → ∀xA is a theorem if y is not free in A.
2. ∃y(A[y/x]) → ∃xA is a theorem if y is not free in A.

Lemma 3.2. The rules ∀-Intro(con), UG(con), and ∃-Intro(Con) are derivable.

The proof of 3.1.1 and the ∀-Intro(con), UG(con) cases for 3.2 are by the arguments
given by Mares and Goldblatt Mares and Goldblatt [20] for RQ4◦t in Lemmas 6.1,
6.3, 6.5, and 6.6. (By expanding some of the condensed steps in the proofs, it is clear
that the proofs apply to QB.C��). The proof for 3.1.2 and ∃-Intro(Con) is by similar
arguments.

Lemma 3.3. The following are theorems of QB.C��

1. ∀x(A → B) → (A → ∀xB), where x is not free in A
2. ∀xA → ¬∃x¬A
3. ¬∃x¬A → ∀xA
4. ∃xA → ¬∀x¬A
5. ¬∀x¬A → ∃xA

Proof. A proof for 1. can be found in [20], expanding their arguments to confirm
that the axioms and rules used are available in QB.C��. For the remaining cases, I
only show two.

1 A[�/x] → ∃xA A11
2 A[�/x] → ¬¬∃xA Preffixing, MP, theorem
3 ¬∃xA → ¬A[�/x] 2, Contra
4 ¬∃xA → ∀x¬A ∀-Intro(Con)
5 ¬∃xA → ¬¬∀x¬A Preffixing, MP, theorem
6 ¬∀x¬A → ∃xA Contra, Suffixing, MP, theorem

1 ∀x¬A → ¬A[�/x] A10
2 A[�/x] → ¬∀¬A 1, Contra
3 ∃xA → ¬∀¬A 2, ∃-Intro(Con)�

The Barcan formulas have been of interest in quantified modal logic. The Barcan
Formula (BF), the Converse Barcan Formula (CBF), and their duals with the
existential quantifier and diamonds (BF∃�, CBF∃�) are as follows:

BF ∀x�A → �∀xA,
CBF �∀xA → ∀x�A,
BF∃� �∃xA → ∃x�A,

CBF∃� ∃x�A → �∃xA.

Lemma 3.4. The Converse Barcan Formula and its dual are theorems of QB.C��.

Proof.

1 ∀xA → A A10
2 �∀xA → �A �-M
3 �∀xA → ∀x�A ∀-Intro

The proof for CBF∃� is similar, but using axiom A11 and rules �-M and
∃-Intro.
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The Barcan Formula and its dual are not theorems QB.C��. However, this is a
corollary of a result below, which demonstrates that the Barcan Formula is not a
theorem of a much stronger QMRL.

§4. Semantics for QB.C�� and BQ.C��. To construct semantic for QB.C�� and
BQ.C��, I combine the Mares–Goldblatt semantics for quantified relevant logics with
Seki’s semantics for modal relevant logics. As such, I will first explicate general frames
for propositional relevant logic B◦t . Following that, propositions and propositional
functions are explained, giving particular emphasis to the operations on propositions
used by Mares and Goldblatt to model the quantifiers.

4.1. General Frame Semantics and B◦t . First, a definition of frames for the logic B
is given. Given the set of primitive connectives →,¬,∧ and t , the rest are definable, so
for this section we make the simplification to the fragment of B◦t containing just these
connectives. From there, general frames are introduced.

Definition 4.5. A B-frame is a tuple F = 〈K, 0, R, ∗〉, where K is a non-empty set,
0 ⊆ K , R ⊆ K3, and ∗ is a unary function on K such that a list of postulates to follow
are satisfied.

A binary relation on K is defined via 0 and R by the definition:

a ≤ b =df ∃y ∈ 0(Ryab).

Given this definition, where a, b, c, d ∈ K , the following postulates are satisfied by
every B-frame:

(p1) ≤ is reflexive and transitive
(p2) 0 is closed by ≤ in the upwards direction
(p3) if a ≤ b and Rbcd then Racd
(p4) if a ≤ c and Rbcd then Rbad
(p5) if d ≤ a and Rbcd then Rbca
(p6) if a ≤ b then b∗ ≤ a∗
(p7) a∗∗ = a

Using the ternary relation R, we can define a binary operation ⇒ on the powerset
℘(K). For every X,Y ⊆ K , let

X ⇒ Y = {a ∈ K : ∀x∀y(Raxy and x ∈ X implies y ∈ Y )}.

It can be shown that if X and Y are up-sets, then so is X ⇒ Y , where up-sets are sets
of worlds or situations closed under upwardly under the defined ≤ relation. That is, if
a ∈ X and a ≤ b implies b ∈ X , then X is an up-set. A binary relation for fusion is
defined such that, for every X,Y ⊆ K ,

X · Y = {a ∈ K : ∃b∃c(Rbca and b ∈ X and c ∈ Y )}.

We can define a unary operation on subsets of ℘(K) using the ∗ as follows. For every
X ⊆ K

X ∗ = {a ∈ K : a∗ �∈ X}.

Similarly, if X is an up-set, then so is X ∗.
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Definition 4.6. A B-model is a tuple M = 〈K, 0, R, ∗, |–|M〉, where 〈K, 0, R, ∗〉 is a B-
frame and |–|M is a valuation that maps each atomic proposition to a up-set of K, and is
extended to all wff inductively as follows:

|t |M = 0

|A ∧ B|M = |A|M ∩ |B|M

|A ∨ B|M = |A|M ∪ |B|M

|¬A|M = (|A|M)∗

|A → B|M = |A|M ⇒ |B|M

|A ◦ B|M = |A|M · |B|M

Finally, we say that a formula A is true in the model M if 0 ⊆ |A|M. A is valid on a
frame if it is true in every model based on that frame, and A is valid in a class of frames
if it is valid in every frame in that class.

General frame semantics, introduced in [31] for modal logics, are a generalization
of the usual Kripke-style relational frames, but are closely related to Boolean algebras
with operators.5 General frames are interesting for a number of reasons. Many find
relational semantics quite intuitive, and the general frame semantics appear much like
the typical relational semantics. However, they are also natural duals of algebras. This
fact can be quite useful. For example, we can obtain completeness results for many
modal logics using general frames and their dual algebras.

General frame add to the typical frames a restriction on the possible valuations. This
set of admissible propositions, Prop, can be described as “(the carrier of) a complex
algebra over [the Kripke-style relation frame]” [3, p. 304]. Models are general frames
with (admissible) valuations whose range is the set of admissible propositions. Validity
and related notions are defined as expected. The canonical general frame can be
constructed from the Kripke-style canonical frame on which it is based, taking the
admissible propositions to be the sets of worlds containing each formula. We define
the set of worlds containing A by ||A||C = {a ∈ K : A ∈ a}, and then the admissible
propositions in the canonical frame by Prop = {||A||C : A is a formula}. Or more
simply we take PropC = {|A| : A is a wff}.

Extending the general frame treatment to B◦t , we thus get the following definition.

Definition 4.7. A general-B-frame is a tuple

F = 〈K, 0, R, ∗, Prop〉,
where 〈K, 0, R, ∗〉 is a B-frame and Prop is a subset of the up-sets of K called the
admissible propositions which is closed under ∩,∪,⇒ and ∗ and contains 0.

A model based on a general frame is given by a valuation that assigns to each
propositional variable a member of Prop. This is extended as before. Finally, truth in
a model, a frame, and a class of frames is defined as usual.

The canonical general frame is obtained from the canonical frame as follows. We
obtain PropC by setting PropC = {|A| : A is a wff}.

5 Indeed, a certain class of general frames are identical in a category-theoretic sense to Boolean
algebras with operators [3, p. 308].
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4.2. Propositions. The propositions in the models for relevant logics are sets of
situations closed under ≤, and are often called hereditary sets or up-sets. The relations
between situations, such as R, ∗, and ∩, are type-lifted to propositions. Already we
have seen the operations ⇒ and ∗. Operations ∩ and ∪ are defined as expected. Here is
a list of all the remaining operations of propositions corresponding to the connectives
of QB.C��. The operations � and � responding to S� and S�, given by their usual
definitions in general frames, are not to be confused with the unary connectives of the
logic using the same symbol. For X,Y ∈ ℘(K)

�X = {a ∈ K : ∀b(S�ab ⇒ b ∈ X )},
�X = {a ∈ K : ∃b(S�ab & b ∈ X )}.

To model the quantifiers, Mares and Goldblatt introduce operations from sets of
sets of situations to sets of situations. That is, from sets of propositions to propositions.
This operation is determined by Prop. When Prop is a set of hereditary subsets of
possible worlds, an operation � of type � : ℘℘K −→ ℘K such that, for every S ⊆ ℘K

�S = ∪{X ∈ Prop : X ⊆ ∩S}.
Additionally, an operation � of the same type is defined by:

�S = ∩{X ∈ Prop : ∪S ⊆ X}
for every S ⊆ ℘K .

The � is explained as being “motivated by the intuition that the sentence ∀xφ
expresses the conjunction of all the sentences φ[a/x]” [11, p. 17]. The problem with
using the arbitrary conjunction of the sentences φ[a/x] is that this conjunction is not
guaranteed to be admissible. We only guarantee that the binary conjunction of two
members of Prop is also in Prop. Thus, Goldblatt explains that a notion of entailment
between propositions (of the sort considered) will work in this case. First, given our
notion of proposition, a proposition X entails a proposition Y ifX ⊆ Y , for whenever
you have a world at which X is true, Y is also true. Goldblatt also calls Y weaker than
X, and X stronger than Y [11, p. 17]. Next, the operation is similar enough to the
arbitrary conjunction of a collection of elements of Prop is a member of Prop that
entails every member of the collection. In particular, it is the weakest member of Prop
that entails every member of the collection. That is, for a collection of members of
Prop {Xi : i ∈ I }, the proposition sufficiently expressing their conjunction is the X in
Prop such that,

(i) X ⊆ Xi for each i ∈ I and
(ii) if Z ∈ Prop and Z ⊆ Xi for all i ∈ I , then Z ⊆ X [11, p. 17]

The key point here is that this conjunction-like operation always results in a subset of
∩i∈I Xi , but not necessarily identical. The latter (∩) is not guaranteed to be a member
of Prop, while we require that the former (�) is. This conjunction-like operator is
denoted by �i∈I Xi .

Similarly, we can think of � as expressing the strongest member of Prop that
is entailed by every member. More explicitly, using this to model the existential
quantifier intuitively expresses that the proposition corresponding to ∃xA is the
strongest proposition implied by every instantiation of the formula.

The following lemma is crucial, as it entails that on the Mares–Goldblatt approach
using � or � any quantified relevant logic extending QB◦t is sound and complete for
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the Mares–Goldblatt models. The reader is reminded that the duality of the modalities
� and � break down over the weak B◦t , while the duality of the quantifiers is provable
in QB◦t .

Lemma 4.8. Given only the properties of ∩,∪, and ∗ in B◦t ,

1. �S = (�(S∗))∗

2. �S = (�(S∗))∗

Proof. Mares and Goldblatt prove the �S = (�(S∗))∗ for RQ◦t . By expanding the
details of their proof, the lemma follows by observing that their proof uses only the
classicality of ∩ and ∪, and properties of ∗ available to us in B◦t . In particular, the
steps of the proof involving ∗ are are follows. First, demonstrating that (∪S)∗ = ∩{X ∗ :
X ∈ S}, which uses the fact that a = a∗∗. Second, showing that – X ⊆ Y iff – Y ⊆ X ,
which uses the fact that a = b∗ iff a∗ = b.

Propositional Functions. Propositional functions, on the other hand, are functions
from value assignments for variables to admissible propositions. In addition to using
a set Prop of admissible propositions, Mares and Goldblatt also use a set PropFun of
admissible propositional functions.

A propositional function for classical logic is a function from value assignments for
the variables into the set {True, False}, where a proposition is either true or false. For
logics with possible world semantics, propositional functions are functions into the set
of propositions, where propositions are taken to be a subset of the powerset of worlds.
For example, consider the propositional function x is a human. The result of applying
this function to a value assignment to the variables that assigns to x the object Socrates
is a proposition. In classical logic, this application of a function would result in either
True or False. In the case of quantified relevant logic, this function application returns
the set of upwardly closed worlds in which “Socrates is a human” is true.

A propositional function in the context of the semantics of Mares and Goldblatt is
a function from value assignments of the variables to admissible propositions. That
is, a propositional function φ is of type φ: U� −→ Prop, where U is the domain of
individuals in a model. While admissible propositional functions are required for the
semantics of RQ◦t , motivations for adopting admissible propositions can be turned
into motivations for admissible propositional functions.

Definition 4.9. For any two elements φ and � of PropFun, the functions φ ∩ �, φ ∪
�, φ∗, φ ⇒ �, φ · �,�φ,�φ,∀nφ and ∃nφ of the same type are defined by, for every value
assignment to the variables f ∈ U� :

(φ ∩ �)f = φf ∩ �f
(φ ∪ �)f = φf ∪ �f

(φ∗)f = (φf)∗

(φ ⇒ �)f = φf ⇒ �f
(φ · �)f = φf · �f

(�φ)f = �(φf)

(�φ)f = �(φf)

(∀nφ)f = �
j∈I
φ(f[j/n])

(∃nφ)f = �
j∈I
φ(f[j/n])
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4.3. First order relevant logics. The Mares–Goldblatt semantics has yet been shown
to apply to propositional relevant logics weaker than QR◦t . While Goldblatt and Kane’s
use of this semantic approach for propositionally quantified relevant logics in [13] is
highly suggestive, here I show that the Mares–Goldblatt semantics works for QB◦t and
BQ◦t , and their extensions.

Definition 4.10. A QB◦t frame is a tuple

F = 〈K, 0, R, ∗, U, Prop, PropFun〉,
where 〈K, 0, R, ∗〉 is an B-frame, U is a non-empty set, Prop is a subset of the up-sets of
K which contains 0, PropFun is a subset of the functions of type U� −→ Prop, and the
following conditions are satisfied:

(c1) if a ∈ 0 and a ≤ b then b ∈ 0;
(c2) ≤ is reflexive and transitive;
(c3) if a ≤ b and Rbcd , then Racd ;
(c4) if a ≤ c and Rbcd , then Rbad ;
(c5) if d ≤ a and Rbcd , then Rbca;
(c6) if a ≤ b then b∗ ≤ a∗;
(c7) a∗∗ = a;
(c8) if X,Y ∈ Prop, then X ∪ Y , X ∩ Y , X ⇒ Y , X · Y , X ∗ ∈ Prop, where

these operations are defined as before;
(c9) the constant function φ0 is in PropFun;

(c10) if φ,� ∈ PropFun, then φ ∪ �, φ ∩ �, φ ⇒ �, φ∗ ∈ PropFun; and
(c11) if φ ∈ PropFun, then ∃nφ, ∀nφ ∈ PropFun, for every n ∈ �.

Using condition c4, and the fact that 0 is an up-set, we can derive the transitivity
requirements of ≤. A QB◦t -frame is called full if the setProp contains every hereditary
subset of K, and PropFun contains every function from U� to Prop.

Definition 4.11. A pre-model for QB◦t is a tuple

M = 〈K, 0, R, ∗, U, Prop, PropFun, |–|M〉,

where 〈K, 0, R, ∗, U, Prop, PropFun〉 is a QB◦t -frame and |–|M is a value assignment
that assigns

1. an element |c|M ∈ U to each constant symbol c;
2. a function |P|M : Un −→ ℘(K) to each n-ary predicate symbol P; and
3. a propositional function |A|M : U� −→ ℘(K) to each formula A such that, when

A is the atomic P�1, ... , �n, the propositional function assigned to it is given by, for
each f ∈ U� ,

|P�1, ... , �n|Mf = |P|M(|�1|Mf, ... , |�n|Mf).

Further, when A is not atomic, the function assigned to the formula is given by the
following:

|t |M = φ0

|A ∧ B|M = |A|M ∩ |B|M

|A ∨ B|M = |A|M ∪ |B|M
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|¬A|M = (|A|M)∗

|A → B|M = |A|M ⇒ |B|M

|A ◦ B|M = |A|M · |B|M

|∀xnA|M = ∀n|A|M

|∃xnA|M = ∃n|A|M.

Definition 4.12. A model for QB◦t is a pre-model for QB◦t that assigns a member of
PropFun to each atomic formula.

The following theorems are provable using the arguments from later sections of the
paper, ignoring the modal machinery. The proofs are only given in later sections to
avoid unnecessary repetition.

Theorem 4.13 (Soundness). All of the theorems of QB◦t (BQ◦t) are valid in every
QB◦t -model (BQ◦t -model ).

Theorem 4.14 (Completeness for QB◦t (BQ◦t)). If A is valid in every QB◦t -model
(BQ◦t -model ), then A is a theorem of QB◦t (BQ◦t).

Let L be a propositional relevant logic extending B◦t . We may define LQ and QL

by adding frame conditions for the relevant logic fragment.

Corollary 4.15. The logic LQ (QL) is sound and complete for the LQ-models (QL-
models).

Table 1 contains a list of some common axioms for propositional relevant logics and
their corresponding frame conditions.

4.4. Frames and Models for QB.C�� and BQ.C��.

Definition 4.16. A QB.C�� frame is a tuple

F = 〈K, 0, R, ∗, S�, S�, U, Prop, PropFun〉,

Table 1. Frame conditions for axioms of relevant logics

Axiom Frame conditiona

(A16) A ∨ ¬A if a ∈ 0 then a∗ ≤ a
(A17) (A → ¬B) → (B → ¬A) if Rabc then Rac∗b∗

(A18) (A → B) → ((B → C) → (A → C)) if R2abcd then Rb(Rac)d

(A19) (A → B) → ((C → A) → (C → B)) if R2abcd then Ra(Rbc)d

(A20) (A → (A → B)) → (A → B) if Rabc then R2abbc

(A21) A → ((A → B) → B) if Rabc then there is an x ∈ K such that
a ≤ x and Rbxc

(A22) (A → ¬A) → ¬A Raa∗a
a A more complete treatment of axioms and their corresponding frame conditions can
be found in [27], particularly in Sections 4.1 and 4.4.
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where 〈K, 0, R, ∗, U, Prop, PropFun〉 is an QB◦t -frame, S�, S� ⊆ K2, U is a non-empty
set, Prop is a subset of the up-sets of K which contains 0, PropFun is a subset of the
functions of type U� −→ Prop, and the following conditions are satisfied:

(c12a) if a ≤ b and S�bc then S�ac;
(c12b) if a ≤ b and S�ac then S�bc;
(c13) if X ∈ Prop, then �X,�X ∈ Prop; and
(c14) if φ ∈ PropFun, then �φ, �φ ∈ PropFun.

A QB.C��-frame is called full if the set Prop contains every hereditary subset of K,
and PropFun contains every function from U� to Prop.

Definition 4.17. A pre-model for QB.C�� is a tuple

M = 〈K, 0, R, ∗, S�, S�, U, Prop, PropFun, |–|M〉,

where 〈K, 0, R, ∗, S�, S�, U, Prop, PropFun〉 is a QB.C��-frame and where |–|M is a
value assignment as in definition 4.11, with the exceptions/additions that

|�A|M = �|A|M,
|�A|M = �|A|M.

Definition 4.18. A model for QB.C�� is a pre-model for QB.C�� that assigns a member
of PropFun to each atomic formula.

As shown by Seki [30], binary relations for the dual modalities �· and� can be defined
by, for every a, b ∈ K :

S�·ab iff S�a∗b∗,
S�ab iff S�a∗b∗.

Given the functions determined by a (pre-)model, we can then consider the truth
sets of each function as it is applied to a variable assignment. These truth sets are given,
for each f ∈ U� , as follows:

|t |Mf = 0

|A ∧ B|Mf = |A|Mf ∩ |B|Mf
|A ∨ B|Mf = |A|Mf ∪ |B|Mf

|¬A|Mf = (|A|Mf)∗

|A → B|Mf = |A|Mf ⇒ |B|Mf
|A ◦ B|Mf = |A|Mf · |B|Mf
|�A|Mf = �(|A|Mf)

|�A|Mf = �(|A|Mf)

|∀xA|Mf = �g∈xf |A|Mg
|∃xA|Mf = �g∈xf |A|Mg.

Finally, a familiar looking �M relation — or simply � for convenience — is
determined as follows:
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(i) a,f � P�1, ... , �n iff a ∈ |P�1, ... , �n|Mf
(ii) a,f � t iff a ∈ 0

(iii) a,f � A ∧ B iff a,f � A and a,f � B
(iii) a,f � A ∨ B iff a,f � A or a,f � B
(iv) a,f � ¬A iff a∗, f �� A
(v) a,f � A → B iff ∀b, c((Rabc and b, f � A) ⇒ c, f � B)
(v) a,f � A ◦ B iff ∃b, c(Rbca and b, f � A and c, f � B)

(vi) a,f � �A iff ∀b(S�ab ⇒ b, f � A)
(vii) a,f � �A iff ∃b(S�ab & b, f � A)

(viii) a,f � ∀xA iff there is an X ∈ Prop such that X ⊆
⋂

g∈xnf
|A|Mg and a ∈ X

(ix) a,f � ∃xA iff, for every X ∈ Prop such that a∗ ∈ X , there is a b ∈ X and
x-variant such that b∗ ∈ |A|Mg

Cases (viii) and (ix) are as they are in [20].
A formula A is satisfied by a variable assignment f in a model M if a,f � A, for

every a ∈ 0. A formula A is valid in the model M, if it is satisfied by every variable
assignment in that model. A formula A is valid in a frame, if it is valid in every model
based on the frame. Further, a formula is valid is a class of frames, if it is valid in every
frame in the class.

Definition 4.19. For the logic BQ.C��, frames and models are defined as above, with
the addition for the following frame condition:

c15 X – Y ⊆ ∩a∈Uφ(f[a/n]) implies X – Y ⊆ (∀nφ)f.

As the extensional confinement axioms are equivalent in QB◦t , and this single frame
condition taken from [20] is sufficient for the validity (and for completeness results).

The following lemmas are useful in establishing soundness results. When unspecified,
the lemmas apply to both QB.C�� and BQ.C��.

Lemma 4.20 (Semantic Entailment). In a model M, a formula A → B is satisfied by the
variable assignment f iff for every a ∈ K , if a,f � A, then a,f � B.

Proof. The original statement of this lemma (for a propositional relevant logic) and
its proof can be found as Lemmas 2 and 3 in [26].

Lemma 4.21. For any formula A, if f and g agree on all free variable of A, then |A|f =
|A|g.

Proof. The proof is by induction on the complexity of A. The arguments of Mares
and Goldblatt may be used for most cases. The remaining cases are shown here.

If A = ∃xnB, then a variable in B is free if either it is free in A or it is the variable
xn. It follows that for every j ∈ U , f[j/n] and g[j/n] agree on all free variables of B.
By the induction hypothesis, we get that |B|f[j/n] = |B|g[j/n], and thus

|A|f = �j∈I |B|f[j/n] = �j∈I |B|g[j/n] = |A|g,
as required.

If A = �B, then |�B|f = �|B|f. By the induction hypothesis |B|f = |B|g, so
�|B|f = �|B|g. The case of A = �B is similar to the case for �.
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Lemma 4.22. Let � be free for x in a formula A. If g ∈ xf and |x|g = |�|f, then
|A[�/x]|f = |A|g in a model M.

Proof. The proof is by induction on the complexity of A. The arguments of Mares
and Goldblatt [20, p. 177] can be used for all cases except for A = �B, A = �B, and
A = ∃xB. Here I show this remaining case.

Let A = �B and assume the result holds for B. If x is free for � in �B, then x is free
for � in B. By the induction hypothesis, |B[�/x]|f = |B|g. Thus, �|B[�/x]|f = �|B|g.
From this we get that |�B[�/x]|f = |�B|g, as required.

The case for A = �B is similarly straightforward.
ForA = ∃xB, the proof is obtained by modifying the Mares–Goldblatt proof for the

universal quantifier case. Assume that the result holds forB as the induction hypothesis.
Either x is free in A or it isn’t. If it isn’t, then A[�/x] = A. Since g is an x-variant of f,
the result is immediate.

On the other hand, if x is free in A, then x �= y. Further, A[�/x] = ∃yB[�/x].
Because x is free for �, it follows that y �= � and x is free for � in B. Let y be the variable
xn. We have the following identities:

|A[�/x]|Mf = �i∈U |B[�/x]|Mf[i/n],

|A|Mg = �i∈U |B|Mg[i/n].

To complete the proof we show that the two right sides are identical, as in the previous
case.

Again, note that for any i ∈ U , the assignment f[i/n] is an x-variant of g[i/n],
as they are x-variants before the substitution, and the substitution is applied to each
of them. From xn �= � and x �= xn it follows that |�|f[i/n] = |�|f = |x|g = |x|g[i/n].
Using the induction hypothesis we get that

|B[�/x]|Mf[i/n] = |B|Mg[i/n].

The proof is completed as in the previous case, thus concluding the induction.

§5. Soundness

Lemma 5.23. The axioms of B◦t are valid, and the rules of B◦t preserve validity, in the
class of QB.C�� and BQ.C�� frames.

The proof of this is standard using the typical methods. The interesting cases for
soundness are the axioms and rules with quantifiers and modalities.

Lemma 5.24. Axioms

(A10) ∀xA → A[�/x], where � is free for x in A,
(A11) A[�/x] → ∃xA, where � is free for x in A, and
(A14) ∀x(A → B) → (∃xA → B) where x is not free in B

are valid in every QB.C��-model.

Proof. The proofs for (A10) and (A11) are similar. The arguments from Mares and
Goldblatt [20] can be used for the case of (A10). That is, their proof is does not use
any requirements beyond what is available for for QB◦t -models. Thus, I will only show
the case for (A11), which is similar.
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Let a,f � A[�/x] and let � be free for x in A. That is, that a ∈ |A[�/x]|Mf. Let g be
an x-variant of f such that |x|g = |�|f. It follows that a, g � A. That is, |A[�/x]|f =
|A|g. Thus, a ∈ |A|g. It follows that a ∈ ∪g∈xf |A|g. Thus, a is in every proposition
X such that ∪g∈xf |A|g ⊆ X . Therefore a ∈ �g∈xf |A|g. By Semantic Entailment the
axiom (A11) is valid.

For (A14), the proof is made simpler using the duality of the quantifiers, and prove
that � ∀x(A → B) → (¬∀x¬A → B) where x is not free in B. Assume that this is not
the case. Then (i) a,f,� ∀x(A → B), (ii) Rabc, (iii) b, f � ¬∀x¬A and (iv) c, f �� B.
Thus, (v) a ∈ |A → B|g for all g ∈ xf. From (ii), we get that

b, f � ¬∀¬A iff b∗, f �� ∀x¬A
iff b∗ �∈ �g∈xf |¬A|g
iff b∗ �∈ |¬A|g ′ for some particular g ′ ∈ xf
iff b∗, g ′ �� ¬A
iff b, g ′ � A.

Given the last fact, (ii), and (v), we get c, g ′ � B. Moreover, since there are no free
occurrences of x in B, we obtain our contradiction with c, f � B and (iv). Thus, the
result follows by Semantic Entailment.

Lemma 5.25. The rules ∀-Intro and ∃-I preserve validity in every QB.C��-model.

Proof. For ∀-Intro, the proof is basically as in [20], but adapted where needed to fit
QB.C��. Suppose that A → B is valid in the model M and that x does not occur free
in A. It follows that for every variable assignment g, and from Semantic Entailment,
that |A|Mg ⊆ |B|Mg. Now take any variable assignment f. If g is an x-variant of f,
then they agree on the free variables of A, given that x is not free in A. From this
we get that |A|Mf = |A|Mg, and that |A|Mf ⊆ |B|Mg. Since g is an x-variant of f,
considering all such x-variants gives us |A|Mf ⊆ �g∈xf |B|Mg. This is the case for
every f, therefore, by Semantic Entailment, we get that A → ∀xB is valid in this model,
showing that ∀-Intro preserves validity.

For ∃-I, first suppose that A → B is valid in the model M and that x does not occur
free inB. It follows that for every variable assignment g, and from Semantic Entailment,
that |A|Mg ⊆ |B|Mg. Now take any variable assignment f. If g is an x-variant of f,
then they agree on the free variables of B, given that x is not free in B. From this we
get that |B|Mf = |B|Mg, and that |A|Mg ⊆ |B|Mf.

Since g is an x-variant of f, considering all such x-variants gives us �g∈xf |A|Mg ⊆
|B|Mf. As �g∈xf |A|Mg = |∃xA|Mf, and our choice of f was arbitrary, the result
follows by Semantic Entailment.

Lemma 5.26. The confinement axioms

EC∀ ∀x(A ∨ B) → (A ∨ ∀xB), where x is not free in A
EC∃ (A ∧ ∃xB) → ∃x(A ∧ B), where x is not free in A (EC∃)

are valid in every BQ.C��-model.

Proof. The case for EC∀ is covered by the arguments of Mares and Goldblatt [20],
so I show only the case for axiom EC∃. First, suppose that a,f � A ∧ ∃xB, and that
x is not free in A. It follows that a,f � A and a,f � ∃xB.

https://doi.org/10.1017/S1755020321000216 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000216


226 NICHOLAS FERENZ

For reductio, suppose that a,f �� ∃x(A ∧ B). That is, via convenient dualities (which
would have made this lemma redundant if we were to have taken the existential
quantifier as defined), a,f �� ¬∀x¬(A ∧ B). Therefore, a∗, f � ∀x(¬A ∨ ¬B). By
the previous lemma, a∗, f � ¬A ∨ ∀x¬B. However, if a∗, f � ¬A, then a �� A, a
contradiction. On the other hand, if a∗, f � ∀x¬B, then a,f �� ¬∀x¬B, which is
a,f �� ∃xB, a contradiction. Finally, by Semantic Entailment the result follows.

Lemma 5.27. The axioms

(A12) (�A ∧�B) → �(A ∧ B)
(A13) �(A ∨ B) → (�A ∨�B)

are valid in the class of QB.C��-frames.

Proof. For A12, begin by supposing that a,f � �A ∧�B. It follows that a,f � �A
and a,f � �B. For reductio, let a,f �� �(A ∧ B). Then there exists a b such that
S�ab and b, f �� A ∧ B. Thus, either b, f �� A or b, f �� B. However, given a,f � �A
and a,f � �B and S�ab, we get that both b, f � A and b, f � B, producing our
contradiction. Thus a,f � �(A ∧ B). Finally, by Semantic Entailment we get our
result.

For A13, begin by supposing that a,f � �(A ∨ B). Then there is a b such that
S�ab and b, f � A ∨ B. That is, either b, f � A or b, f � B. If the former, then a,f �
�A and also a,f � �A ∨�B. If the latter, then a,f � �B and also a,f � �A ∨
�B. Either way we have a,f � �A ∨�B, and by Semantic Entailment we have our
result.

Lemma 5.28. The rules of�-Monotonicity and�-Monotonicity preserve validity in every
QB.C��-model.

Proof. For the former, suppose that A → B is valid in a model. For some f and a, let
a,f � �A. For reductio, let a,f �� �B. Then there is a b such that S�ab and b, f �� B.
Also, we have that b, f � A. Given the validity of A → B, b, f � A, and Semantic
Entailment, we have that b, f � B, which gives us our contradiction. Therefore a,f �
�B. The result follows by Semantic Entailment.

For the latter, the proof is just as straightforward.

In summary, I record that:

Theorem 5.29 (Soundness for QB.C�� and BQ.C��).

1. All of the theorems of QB.C�� are valid in every QB.C��-model.
2. All of the theorems of BQ.C�� are valid in every BQ.C��-model.

§6. Theories. For notational convenience, let Γ �L Δ mean that there are some
A1, ... ,An ∈ Γ and B1, ... ,Bm ∈ Δ such that 
L (A1 ∧ ··· ∧ An) → (B1 ∨ ··· ∨ Bm),
where Γ and Δ are sets of formulas and L is a logic.

Definition 6.30. A pair (Γ,Δ) is L -independent if and only if Γ ��L Δ

Definition 6.31. An L-theory is a set of formulas Γ such that if Γ �L A, then A ∈ Γ.
A theory Γ is prime if and only if, if A ∨ B ∈ Γ, then either A ∈ Γ or B ∈ Γ. A theory Γ
is regular if and only if it contains every theorem of L.
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Lemma 6.32. A set of sentences Γ is a theory if and only if both:

1. If A ∈ Γ and 
L A → B, then B ∈ Γ
2. If A ∈ Γ and B ∈ Γ, then A ∧ B ∈ Γ

Finally, the extension lemma, is needed to show that, if a formula is not a theorem,
then there is a regular prime theory that does not contain the formula.

Lemma 6.33 (Extension). If (Γ,Δ) is L-independent, then there is some prime theory Γ′

such that Γ ⊆ Γ′ and (Γ′,Δ), for L = QB.C�� or BQ.C��.

The proof of this lemma for the logic RQ is due to Belnap (but the result is
unpublished) [7, p. 41]. Roughly, one way to prove this lemma is to take the closure
of Δ under disjunction, and consider all theories extending Γ that do not include any
element of the closure of Δ. We apply Zorn’s lemma to get a maximal theory, and then
prove that it is prime.

Definition 6.34. Where K ′
L

is the set of L-theories and a, bc ∈ K ′
L

, the following
relations are defined:

R′ is defined by R′abc iff {A ◦ B : A ∈ a & B ∈ b} ⊆ c.
S� is defined by S�cab iff {A : �A ∈ a} ⊆ b.
S� is defined by S�cab iff {�A : A ∈ b} ⊆ a.

§7. Completeness. The proof of completeness for QB.C�� and BQ.C�� in this
section will again follow Mares and Goldblatt, making adjustments where appropriate
for the added necessity operator. I will take the usual detour through theories in
what Mares and Goldblatt call a “Henkin–Lemmon–Scott–Routley–Meyer canonical
model construction” [20], p. 178. For the construction of a canonical model, we either
assume that the set of constantsCon is denumerable, or we add a denumerable number
of constants to the set Con in the usual way.

Let K ′
C

be the set of all QB.C��-theories, and let R′, S�, and S� be defined on K ′
C

as in definition 6.34, with L = QB.C��.

Definition 7.35. A canonical frame for QB.C�� is a tuple,

FC = 〈KC, 0C, RC, ∗C, S�C, S�C, UC, PropC, PropFunC〉
where

• KC ⊆ K ′
C

is the set of all prime QB.C��-theories.
• 0C is the set of all regular prime QB.C��-theories.
• RC is the relation R′ restricted to KC.
• S�C is the relation S� restricted to KC.
• S�C is the relation S� restricted to KC.
• ∗C is defined by a∗ = {A : ¬A �∈ a}.
• UC is the infinite set of constants Con.
• For every closed formula A, ||A||C is defined to be the set {a ∈ K : A ∈ a}.
• PropC is defined as the set {||A||C : A is a closed formula}.
• Given a variable assignment f, the value fn is a constant. Substituting each

variable in a formula A with the constant assigned to it by a variable assignment
f results in a closed formula which will be denoted Af . Therefore Af =
A[f0/x0, ... , fn/xn, ... ].
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• To each formula A, there is a corresponding function φA of typeU� −→ K given
by φAf = ||Af ||C.PropFunC is the set of all functions φA, whereA is a formula.

Definition 7.36. A canonical model for QB.C�� is a tuple,

MC = 〈KC, 0C, RC, ∗C, S�C, S�C, UC, PropC, PropFunC, |–|MC 〉, where

• 〈KC, 0C, RC, S�C, ∗C, UC, PropC, PropFunC〉 is the canonical frame.
• |c|C = c, for every constant symbol c.
• |P|C(c0, ... , cn) = ||P(c0, ... , cn)||C.
• The valuation is extended to every wff as before.

Of the following squeeze lemmas for RC, S�C, and S�C, the former has a fairly
standard proof. The proof of the latter two can be found in [30]. Here, the proofs are
omitted.

Lemma 7.37. If a and b are theories, c is a prime theory, and R′abc, then there are prime
theories a′ and b′ extending a and b respectively such that RCa

′b′c.

Lemma 7.38. If a is a prime theory, b is a theory, and S�ab, and A �∈ b, then there is a
prime theory b′ extending b such that S�Cab

′ and A �∈ b′.

Lemma 7.39. If a is a prime theory, b is a theory, and S�ab, then there is a prime theory
b′ extending b such that S�Cab

′.

Lemma 7.40. Conditions c1–c7 are satisfied by the canonical model.

The conditions c1–c7 can be shown to hold by the usual arguments, which will also
demonstrate that 〈KC, 0C, RC, ∗C〉 is a B-frame and that a ≤ b iff a ⊆ b.

Lemma 7.41. Conditions c12a and c12b are satisfied by the canonical model. That is, if
a ≤ b, S�Cbc, and S�Cad , then S�Cac and S�Cbd .

Proof. Assume that a ≤ b, which is a ⊆ b. Further, let S�Cbc. From the latter we
have that {A : �A ∈ b} ⊆ c, but also that if �A ∈ a, then �A ∈ b. Thus, S�Cac. For
the other condition, suppose in addition that S�Cad . Then {�A : A ∈ d} ⊆ a ⊆ b.
Thus S�Cbd .

Lemma 7.42. Prop is closed under ∪,∩,⇒, ∗, ·. That is, the canonical model satisfies c8.

Proof. It is sufficient to show that the following equalities hold.

||¬Af ||C = ||Af ||∗C
||A ∨ Bf ||C = ||Af ||C ∪ ||Bf ||C
||A ∧ Bf ||C = ||Af ||C ∩ ||Bf ||C
||A ◦ Bf ||C = ||Af ||C · ||Bf ||C

||A → Bf ||C = ||Af ||C ⇒ ||Bf ||C.

The proof of these equalities is straightforward by the standard arguments Routley
and Meyer.

Lemma 7.43. Prop is closed under � and �. That is, the canonical model satisfies c13.
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Proof. For �, it is sufficient to show that if ||A||C ∈ Prop, then so is �||A||C. It is
enough here to show that �||A||C = ||�A||C. For every f,

(1) �||Af ||C = {a : ∀b(S�Cab ⇒ b ∈ ||Af ||C)}
(2) ||�Af ||C = {a : �Af ∈ a}

We show that the left-hand of each equation is equal by showing the right-hand of the
equations are equal. The direction from (2) to (1) is fairly trivial, given the definition
of S�C. For the other direction, assume that c ∈ {a : ∀b(S�Cab ⇒ b ∈ ||Af ||C)}. For
reductio, further assume that �Af �∈ c. Let’s construct the theory d by defining it
as {A : �A ∈ c}. Clearly S�cd . By the squeeze lemma, there is a prime theory d ′

extending d such that both S�Ccd
′ and d ′ does not contain Af . However, by our first

assumption, d ′ does contain Af , giving us a contradiction, so �Af ∈ c.
For�, I am required to show that�||Af ||C = ||�(A)f ||C. We first note the following

equalities given by the definition of the canonical frame and the � operator.

�||Af ||C = {a : ∃b(S�Cab & b ∈ ||Af ||C)},
||�(A)f ||C = {a : �Af ∈ a}.

For one direction, let c ∈ {a : ∃b(S�Cab & b ∈ ||Af ||C)}. Then ∃b(S�Ccb & b ∈
||Af ||C). It follows that {�A : A ∈ b} ⊆ c. Thus, �Af ∈ c, as required.

For the other direction, let c ∈ {a : �Af ∈ a}. Thus, �Af ∈ c. We are required to
show that there is a b such that S�Ccb and Af ∈ b.

Let e = {B| 
 Af → B}, where Af is the formula in question. It follows that e is
a theory. For adjunction, assume that B, C ∈ e. Then 
 Af → B and 
 Af → C, and
so 
 Af → (B ∧ C) From this last fact, (B ∧ C) ∈ e. For closure under conditional
theorems, suppose that B ∈ e and 
 B → C. Then 
 Af → B, and so 
 Af → C, as
required.

Further, S�ce, which is straightforward from the definition of S� and the fact that,
using �Af ∈ c and (�-M), we have that every B ∈ e is such that �B ∈ c. Using the
appropriate squeeze lemma, we obtain e′, an prime extension of e, such that S�Cce

′.
Moreover, Af ∈ e′ due to 
 Af → Af .

Lemma 7.44. The constant function φ0 is in PropFun, and PropFun is closed under
∪,∩,⇒, ∗, ·,�, and �. That is, the canonical model satisfies c9, c10, and c14.

Proof. The arguments given by by Mares and Goldblatt [20], Lemma 9.2 can be
used for every case except the � and � cases. For �, we have to show that �φA = φ�A.
For every f,

φ�Af = ||�Af ||C by definition of φB

= �||Af ||C lem 7.43

= �φAf by definition of φB

For�, the argument is similar and establishes the more general equality�φA = φ�A.
For every f,

φ�Af = ||�Af ||C By definition of φB

= �||Af ||C lem 7.43

= �φAf by definition of φB
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Lemma 7.45. PropFun is closed under ∃n and ∀n. That is, the canonical model satisfies
c11.

To show that PropFun in closed under ∀n, the following sub-lemma proved by Mares
and Goldblatt is convenient.

Lemma 7.46. If ∀xA is a sentence, then, for every prime theory a, ∀xA ∈ a iff there is
an X ∈ Prop such that, for ever constant c, a ∈ X and X ⊆ ||A[c/x]||C. That is,

||∀xA||C = �c∈con||A[c/x]||C.

The proof is thus sub-lemmas is an in [20, Lemma 9.3], and as such is omitted. The
remaining detail of Lemma 7.45 is included here, which includes the introduction of
some notation.

Here we will show that, for every n ∈ �, for any A, ∀nφA = φ∀xnA. Mares and
Goldblatt introduce another notation for this proof. We will writeAf\n for the formula

A[f0/x0, ... , f(n – 1)/xn–1, xn/xn, f(n + 1)/xn+1, ... ].

This formula is the result of applying the substitution determined by f with the
exception of xn. Given this, it follows thatAf\n[c/xn] = Afc/n. It can also be seen that
∀xn(Af\n) = (∀xnA)f . Given these two facts, the following derivation from Mares and
Goldblatt is possible.

(∀nφA)f = φA(f[c/n]) by the definition of ∀n
= �c∈U ||Af[c/n]||C by definition of φA

= �c∈U ||Af\n[c/xn]||C by an equality just established

= ||∀xn(Af\n)||C by our sub-lemma

= ||(∀xnA)f ||C by an equality just established

= φ∀xnAf by definition of φ∀xnA

Thus PropFun is closed under ∀n for every n ∈ �.
A similar proof can be given for the definable ∃n. Thus the proof of Lemma 7.45 is

completed.

Lemma 7.47. In the canonical model for BQ.C��, condition

c15 X – Y ⊆ ∩a∈Uφ(f[a/n]) implies X – Y ⊆ (∀nφ)f

is satisfied.

The proof is omitted as it is by the arguments of Mares and Goldblatt [20], which
are applicable for BQ.C��.

To show that this canonical model is in fact a model for QB.C�� (BQ.C��), the
next lemma suffices.

Lemma 7.48. For every n-ary predicate symbol P, every variable assignment, and every
set of terms �1, ... , �n,

1. P(�1, ... , �n)f = P(|�1|f, ... , |�n|f)
2. |P(�1, ... , �n)|C = φP(�1,...,�n)

Mares and Goldblatt’s arguments may be used here.
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Corollary 7.49. The canonical model for QB.C�� (BQ.C��) is a QB.C��-(BQ.C��-)
model.

Our final step before completeness is again a truth lemma.

Lemma 7.50 (Truth Lemma for QB.C�� (BQ.C��)). For any formula A, A = φA. That
is, for all f, |A|Cf = ||Af ||C. In other words, a,f � A iff Af ∈ a.

Proof. The proof is by induction on the complexity of A. Again, the arguments
for the cases covered by Mares and Goldblatt can be verified to work in QB.C��

(BQ.C��). The new cases are those of � and �. For � we have the following:
The following argument is enough for the � case.

|A| = |�B| Case Hyp

= �|B| Definition of |–|
= �φB Inductive Hypothesis

= φ�B lem 7.44

= φA Case Hyp

Similarly, and condensed, the case for � is as follows. Let A = �B, and
assume the inductive hypothesis. That is, |B| = φB. It follows that |A| = �|B| =
�φB = φ�B.

Theorem 7.51 (Completeness for QB.C�� (BQ.C��)). If A is valid in every QB.C��-
model (BQ.C��-model ), then A is a theorem of QB.C�� (BQ.C��).

Proof. Let A be valid in every QB.C��-model including the canonical model. (The
same argument may be used for BQ.C��.) It follows that every regular prime theory
includes Af for every f. For every free variable in A, replace it with a different constant
not in A. This new formula belongs to every regular prime theory, and is therefore a
QB.C�� theorem. Repeated but finite applications of UG(Con) followed by repeated
by finite applications of the axiom ∀xA → A[t/x], with � free for x in A, will produce
a proof of A.

The semantics of Mares and Goldblatt for QR and RQ improves on Fine’s more
complicated semantics, and provides a natural way of interpreting the quantifiers.6

Further, the semantics of Goldblatt and Mares [14] for quantified modal (classical)
logics, in which the universal quantifier is treated similarly, provides completeness
results for a wide range of quantified modal logics. The canonical models don’t require
�-complete theories, and the usual incompleteness (which results from conflicting
requirements in the truth lemma for � and ∀x) is bypassed. This kind of semantics for
quantified modal logics is powerful, as seen in here, and in [11, 14]. However, despite
how natural and useful the semantics are, it is an open question how it can be used to
model quantified relevant logics with non-dual quantifiers. In particular, there is work
to be done developing an constructivist or intuitionistic approach to both quantifiers
and modalities in relevant logics.

6 Logan [16] gives a more approachable presentation of Fine’s stratified semantics for
quantified relevant logics. Logan addresses the complaints that the stratified semantics is
too complex (e.g., see Section 2.1 of [4]) and difficult to interpret philosophically (e.g., see
[24], p. 5).
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Table 2. Frame conditions for modal axioms

Axiom Frame condition

T �A → A ∀a(S�aa)

T� A → �A ∀a(S�aa)

D �A → �A ∀a∃b(S�ab & S�ab)

B A → ��A ∀a, b(S�ab ⇒ S�ba)

B� ��A → A ∀a, b(S�ab ⇒ S�ba)

4 �A → ��A S2
�ab ⇒ S�ab

4� ��A → �A S2
�ab ⇒ S�ab

5 �A → ��A ∀a, b, c(S�ab & S�ac ⇒ S�cb)
5� ��A → �A ∀a, b, c(S�ab & S�ac ⇒ S�bc)
K� �(A → B) → (�A → �B) If Rbcf and S�fd , there there exist b′, c′ ∈ K

such that S�bb′, S�cc′, and Rb′c′d .

K� �(A → B) → (�A → �B) If Rbcd and S�cf, then there exists b′, d ′ ∈ K
such that Rb′fd ′, S�bb′, and S�dd ′.

SC �(�A → B) ∨�(�B → A) If S�ab, Rbcd , S�ab′, and Rb′c′d ′,
then S�cd ′ or S�c′d .

CON �((A ∧�A) → B)∨ If S�ab, Rbcd , S�ab′, and Rb′c′d ′,
�((B ∧�B) → A) then c ≤ d ′ or c′ ≤ d or S�cd ′ or S�c′d .

Altn �A1 ∨�(A1 → A2) ∨ ··· If S�ad0,
∧n
i=1(S�ab′ and Rbicidi ) and dn �= u

∨�(A1 ∧ ··· ∧ An → An+1) then
∨n–1
i=0

∨n
j=i+1 cj ≤ di .

Rule Frame condition

NEC A
�A If b ∈ 0 and S�bc, then c ∈ 0.

§8. Extensions of QB.C�� and BQ.C��. The extensions of QB.C�� and BQ.C��

I consider here extend either the modal or implicational fragments of the logics.
Finally, we will show that the canonical model corresponding to various extensions of

QB.C�� and BQ.C�� satisfies the conditions corresponding to the additional axioms
or rules. For the axioms of the relevant fragment, the proof is standard. Thus, we
turn to the modal axioms. In Section 4.7, the Barcan formula is briefly given some
attention.

Let L be a quantified relevant logic and A be a set of axioms and rules from
Table 2:

1. the logic L.C is the regular modal logic over L and
2. the logic L.A is the quantified modal relevant logic that results from adding the

axioms and rules of A to L.
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We say that A corresponds with duality to a named modal classical logic M when both
(1) if A ∈ A, then the dual of A is also in A, and (2) M can be defined by extending
classical propositional logic with the set A. In this case, we have

3. the logic L.M is the quantified modal relevant logic that results from adding the
axioms and rules of A, where A corresponds with duality to M.

For example, KT can be defined using necessitation, plus the K, T,K� and T� axioms.
It follows that L.KT is defined by adding necessitation, K, T, K� and T� to L. The
logics denoted by LM (with no dot) will be defined in Section 9

This notation for the names of logics is not particularly pretty, especially when
considering each has a corresponding name without the dot, but it take advantage of
the known names for relevant logics and modal logics to give a somewhat intuitive
grasp of the axiomatization. Moreover, because the dot/dotless notation is in keeping
with the literature on modal relevant logics, the author has chosen to keep this notation
(and make the convention more precise) rather than introduce a new notation in order
to reduce alternative notations.

For any logic L that extends QB.C�� (or BQ.C��) with a set of axioms (with out
without the necessitation rule) from Table 2, we define L-models to be the QB.C��-
models (or BQ.C��-models) that satisfy the corresponding conditions from Table 2.
For these logics, the set of which we will denote by B, we record soundness and
completeness.

Lemma 8.52. A formula A is valid in every L-model if and only if A is a theorem of L,
for every L ∈ B.

Proofs are as usual, and as in [30].
Given this list of correspondences, I will now isolate a couple of interesting extensions

of B.C��. As described by Seki [30], p. 408, the logic R.K is obtained from B.C�� by
deleting t and � (and using �· as a replacement) from the logic’s signature, removing
the axioms t and �(A ∨ B) → (�A ∨�B), and the rule �-monotonicity, extending
the relevant logic fragment from B to R, and adding the axiom (K�) and the rule of
necessitation. The logic RK results from adding the axiom (�A ∧�B) → �(A ∧ B) to
R.K. Finally, R4 is obtained by adding to RK the axioms �A → A and �A → ��A.

There are two interesting types of axioms to consider. The first are axioms with both
of a non-dual pair � and �. Some sentences of this kind are highlighted in the next
section. The other kind of axiom of interest are axioms in which both quantifiers and
modalities appear, such as the Barcan Formulas. The next after next will deal with
these.

§9. Dropping the Dot. The dot/dotless notation for a logics name is used in the
modal relevant logic literature, but it is not entirely precise. Sometimes, the dot is
removed when the modal fragment is sufficiently similar to the modal fragment of the
corresponding modal classical logic (as in, for example, in [29, 30]). This convention
is not entirely standard. Mares and Tanaka [23] use the name R.K–, with the minus
symbol indicating the lack of the axiom K�, for a logic that here we would denote
without the dot. It have also been common to use the name NR for our R.4 without
primitive �. Here, however, my aim is to both make rigorous the dotting convention
as used consistently with Seki, and to motivate interest in the distinction picked out
by the convention. My hope is that this interest will standardize once and for all the
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dotting convention. As mentioned above, the dot is removed from a logic’s name when
it is sufficiently classical. We are now in a position to explain what is meant by this,
which is roughly that the diamond and box to behave sufficiently like they do in modal
classical logic.

Relevant logicians have been interested in when a relevant modal logic contains the
theorems of a modal logic whose base is classical logic. We shall often call modal logics
with a classical base modal classical logics (cf. modal relevant logics), which are not
to be confused with the established term ‘classical modal logics.’7 That is, when the
theorems of a modal logic with a classical base, written in ∼, ∧, and �, are theorems
of the modal relevant logic. Mares and Meyer have been at the forefront of research in
this area. In [18], it is proved that a number of modal relevant logics are conservative
extensions of modal logics. Similar results, including conservative extension by Boolean
negation, can be found in [21–23]. There is therefore an interest the ‘classicality’ of the
modal fragments of relevant logics.

The dot notation identifies a certain degree of classicality in the modal fragment of
relevant logics, and it is this degree which is necessary, though not sufficient, to ensure
that a relevant modal logic is a conservative extension of its classical counterpart. As
this fragment includes negation, weaker logics such as B have no hope of containing the
theorems of a modal classical logic. On the other hand, the axioms below required for
‘dropping to dot’ are exactly the postulates Dunn [6] identifies as required for positive
modal logics (without implication). Without these postulates, a positive modal logic
would lack theorems (in ∧,∨,�,�) that are theorems of the corresponding modal
classical logic. Therefore, for weaker relevant logics there are interesting results for be
found in the positive modal fragments, and it is only fitting that the frame conditions
given below are suitable for positive fragments of the logics considered. So let us make
rigorous the dotting convention.

To warrant the removal of the dot from a logic’s name, we must add �(A ∨ B) →
(�A ∨�B) or the dual (�A ∧�B) → �(A ∧ B), and we must have the duality of
the modalities � and �. For a (classical) regular modal logic to be contained in
a corresponding relevant modal logic, all the theorems must be included under
translation. The duality of the quantifiers is a theorem of classical regular modal
logics. Moreover, (�A ∧�B) ⊃ �(A ∧ B) is a theorem of all classical regular modal
logics (as in [5], Theorem 8.12). Thus, only the dotless logics can contain their classical
counterparts.

Here we establish frame conditions for these axioms.

Lemma 9.53. The axiom scheme�(A ∨ B) → (�A ∨�B) is valid in all QB.C��-models
that satisfy the following condition:

(c16) if S�ab, then ∃x ≤ b(S�ax & S�ax)

Proof. Suppose that a,f � �(A ∨ B). For reductio, let a,f �� �A and a,f �� �B.
From the former we get that S�ab and b, f �� A. From the condition above, S�ac and
S�ac for c ≤ b.

So in particular, it follows that c, f � A ∨ B. If c, f � B, then we get a contradiction,
as it entails a,f � �B. On the other hand, if c, f � A, then b, f � A, which gives us

7 The term ‘classical modal logic,’ introduced by Segerberg [28], refers to modal logics
(generally with a classical base) that have both the duality of the quantifiers and are closed
under the rule of replacement of equivalents: from � A↔ B infer � �A↔ �B .
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another contradiction. Thus the reductio assumption is wrong and a,f � �A ∨�B.
The result follows by Semantic Entailment.

Lemma 9.54. The axiom scheme (�A ∧�B) → �(A ∧ B) is valid in all QB.C��-models
that satisfy the following condition:

(c17) if S�ab, then ∃x ≤ b(S�ax & S�ax)

Proof. Let a,f � �A ∧�B. From this we getS�ab and b, f � A. By our condition,
there is a c ≤ b such that S�ac and S�ac. Thus, c, f � B, which entails b, f � B.
From here, we know that b, f � A ∧ B, and so a,f � �(A ∧ B), as required. The
result follows by Semantic Entailment.

The condition from [22]—ifS�ab, then∃x ≤ b(Tax), withTab =def Sab&Sa∗b∗—
is used to validate �(A ∨ B) → (�A ∨�B) in a modal relevant logic in which the box
is primitive, and the diamond is a defined dual. The T relation here is used in particular
because of the essential role of negation in defining the diamond. The proof requires
looking at star worlds. However, the condition I give above can be used in both positive
fragments and in logics without the duality of the modalities. The conditions above
are essentially the Mares–Meyer condition restricted to the relations for two possibly
non-dual modalities. The conditions above becomes the Mares–Meyer condition when
S�ab iff S�a∗b∗. Moreover, the duality of the modalities collapses the corresponding
relations, as recorded below.

Lemma 9.55. If the modalities � and � are dual, then S�ab iff S�a∗b∗.

Proof. From the duality of � and �, and the duality of � and �·, it follows that �A
iff ¬�¬A iff �· A. Thus, � and �· must be modeled by the same binary relation. Given
this and the fact that S�·ab iff S�a∗b∗, we get that S�ab iff S�a∗b∗.

Theorem 9.56. Let L be a logic extending QB.C�� or BQ.C�� with any set of axioms
and rules from Tables 1 and 2, and let the class of L-models as defined above. The logic
L + (�A ∧�B) → �(A ∧ B) is sound and complete w.r.t the class of all L-models
satisfying (c16). Further, the logic L + �(A ∨ B) → (�A ∨�B) is sound and complete
w.r.t the class of all L-models satisfying (c17).

Proof. Lemmas 9.53 and 9.54 demonstrate the soundness claim. For completeness,
we define the canonical modal as earlier, but for the appropriate logic. The completeness
proofs, of which we will only show that for the axiom �(A ∨ B) → (�A ∨�B),
are essentially the proof given by Mares and Meyer [22, Lemma 4.5], with obvious
modifications to handle the star-less condition given above.

First, assume that S�ab. That is, if �A ∈ a, then A ∈ b. We show that there is a
prime theory x ⊆ b such that S�ax and S�ax. Let c be the set of formulas A such
that �A �∈ a, and let a′ be the set of formulas A such that �A ∈ a. Thus, a′ ⊆ b, and
is a theory. Further suppose that d is the set of formulas not in b. We have here that
the pair (a′, c ∪ d ) is independent by the following:

Suppose for reductio that the pair is not independent. Then there areA1, ... ,An ∈ a′,
B1, ... ,Bm ∈ d and D1, ... ,Dl ∈ c such that


 (A1∧, ... ,∧An) → (B1∨, ... ,∨Bm ∨ D1∨, ... ,∨Dl )
from which we can infer


 �(A1∧, ... ,∧An) → �(B1∨, ... ,∨Bm ∨ D1∨, ... ,∨Dl ).
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Then, given the axiom in question, we can derive


 �(A1∧, ... ,∧An) → �(B1∨, ... ,∨Bm) ∨�(D1∨, ... ,∨Dl ).

The primeness of the element a further implies either the�(B1∨, ... ,∨Bm) ∈ a or that
�(D1∨, ... ,∨Dl ) ∈ a. If the latter, then�Di ∈ a for some i ≤ l , which entailsDi ∈ c, a
contradiction. On the other hand, �(B1∨, ... ,∨Bm) ∈ a, thenB1∨, ... ,∨Bm ∈ b, which
also leads to contradiction. Thus, (a′, c ∪ d ) is independent. Using the extension
lemma, There is a prime theory x extending a′ such that the pair (x, c ∪ d ) is
independent. It is obvious that S�ax by our definition of a′. To show that S�ax,
suppose that it did not hold. Then there is a formula A such that A ∈ x but �A �∈ a.
Such formulas make up the set c, as defined above. All such formulas were excluded
from x in the extension lemma. So S�ax.

This brings us to the title of the current section. In the naming scheme of the logics
here, my convention is to drop the dot in the name of the logic when (1) the logic
contains both the diamond and the box (with possibly one being defined), (2) the
diamond and box are duals, and (3) both the formula schemes discussed in this section
are theorems. The result is that logics whose name has dropped the dot have a certain
degree of classicality.

From here, further research is motivated into exactly what degree of classicality
this convention picks out. One line of investigation is to see which of these logics can
be proven to admit � — from ¬A ∨ B and A to infer B. Following the arguments
of Mares [18], �-admissibility may lead to conservative extension results over modal
relevant logics. Moreover, for quantified modal logics, a natural starting point is to
consider the quantified extensions of the logics in [18], and to determine whether they
conservatively extend their corresponding quantified modal classical logics.

§10. Barcan formula. Here we briefly discuss the role of the Barcan formula in
modal relevant logics. In the logics defined above, using UI, the Barcan formula is not
derivable. However, as we say earlier, the Converse Barcan Formula is derivable in our
basic logic QB.C��.

Lemma 10.57. The Barcan formula is not a theorem of RQ4◦t .

Proof. All of the theorems of RQ4◦t are theorems of quantified S4 with UI. One
cannot prove the Barcan Formula in quantified S4 with UI [11, p. 82]. Therefore, the
Barcan Formula cannot be a theorem of RQ4◦t .

In classical logics, the Barcan formula is related to models in which Prop and
PropFun are the set of all subsets of worlds and set of all functions from variable
assignments into Prop, respectively. These models are called Kripkean or full (due to
Prop and PropFun being the largest sets they can be). Here, �S = ∩S. Consequently,
the verification conditions for the quantifiers for Kripkean models collapse into the
Tarskian verification conditions. For the universal quantifier, namely

a,f,� ∀xA iff, for every g ∈ xf, g, a � A

since �S = ∩S and |∀xA|Mf = �g∈xf |A|Mg.
In [14], a Tarskian General Frame is defined as a frame forProp is closed under which

arbitrary (infinite) intersection. In these frames, the Tarskian verification condition is
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derivable. Moreover, they show that, for a class of frames C of modal classical logics,
a formula A is valid in all standard constant domain models based on members of
C iff A is valid in all Tarskian general frames based on members of C iff A is valid
in all full general frames based on members of C [20, Theorem 7]. They go on to
show that models that are not Tarskian can validate the Barcan Formula, showing that
“the Tarskian condition is sufficient to ensure validity of BF, but it is not necessary”
[14, p. 14].

The question then remains as to what the role of the Barcan formula is in modal
relevant logics.

Lemma 10.58. If M is a Kripkean/full model, then M validates BF.

Proof. The proof is much like in [11, Lemma 2.2.7]. Let a,f � ∀x�A. Then suppose
that S�ab. The domains are constant, or at least universal, in the sense that there is a
single domain for the entire model. So, if a ∈ U , then a,f[a/x] � �A, which implies
that b, f[a/x] � A.

So we have that, for every a ∈ U , b, f[a/x] � A. From this, and the assumption
that the model is Kripkean and therefore Tarskian, we get that b, f � ∀xA. As this
holds for every b such that S�ab, it follows that a,f � �∀xA. The result follows by
Semantic Entailment.

Note that, in [12], it is shown that Kripkean models also validate commuting
quantifiers (CQ—∀x∀yA → ∀y∀xA) in modal classical logics. In the relevant logics
we consider, we can prove that 
 CQ using UI (and ∀-Intro) without the Barcan
Formula [20, Lemma 6.3 (d)].

What is left to do is prove, of certain classes of models, that the relevant logics
considered plus the Barcan Formula are characterized by these models. That is, give
soundness and completeness results for whichever classes of models we are able. Here,
we must be careful that the class of models we choose does not imply incompleteness
for the quantified relevant fragment of the logic by, for example, becoming vulnerable
to Fine’s incompleteness proof as in [9].

Although Goldblatt [11], Goldblatt and Mares [14], and Mares and Goldblatt
[20] prove many relations between logics with the Barcan Formula (and CQ), the
tightest characterization so far is not the most illuminating. That characterization, for
relevant logics, is given in the following theorem. While related to Kripkean models
with Tarskian conditions, the following fact about relevant logics with the Barcan
formula is the furthest we will venture into the Barcan formula in this work.

Theorem 10.59. Where L is a quantified modal relevant logic without BF, the logic
L+BF is characterized by the class of all admissible function models that satisfy

∀x�φ ⊆ �∀xφ,
and are based on a general L-frame. (Where � in the condition above is the type-lifted
operation on propositional functions.)

Proof. The proof is essentially unaltered from [11]. For soundness, we have the
following:

|∀x�A|f = ∀x�|A|f
⊆ �∀x |A|f
= |�∀xA|f.
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For completeness, the goal is to show that φ∀x�A ⊆ φ�∀xA using the fact that

 ∀x�A → �∀xA. For this, it is sufficient to show that, if 
 A → B, then φA ⊆ φB.
Take an arbitrary a ∈ K and f ∈ U� , and suppose that a ∈ φAf. By definition, this
is a ∈ ||Af ||C, and so Af ∈ a. But a is a theory, and so Bf ∈ a. This gives us a ∈ φB,
as required.

This theorem might not seem very insightful for the role the Barcan formula plays.
Indeed, the condition appears as the axiom written in a semantic dialect. Similarly, we
could offer the condition �φ ⊆ φ for the axiom T, and give a similar proof. While we
have a deeper understanding of the T axiom because of its corresponding condition
of reflexivity, such an insight is hidden in the condition �φ ⊆ φ. As such, conditions
written in a semantic dialect, such as for the Barcan formula above, often fall short
of providing the philosophical explanations that we are after. The proof above is quite
modular, and is applicable to any axiom of a conditional form, taking advantage of
the fact that the axiom being provable implies the corresponding subset relation holds.
Consequently, it is a powerful formal technique that appears to offer no philosophical
insight into the nature of the Barcan formula.

Goldblatt proves a similar theorem [11, Theorem 4.5.4]. Goldblatt explains the
importance of this and related theorems.

It might be thought that characterizations using the condition
[defined above] do little to advance our understanding of the
Barcan Formula, since this is essentially a translation of BF into
structural/algebraic form. On the other hand, for [some logics
considered], the results given here would appear to be the first
characterizations of any kind that are based on possible-worlds style
relational semantics. [11, p. 157]

Thus, proving this theorem will at least be a good starting point in exploring
characterizations of relevant logics with the Barcan Formula.

The Barcan formula’s dual, with ∃ and � can be given a similar characterization.
Both results follow from a more general fact about the relation of propositional
functions and provable conditionals. What is desired, ideally, is a semantic condition
with more explanatory power. The relation, for example, of the Barcan formulas to
the contraction and expansion of domains provides some explanatory insight which
is missing in the straightforward algebraic translation (perhaps transliteration?) of the
axiom. This motivates the following lines of investigation for future work:

1. Find a semantic condition for the Barcan formula that provides more insight
into the nature of the Barcan formula in relevant logics.

2. Develop systems for quantified modal relevant logics in which both the Barcan
formula and its converse fail. For example, using the restricted universal
elimination axiom ∀y(∀xA → A[y/x]) instead of the unrestricted ∀xA →
A[�/x], with other axiomatic adjustments, can ensure that the Converse Barcan
formula is not a theorem.

Goldblatt [11] provides an excellent starting point for pursuing the latter project, as
a large portion of the book is dedicated to logics defined using the restricted universal
elimination axiom.
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