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Qp Spaces and Dirichlet Type Spaces

Guanlong Bao, Nihat Gökhan Göğüş, and Stamatis Pouliasis

Abstract. In this paper, we show that the Möbius invariant function space Qp can be generated by
variant Dirichlet type spaces Dµ ,p induced by ûnite positive Borel measures µ on the open unit
disk. A criterion for the equality between the spaceDµ ,p and the usual Dirichlet type spaceDp is
given. We obtain a suõcient condition to construct diòerent Dµ ,p spaces and provide examples.
We establish decomposition theorems for Dµ ,p spaces and prove that the non-Hilbert space Qp
is equal to the intersection of Hilbert spaces Dµ ,p . As an application of the relation between Qp
andDµ ,p spaces, we also obtain that there exist diòerent Dµ ,p spaces; this is a trick to prove the
existence without constructing examples.

1 Introduction

Let D be the open unit disk in the complex plane C and let H(D) be the space of
analytic functions inD. _eMöbius group Aut(D) consists of all one-to-one analytic
functions that map D onto itself. It is well known that each ϕ ∈ Aut(D) has the form

ϕ(z) = e iθσa(z), σa(z) =
a − z
1 − az

,

where θ is real and a ∈ D. Let X be a linear space of analytic functions on D which is
complete in a norm or seminorm ∥ ⋅ ∥X . _e space X is calledMöbius invariant if for
each function f in X and each element ϕ in Aut(D), the composition function f ○ ϕ
also belongs to X and satisûes that ∥ f ○ ϕ∥X = ∥ f ∥X . L. Rubel and R. Timoney [20]
have shown that the maximal Möbius invariant function space is the Bloch space B,
which consists of the functions f ∈ H(D) satisfying

∥ f ∥B = sup
z∈D
(1 − ∣z∣2)∣ f ′(z)∣ < ∞.

_e important space BMOA, the set of analytic functions onDwith boundary values
of bounded mean oscillation (see [8, 12]), is also Möbius invariant. We refer to J.
Arazy, S. Fisher, and J. Peetre [4] for a general exposition onMöbius invariant function
spaces.

In 1995, R. Aulaskari, J. Xiao, and R. Zhao [6] introduced the Möbius invariant
Qp spaces, which have attracted a lot of attention in recent years. For 0 ≤ p < ∞, a
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function f ∈ H(D) belongs to the space Qp if

∥ f ∥2Qp = sup
a∈D

∫
D
∣ f ′(z)∣2( 1 − ∣σa(z)∣2)

pdA(z) < ∞,

where dA(z) = dxdy for z = x + iy. Clearly, Q1 = BMOA. _e space Q0 is equal
to the Dirichlet space D. By [5], we see that Qp = B for all 1 < p < ∞. _e theory
of Qp spaces has been developing very well and can be considered satisfactory. _ere
are also several ways to generalize Qp spaces (cf. [11,26,28]). See J. Xiao’s monographs
[24, 25] for rich results of Qp spaces.

_ere exists amethod to obtain allMöbius invariant function spaces. Let (X , ∥ ⋅ ∥X)
be a Banach space of analytic functions in D containing all constant functions. Fol-
lowing A. Aleman and A. Simbotin [2], we denote by M(X) the Möbius invariant
function space generated by X. Namely, M(X) is the class of functions f ∈ H(D)
with

∥ f ∥M(X) = sup
ϕ∈Aut(D)

∥ f ○ ϕ − f (ϕ(0))∥X < ∞.

_is construction gives rise to all Möbius invariant Banach spaces on the open unit
disk. To understand the Möbius invariant function spaces BMOA and B well, we
recall the classical Hardy spaces and Bergman spaces. For 0 < p < ∞, Hp denotes the
classical Hardy space of functions f ∈ H(D) for which

∥ f ∥pHp = sup
0<r<1

1
2π ∫

2π

0
∣ f (re iθ)∣pdθ < ∞.

_e Bergman space Ap consists of functions f ∈ H(D) with

∥ f ∥pAp = ∫
D
∣ f (z)∣pdA(z) < ∞.

It is well known (cf. [7, 8]) that BMOA = M(Hp) and B = M(Ap) for all 1 < p < ∞.
Note that if p /= q, then Hp /= Hq and Ap /= Aq . In other words, both BMOA and B
can be generated by diòerent analytic function spaces. Up to now, it is only known
that the space Qp , 0 < p < 1, can be generated by the usual Dirichlet type spaceDp ,
which is the class of functions f ∈ H(D) satisfying

∥ f ∥2Dp = ∫D
∣ f ′(z)∣2(1 − ∣z∣2)pdA(z) < ∞.

It is natural to ask whether Qp , 0 < p < 1, can be generated by diòerent analytic
function spaces. A positive answer will be given in this paper. We will denote by F
the set of ûnite positive Borel measures on D. Let 0 < p < ∞ and let µ ∈ F. We
introduce the Dirichlet type spaceDµ ,p consisting of functions f ∈ H(D) such that

∥ f ∥2Dµ ,p = ∫D
∣ f ′(z)∣2Uµ ,p(z)dA(z) < ∞,

where
Uµ ,p(z) = ∫

D
(1 − ∣σz(w)∣2)pdµ(w).

We will prove that Dµ ,p ⊆ Dp for any µ ∈ F. Combining this with a similar proof in
the book [10, _eorem 1.6.3], we see that Dµ ,p is a Hilbert space with respect to the
norm ∣ f (0)∣2 + ∥ f ∥Dµ ,p . We will show that the space Qp can be generated by variant
Dirichlet type spaces Dµ ,p .
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_epaper is organized as follows. In Section 2, we prove thatDµ ,p ⊆Dp for any µ ∈

F. We characterize the measures µ ∈ F for which the equality Dµ ,p = Dp holds. We
also obtain a suõcient condition to construct diòerent Dµ ,p spaces. Some examples
of diòerent Dµ ,p spaces are given. In Section 3, we prove decomposition theorems
for Dµ ,p spaces. In Section 4, we give connections between Dµ ,p and Qp spaces that
are new even on BMOA and the Bloch space. We show that Qp = M(Dµ ,p), 0 <

p < ∞, for any µ ∈ F. Consequently, the space Qp can be generated by diòerent
analytic function spaces. We also prove that Qp = ⋂µ∈FDµ ,p . In other words, the
non-Hilbert space Qp , 0 < p < ∞, is equal to the intersection of a family of Hilbert
spaces. Applying the relation between Qp andDµ ,p spaces, we also obtain that there
exist diòerentDµ ,p spaces. It is our hope that the theory ofQp spaces can be developed
further in terms of the investigation ofDµ ,p spaces.

_roughout this paper, we will write a ≲ b if there exists a constant C such that
a ≤ Cb. Also, the symbol a ≈ b means that a ≲ b ≲ a.

2 Properties of Dirichlet Type Spaces Dµ,p

In this section, we consider the relation between Dµ ,p and Dp spaces and provide a
method to construct diòerent Dµ ,p spaces. Some examples of Dµ ,p spaces are also
given.

_eorem 2.1 Let µ ∈ F and 0 < p < ∞. _en the space Dµ ,p is always a subset of
Dp . Furthermore,Dµ ,p =Dp if and only if

(2.1) sup
z∈D
∫
D
(

1 − ∣w∣2

∣1 − zw∣2
)

p

dµ(w) < ∞.

Proof Fix 0 < r < 1 and let µr = µχrD. Here, χ is the characteristic function and

rD = {z ∈ C ∶ ∣z∣ ≤ r}.

Note that

(2.2) Uµr ,p(z) = (1 − ∣z∣
2
)
p
∫

rD

(1 − ∣w∣2)p

∣1 − zw∣2p
dµ(w)

and
(1 − r2)pµ(rD)

22p ≤ ∫
rD

(1 − ∣w∣2)p

∣1 − zw∣2p
dµ(w) ≤ 2pµ(rD)

(1 − r)p
.

Consequently, g ∈Dp if and only if g ∈Dµr ,p . Clearly, for any f ∈Dµ ,p , one gets that

∫
D
∣ f ′(z)∣2Uµr ,p(z)dA(z) ≤ ∫D

∣ f ′(z)∣2Uµ ,p(z)dA(z).

_us,Dµ ,p is always a subset ofDp .
Let (2.1) hold. It follows from equality (2.2) that Dp ⊆ Dµ ,p . Hence, Dµ ,p = Dp .

On the other hand, let Dµ ,p = Dp . _e closed graph theorem yields that the identity
map fromone of these spaces into the other is continuous. _us, there exists a positive
constant C such that

(2.3) ∣ f (0)∣ + ∥ f ∥Dµ ,p ≤ C (∣ f (0)∣ + ∥ f ∥Dp)
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for all f ∈Dp . For a ∈ D, set

fa(z) = (1 − ∣a∣2)1+
p
2 ∫

z

0

dζ
(1 − aζ)2+p , z ∈ D.

By a similar calculation in [16, p. 684], supa∈D ∥ fa∥Dp < ∞ for 0 < p < ∞. Combining
this with (2.3) gives that supa∈D ∥ fa∥2Dµ ,p

< ∞. Namely,

(2.4) sup
a∈D
(1 − ∣a∣2)2+p

∫
D
(1 − ∣w∣2)p(∫

D

(1 − ∣z∣2)p

∣1 − zw∣2p ∣1 − az∣4+2p dA(z))dµ(w) < ∞.

Let E(a) = {z ∈ D ∶ ∣σa(z)∣ < 1/2} be a pseudo-hyperbolic disk centered at a. It is
well known that

1 − ∣a∣ ≈ ∣1 − za∣ ≈ 1 − ∣z∣
for all z ∈ E(a), and the area of E(a) is comparable with (1 − ∣a∣)2. Furthermore, by
[29, Lemma 4.30],

∣1 −wz∣ ≈ ∣1 −wa∣
for all z ∈ E(a) and w ∈ D. Consequently,

∫
D

(1 − ∣z∣2)p

∣1 − zw∣2p ∣1 − az∣4+2p dA(z) ≥ ∫E(a)
(1 − ∣z∣2)p

∣1 − zw∣2p ∣1 − az∣4+2p dA(z)

≈
1

∣1 − aw∣2p(1 − ∣a∣)2+p .

_is, together with (2.4) shows that

sup
a∈D
∫
D
(

1 − ∣w∣2

∣1 − aw∣2
)

p
dµ(w) < ∞.

_us, condition (2.1) holds. _e proof is complete.

Remark (i) For 0 < p < ∞, it is well known that

∫
D
∣ f ′(z)∣2(1 − ∣z∣2)pdA(z) ≈ ∫

D
∣ f ′(z)∣2( log 1

∣z∣
)

p
dA(z)

for all f ∈Dp . Replacing f by f ○σw ,w ∈ D, in the above formula, making the change
of variables and using the Fubini theorem, one gets that f ∈Dµ ,p if and only if

∫
D
∣ f ′(z)∣2(∫

D
( log∣

1 −wz
z −w

∣ )
p
dµ(w))dA(z) < ∞.

_us, the spaceDµ ,1 is a Dirichlet type space with superharmonic weight studied by
A. Aleman [1]. A result similar to _eorem 2.1 with p = 1 was obtained by A. Aleman
[1], but the proof of _eorem 2.1 given here is diòerent. We refer to [9] for the recent
theory ofDµ ,1. It is worth mentioning that, except _eorem 2.1, our results on Dµ ,p
and Qp spaces in this paper are new for all the range of p considered in the paper.

(ii) Let δa be a unit point mass measure at a ∈ D. For 0 < p < 1, Uδa ,p(z) =
(1 − ∣σa(z)∣2)p is a positive superharmonic function with zero boundary values on
the unit disk. From the Riesz decomposition theorem for superharmonic functions,

Uδa ,p(z) = ∫D
log ∣

1 −wz
z −w

∣dνa(w),
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where dνa(w) = −∆Uδa ,p(w)dA(w). However, ∫D −∆Uδa ,p(w)dA(w) = ∞, so νa ∉
F. In fact, for 0 < p ≤ 1, Uµ ,p is a superharmonic function. For p > 1, Uµ ,p is not a
superharmonic function and the spaceDµ ,p is not of the Dirichlet type spaces studied
in [9].

In light of the study of inclusion relation between a class ofMöbius invariant spaces
QK (see [11, _eorem 2.6]), we give a method to ûnd diòerent Dµ ,p spaces as follows.

_eorem 2.2 Let µ, ν ∈ F and 0 < p < ∞. If

lim
∣z∣→1

Uµ ,p(z)
Uν ,p(z)

= 0 and(2.5)

sup
z∈D
∫
D
(

1 − ∣w∣2

∣1 − zw∣2
)

p
dν(w) = ∞,(2.6)

then Dν ,p ⫋Dµ ,p .

Proof By (2.5), we see thatDν ,p ⊆Dµ ,p . Suppose thatDν ,p =Dµ ,p . Denote byD0
ν ,p

the Banach space of functions g ∈Dν ,p with g(0) = 0. _enD0
ν ,p =D0

µ ,p . _e closed
graph theorem gives that there exists a positive constant C such that

(2.7) ∥ f ∥2Dν ,p ≤ C∥ f ∥
2
Dµ ,p

for all f ∈D0
ν ,p . From condition (2.5), there exists a constant t ∈ (0, 1) satisfying

Uµ ,p(z) ≤
Uν ,p(z)

2C
for t < ∣z∣ < 1. _is, together with (2.7), shows that

∫
D
∣ f ′(z)∣2Uν ,p(z)dA(z)

≤ C(∫
t<∣z∣<1

∣ f ′(z)∣2Uµ ,p(z)dA(z) + ∫
∣z∣≤t
∣ f ′(z)∣2Uµ ,p(z)dA(z))

≤
1
2 ∫D

∣ f ′(z)∣2Uν ,p(z)dA(z) + C ∫
∣z∣≤t
∣ f ′(z)∣2Uµ ,p(z)dA(z).

Hence,

(2.8) ∫
D
∣ f ′(z)∣2Uν ,p(z)dA(z) ≤ 2C ∫

∣z∣≤t
∣ f ′(z)∣2Uµ ,p(z)dA(z), f ∈D0

ν ,p .

Let h ∈ Dp with h(0) = 0. Set hr(z) = h(rz), 0 < r < 1. A direct computation gives
that ∥hr∥

2
Dp

≤ ∥h∥2Dp
. Clearly, hr ∈D

0
ν ,p . Inequality (2.8) yields that

∫
D
r2∣h′(rz)∣2Uν ,p(z)dA(z) ≤ 2p+1C µ(D)

(1 − t)p
∥hr∥

2
Dp ≤ 2p+1C µ(D)

(1 − t)p
∥h∥2Dp .

Using Fatou’s Lemma, we get that

∥h∥2Dν ,p ≤ 2p+1C µ(D)
(1 − t)p

∥h∥2Dp
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for any h ∈ Dp with h(0) = 0. _erefore, Dp ⊆ Dν ,p . Applying _eorem 2.1, we see
that Dp =Dν ,p and

sup
z∈D
∫
D
(

1 − ∣w∣2

∣1 − zw∣2
)

p
dν(w) < ∞,

which contradicts (2.6). _us,Dν ,p ⫋Dµ ,p . We ûnish the proof.

_e following estimates will be useful in the paper and can be found in [13, p. 9]
and [29, p. 55], respectively.

Lemma A (i) Let z ∈ D and let β be any real number. _en

∫

2π

0

dθ
∣1 − ze−iθ ∣1+β

≈

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if β < 0,
log 1

1−∣z∣2 if β = 0,
1

(1−∣z∣2)β if β > 0,

as ∣z∣ → 1−.
(ii) Suppose z ∈ D, c is real and t > −1. _en

∫
D

(1 − ∣w∣2)t

∣1 − zw∣2+t+c dA(w) ≈

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1 if c < 0,
log 1

1−∣z∣2 if c = 0,
1

(1−∣z∣2)c if c > 0,

as ∣z∣ → 1−.

Applying _eorems 2.1 and 2.2, we construct diòerent Dirichlet type spaces Dµ ,p .
Consequently, the investigation of Dµ ,p spaces is reasonable. Note that the spaces
Dµ ,p , µ ∈ F, 0 < p < ∞, contain polynomials. _us, they are not trivial.

Example 1 For 0 < p < ∞, let

dµ(w) = 1
∣1 −w∣2−p+є dA(w), 0 < є < p.

_en µ ∈ F and Dµ ,p ⫋ Dp . In fact, Lemma A(ii), we see that µ ∈ F. For z ∈ D, we
write that

D(z) = {w ∈ D ∶ ∣z −w∣ < 1
2 (1 − ∣z∣)}.

_en D(z) is a subset of E(z) as deûned in the proof of_eorem 2.1. We deduce that

sup
z∈D
∫
D
(

1 − ∣w∣2

∣1 − zw∣2
)

p 1
∣1 −w∣2−p+є dA(w) ≳

sup
0<r<1
(1 − r)−p

∫
D(r)

1
∣1 −w∣2−p+є dA(w).

If w ∈ D(r), then
1
2
(1 − r) ≤ ∣1 −w∣ ≤ 3

2
(1 − r).

_us,

sup
z∈D
∫
D
(

1 − ∣w∣2

∣1 − zw∣2
)

p 1
∣1 −w∣2−p+є dA(w) ≳ sup

0<r<1
(1 − r)−є = ∞.
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_is together with _eorem 2.1 implies that Dµ ,p ⫋Dp .

_e next examples are only valid for p > 1. In Section 4, using the theory of Qp
spaces, we will point out that for all 0 < p < ∞, there exist Dirichlet type spacesDµ1 ,p
andDµ2 ,p , µ1, µ2 ∈ F such that Dµ i ,p ⫋Dp , i = 1, 2, andDµ1 ,p /=Dµ2 ,p .

Example 2 For p > 1, let

dµ1(w) = (1 − ∣w∣2)q1dA(w) and dµ2(w) = (1 − ∣w∣2)q2dA(w),

where −1 < q1 < q2 < p − 2. _en µ1, µ2 ∈ F. Furthermore, Dµ1 ,p ⫋ Dµ2 ,p ⫋ Dp . In
fact, applying Lemma A(ii) yields that

sup
z∈D
∫
D
(

1 − ∣w∣2

∣1 − zw∣2
)

p
dµ i(w) = ∞, i = 1, 2,

lim
∣z∣→1

Uµ2 ,p(z)
Uµ1 ,p(z)

≈ lim
∣z∣→1
(1 − ∣z∣)q2−q1 = 0.

By _eorems 2.1 and 2.2, we know that Dµ1 ,p ⫋Dµ2 ,p ⫋Dp .

3 Decomposition Theorems for Dµ,p Spaces

_e theory of decomposition has appeared in many research areas and it is also im-
portant for the study of analytic function spaces. For every function in a given analytic
function space, it is interesting to write the function as a linear combination of func-
tions that are elementary in some sense. Decomposition theorems for the Bloch space
B, BMOA and Qp , 0 < p < 1, were established in [18, 19,22] respectively. _e purpose
of this section is to obtain decomposition theorems forDµ ,p spaces. We also compare
decomposition theorems on diòerent analytic function spaces.
For any z, w ∈ D, the Bergman metric between z and w is given by

β(z,w) = 1
2
log

1 + ∣σz(w)∣
1 − ∣σz(w)∣

.

Fix r > 0. Denote by

D(z, r) = {w ∈ D ∶ β(z,w) < r}

the hyperbolic disk. A sequence {zk}∞k=1 in D ∖ {0} is called an r-lattice if

D =
∞

⋃
k=1
D(zk , r)

and β(z i , z j) ≥ r/2 for i /= j. _e last condition is usually expressed by saying that
{zk}∞k=1 is

r
2 -separated. We refer to Zhu’s book [29] for these notations.

_e following theorem is the main result of the section. One can compare it with
decomposition theorems of Qp spaces given in [22].

_eorem 3.1 Let µ ∈ F, 0 < p < 2 and b ≥ p + 1. _ere exists an r0 > 0, such that for
any r-lattice {zk}∞k=1 in D with 0 < r < r0, the following are true.
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(i) If f ∈Dµ ,p , then there exists a sequence {λk} ∈ ℓ2 such that

f (z) = f (0) +
∞

∑
k=1

λk
√

Uµ ,p(zk)
(
1 − ∣zk ∣2

1 − zkz
)
b

(3.1)

and
∞

∑
k=1
∣λk ∣

2
≤ C∥ f ∥2Dµ ,p .(3.2)

(ii) For any {λk} ∈ ℓ2, the function f deûned by (3.1) is in Dµ ,p and

∥ f ∥2Dµ ,p ≤ C
∞

∑
k=1
∣λk ∣

2 .

Remark _e proof of _eorem 3.1 given here is invalid for p ≥ 2, because we need
to use Lemma C.

Before proving _eorem 3.1, we give some auxiliary results. _e following lemma
can be found in [29, p. 72].

Lemma B Suppose 0 < r < 1 and {zk}∞k=1 is an r-lattice. For each k there exists a
measurable set Dk with the following properties:
(i) D(zk , r/4) ⊆ Dk ⊆ D(zk , r) for all k ≥ 1.
(ii) D i ∩ D j = ∅ if i /= j.
(iii) D = ∪∞k=1Dk .

_e following sharp inequality can be found in [15, Lemma 2.5] (see also [27,
Lemma 1]).

Lemma C Suppose that s > −1, r, t > 0, and r + t − s > 2. If t < s + 2 < r, then

∫
D

(1 − ∣w∣2)s

∣1 −wz∣r ∣1 −wζ ∣t
dA(w) ≤ C (1 − ∣z∣

2)2+s−r

∣1 − ζz∣t
,

for all z, ζ ∈ D.

For ν ∈ F, let L2(D, dν) be the space of all measurable functions g on D with

∥g∥2L2(D,dν) = ∫D
∣g(z)∣2dν(z) < ∞.

To prove _eorem 3.1, we need to consider a certain operator on L2(D,Uµ ,pdA) as
follows.

Lemma 3.2 Let µ ∈ F, 0 < p < 2 and b > max{2p − 1, p+1
2 }. _en the operator

Tg(z) = ∫
D

(1 − ∣w∣2)b−1

∣1 −wz∣b+1 ∣g(w)∣dA(w), g ∈ L2
(D,Uµ ,pdA),

is bounded on L2(D,Uµ ,pdA).
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Proof We prove the result by Schur’s test. Deûne a linear operator TH on L2(D, dA)
as follows:

TH f (z) = ∫
D
H(z,w) f (w)dA(w), f ∈ L2

(D, dA),

where

H(z,w) = (1 − ∣w∣
2)b−1

∣1 − zw∣b+1

¿
Á
ÁÀ Uµ ,p(z)

Uµ ,p(w)
.

Fix a number β with max{p − b + 1, 0} < β < min{p + 1, 2 − p, b} and take the test
function

h(z) =
√

Uµ ,p(z)
(1 − ∣z∣2)β

.

Note that β ∈ (0, b). Using Lemma A we get that

(3.3) ∫
D
H(z,w)h(w)dA(w) =

√

Uµ ,p(z)∫
D

(1 − ∣w∣2)b−1−β

∣1 − zw∣b+1 dA(w) ≲ h(z).

Note that b > 0 > −1 and 1 − p − b < p − b + 1 < β < min{p + 1, 2 − p}. Applying the
Fubini theorem and Lemma C, we deduce that

∫
D
H(z,w)h(z)dA(z)

=
(1 − ∣w∣2)b−1
√

Uµ ,p(w)
∫
D
(1 − ∣ζ ∣2)pdµ(ζ)∫

D

(1 − ∣z∣2)p−β

∣1 − zw∣b+1∣1 − zζ ∣2p
dA(z)

≲
(1 − ∣w∣2)p−β
√

Uµ ,p(w)
∫
D

(1 − ∣ζ ∣2)p

∣1 −wζ ∣2p
dµ(ζ) ≈ h(w).

Bear in mind (3.3) and the above inequality. Using the Schur theorem (cf. [29, _eo-
rem 3.6]), we get that TH is a bounded operator on L2(D, dA).
For any g ∈ L2(D,Uµ ,pdA), let

f (z) = ∣g(z)∣
√

Uµ ,p(z).

_en

∫
D
∣Tg(z)∣2Uµ ,p(z)dA(z) = ∫

D
∣TH f (z)∣2dA(z) ≲ ∫

D
∣ f (z)∣2dA(z),

which gives the desired result. _e proof is complete.

As mentioned in Section 2, we let D0
µ ,p be the Banach space of functions g ∈Dµ ,p

with g(0) = 0. Suppose 0 < r < 1, p > 0, b ≥ p + 1, and {zk}∞k=1 is an r-lattice. Deûne
a linear operator Sr ,b on D0

µ ,p by

(3.4) Sr ,b f (z) =
1
π

∞

∑
k=1
f ′(zk)∣Dk ∣

(1 − ∣zk ∣2)b−1

zk(1 − zkz)b
, f ∈D0

µ ,p ,

where Dk is deûned as in Lemma B and ∣Dk ∣ is the area of Dk .

Lemma 3.3 Let µ ∈ F, 0 < p < 2, and b ≥ p + 1. _ere exists a small enough positive
constant r0 such that if 0 < r < r0, then the operator Sr ,b deûned by (3.4) is bounded
and invertible on the Banach spaceD0

µ ,p .
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Proof Let f ∈ D0
µ ,p . _en _eorem 2.1 gives that f ∈ Dp . Since b ≥ p + 1, we

obtain that f ∈ Db−1. Applying the reproducing formula of Bergman spaces (cf. [29,
Proposition 4.23]), we get

f ′(z) = b
π ∫D

(1 − ∣w∣2)b−1

(1 −wz)b+1 f
′
(w)dA(w).

Combining this with Lemma B yields

f ′(z) − (Sr ,b f )′(z) =
b
π

∞

∑
k=1
∫
Dk

(1 − ∣w∣2)b−1

(1 −wz)b+1 f
′
(w)dA(w)

−
b
π

∞

∑
k=1
f ′(zk)∣Dk ∣

(1 − ∣zk ∣2)b−1

(1 − zkz)b+1 .

Z. Wu and C. Xie [22, p. 395] proved that

∣ f ′(z) − (Sr ,b f )′(z)∣ ≲ r∫
D

(1 − ∣w∣2)b−1

∣1 −wz∣b+1 ∣ f
′
(w)∣dA(w).

Note that b ≥ p + 1 > max{2p − 1, p+1
2 }. Applying Lemma 3.2, we see that

∫
D
∣ f ′(z) − (Sr ,b f )′(z)∣2Uµ ,p(z)dA(z) ≲ r2 ∫

D
∣T f ′(z)∣2Uµ ,p(z)dA(z)

≲ r2∥ f ∥2Dµ ,p ,

which means that I − Sr ,b is a bounded operator onD0
µ ,p . Here I is the identity oper-

ator. Hence,

∥(I − Sr ,b) f ∥Dµ ,p ≲ r∥ f ∥Dµ ,p

for all f ∈D0
µ ,p . _us, Sr ,b is bounded onD0

µ ,p . If r is small enough, then the operator
I − Sr ,b has norm less than one. By standard functional analysis, the operator Sr ,b is
invertible on D0

µ ,p . _e proof is complete.

Proof of_eorem 3.1 (i) Let f ∈ Dµ ,p . _en the function g(z) = f (z) − f (0)
belongs to D0

µ ,p . Using Lemma 3.3, we obtain that

g(z) = Sr ,bS−1
r ,b g(z) =

1
π

∞

∑
k=1
(S−1

r ,b g)
′
(zk)∣Dk ∣

(1 − ∣zk ∣2)b−1

zk(1 − zkz)b

=
∞

∑
k=1

λk
√

Uµ ,p(zk)
(
1 − ∣zk ∣2

1 − zkz
)
b
,

where

λk =
(S−1

r ,b g)
′(zk)∣Dk ∣

πzk(1 − ∣zk ∣2)

√

Uµ ,p(zk).
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Bear in mind that ∣Dk ∣ ≈ (1 − ∣zk ∣2)2. Applying Lemma B and the subharmonicity of
∣(S−1

r ,b g)
′∣2 (cf. [29, Proposition 4.13]), we get that

∞

∑
k=1
∣λk ∣

2
≈

∞

∑
k=1

∣(S−1
r ,b g)

′(zk)∣2∣Dk ∣
2

(1 − ∣zk ∣2)2
Uµ ,p(zk)

≲
∞

∑
k=1
∫
D(zk ,r/4)

∣(S−1
r ,b g)

′
(z)∣2Uµ ,p(zk)dA(z).

By [29, Proposition 4.5] and [29, Lemma 4.30], we know that

1 − ∣z∣ ≈ 1 − ∣zk ∣ ≈ ∣1 − zkz∣, ∣1 −wz∣ ≈ ∣1 −wzk ∣,

for all z ∈ D(zk , r/4) and w ∈ D. Hence, Uµ ,p(zk) ≈ Uµ ,p(z) for all z ∈ D(zk , r/4).
Note that the operator S−1

r ,b is also bounded on D0
µ ,p . Consequently,

∞

∑
k=1
∣λk ∣

2
≲

∞

∑
k=1
∫
D(zk ,r/4)

∣(S−1
r ,b g)

′
(z)∣2Uµ ,p(z)dA(z)

≲ ∫
D
∣(S−1

r ,b g)
′
(z)∣2Uµ ,p(z)dA(z) ≲ ∥g∥2Dµ ,p ≈ ∥ f ∥

2
Dµ ,p .

(ii) Suppose {λk} ∈ ℓ2. We consider the function f deûned by (3.1). For any z ∈ D,
one gets that

∣ f ′(z)∣ ≤ b
∞

∑
k=1

∣λk ∣∣zk ∣
√

Uµ ,p(zk)
(1 − ∣zk ∣2)b

∣1 − zkz∣b+1

≈

∞

∑
k=1

∣λkzk ∣
(1 − ∣zk ∣)

√
Uµ ,p(zk)

∫
D(zk ,r/4)

(1 − ∣w∣2)b−1

∣1 −wz∣b+1 dA(w)

≈ ∫
D

(1 − ∣w∣2)b−1

∣1 −wz∣b+1 (
∞

∑
k=1

∣λkzk ∣χD(zk ,r/4)(w)
(1 − ∣zk ∣)

√
Uµ ,p(zk)

)dA(w).

Set

g(w) =
∞

∑
k=1

∣λkzk ∣χD(zk ,r/4)(w)
(1 − ∣zk ∣)

√
Uµ ,p(zk)

.

_en

∫
D
∣g(w)∣2Uµ ,p(w)dA(w) ≲ ∫

D

∞

∑
k=1

∣λk ∣
2 χD(zk ,r/4)(w)

(1 − ∣zk ∣)2Uµ ,p(zk)
Uµ ,p(w)dA(w)

≈

∞

∑
k=1

∣λk ∣
2

(1 − ∣zk ∣)2Uµ ,p(zk) ∫D(zk ,r/4)
Uµ ,p(w)dA(w)

≈

∞

∑
k=1
∣λk ∣

2
< ∞.

Combining the above estimates and Lemma 3.2, we see that

∥ f ∥2Dµ ,p ≲ ∥Tg∥2L2(D,Uµ ,pdA) ≲ ∥g∥
2
L2(D,Uµ ,pdA) ≲

∞

∑
k=1
∣λk ∣

2
< ∞.

_e proof of _eorem 3.1 is complete.
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Let ν be a positive Borel measure on the unit circle ∂D. Motivated by the study
of cyclic analytic two-isometries, S. Richter [17] introduced a certain Dirichlet type
spaceD(ν), which consists of functions f ∈ H(D) with

∥ f ∥2D(ν) = ∥ f ∥
2
H2 + ∫

D
∣ f ′(z)∣2Pν(z)dA(z) < ∞,

where

Pν(z) = ∫
2π

0

1 − ∣z∣2

∣e i t − z∣2
dν(t)
2π

.

Recently, the decomposition theorems for D(ν) spaces were established in [14] as
follows.

_eorem D Let ν be a positive Borel measure on ∂D and b > 2. _en there exists a
d-separated sequence {z j}

∞
j=1 in D such that the following are true.

(i) If f ∈D(ν), then there exists a sequence {λ j} in C such that

(3.5) f (z) = f (0) +
∞

∑
j=1

λ j(1 − ∣z j ∣
2
)
b
(

1
(1 − z jz)b

− 1)

and
∞

∑
j=1
∣λ j ∣

2Pν(z j) ≤ C∥ f ∥2D(ν) .

(ii) If a sequence {λ j} ⊆ C satisûes that ∑∞
j=1 ∣λ j ∣

2Pν(z)δz j is a ν-Carleson measure,
that is,

(3.6)
∞

∑
j=1
∣λ j ∣

2Pν(z j)∣ f (z j)∣
2
≲ ∥ f ∥2D(ν) , for all f ∈D(ν),

then the series deûned in (3.5) converges in D(ν) and

∥ f ∥2D(ν) ≤ C
∞

∑
j=1
∣λ j ∣

2Pν(z j).

Remark We point out that condition (3.6) in _eorem D can be replaced by
∞

∑
j=1
∣λ j ∣

2Pν(z j) < ∞.

Comparing decomposition theorems stated in the section with that on other analytic
function spaces (cf. [18, 19, 22]), we can understand decomposition theorems on ana-
lytic function spaces as follows. Let X ⊆ H(D) be a Banach space. Roughly speaking,
there exists a sequence {z j}

∞
j=1 inD and a large enough number b such that the space

X consists exactly of functions of the form

f (z) =
∞

∑
j=1

λ j(
1 − ∣z j ∣

2

1 − z jz
)
b
,

where {λ j} satisûes certain condition depending only on the space X.
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4 Qp Spaces and Dµ,p Spaces

As mentioned in Section 1, BMOA = M(Hp) and B = M(Ap) for 1 < p < ∞. If
0 < p < 1, it is only known that Qp = M(Dp). In this section, we show that, just like
BMOA and B, the Möbius invariant function space Qp , 0 < p < 1, can be generated
by diòerent analytic function spaces. In fact, Qp = M(Dµ ,p) for any µ ∈ F. We also
prove that the non-Hilbert spaceQp is equal to the intersection ofHilbert spacesDµ ,p .
Applying the relation between Qp and Dµ ,p spaces, we see that there exist diòerent
Dµ ,p spaces.

To prove our main result in the section, we recall Qp,0 spaces. For 0 < p < ∞, Qp,0
is the class of functions f ∈ H(D) with

lim
∣a∣→1

∫
D
∣ f ′(z)∣2( 1 − ∣σa(z)∣2)

pdA(z) = 0.

By the characterization of lacunary series of Qp,0 and Qp spaces in [6], the Dirichlet
spaceD is strictly contained in Qp,0 for 0 < p < ∞. K. Wirths and J. Xiao [21] proved
thatQp,0 is the closure of polynomials in the norm ofQp , andQp,0 isMöbius invariant
space in the strict sense of Arazy, Fisher, and Peetre [4].

_e following theorem is new even for the classical function spaces BMOA andB.

_eorem 4.1 Let µ ∈ F and 0 < p < ∞. _en the following are true:
(i) Qp ⫋Dµ ,p ;
(ii) Qp = M(Dµ ,p);
(iii) Qp = ⋂µ∈FDµ ,p .

Proof (i) For any f ∈ Qp , applying the Fubini theorem yields that

∫
D
∣ f ′(z)∣2Uµ ,p(z)dA(z) = ∫

D
∫
D
∣ f ′(z)∣2(1 − ∣σw(z)∣2)pdA(z)dµ(w)

≤ µ(D)∥ f ∥2Qp .

Hence, Qp ⊆ Dµ ,p . Suppose that Qp = Dµ ,p . From the closed graph theorem we
obtain that the norms of Qp and Dµ ,p are equivalent. _erefore, Qp and Qp,0 are
Hilbert spaces. J. Arazy and S. Fisher [3] proved that the unique Hilbert space among
Möbius invariant spaces in the strict sense of Arazy–Fisher–Peetre [4] is the Dirichlet
space D. _us, Qp,0 = D contradicting the fact that D is strictly included in Qp,0.
_us, Qp ⫋Dµ ,p .

(ii) By _eorem 2.1 and (i) of the theorem, we know that Qp ⫋ Dµ ,p ⊆ Dp . _is
implies that M(Qp) ⊆ M(Dµ ,p) ⊆ M(Dp). Note that M(Qp) = M(Dp) = Qp . _us,
Qp = M(Dµ ,p).

(iii) Since Qp ⫋ Dµ ,p for any µ ∈ F, we obtain that Qp ⊆ ⋂µ∈FDµ ,p . Now let
f ∈ H(D) and f /∈ Qp . _en there exists a sequence {an}

∞
n=1 in D such that

βn = ∫
D
∣ f ′(z)∣2(1 − ∣σan(z)∣

2
)
pdA(z) ≥ 2n

for any positive integer n. Set tn = 1/2n and ν = ∑∞
n=1 tnδan . _en

ν(D) =
∞

∑
n=1

tn < ∞ and ∥ f ∥2Dν ,p =
∞

∑
n=1

tnβn = ∞.
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_is implies that f /∈Dν ,p . _us f /∈ ⋂µ∈FDµ ,p . _e conclusion follows.

In Section 2, we gave some examples of diòerent Dµ ,p spaces only for p > 1. Ap-
plying (i) and (iii) of _eorem 4.1, we prove the existence of diòerent Dµ ,p spaces for
every 0 < p < ∞, without constructing examples.

Corollary 4.2 Let 0 < p < ∞. _ere exist Dirichlet type spaces Dµ1 ,p andDµ2 ,p , µ1,
µ2 ∈ F, such that Dµ i ,p ⫋Dp , i = 1, 2, andDµ1 ,p /=Dµ2 ,p .

Proof By _eorem 2.1, Dµ ,p ⊆ Dp for all µ ∈ F and 0 < p < ∞. Combining this
with (i) and (iii) of _eorem 4.1, we see that there exists µ1 ∈ F such that Dµ1 ,p ⫋Dp .
Applying these facts again, we get the desired result.

5 Final Remark

_e theory of Qp spaces is very well developed. But there are still unresolved prob-
lems. For example, the problem of composition operators on Qp spaces for 0 < p < 1.
Let φ∶D→ D be an analytic self-map of the unit disk. _e function φ induces a com-
position operator Cφ acting on H(D) by the formula Cφ f = f ○ φ. As pointed out in
[23,24], it is still an open question to characterize the boundedness and compactness
of the composition operator Cφ acting on Qp , 0 < p < 1, in terms of the function
properties of the symbol φ.
Based on _eorem 4.1, we hope that the theory of Qp spaces can be developed

further in terms of the content ofDµ ,p spaces.
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