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Abstract

We study semi-infinite paths of the radial spanning tree (RST) of a Poisson point process
in the plane. We first show that the expectation of the number of intersection points
between semi-infinite paths and the sphere with radius r grows sublinearly with r . Then
we prove that in each (deterministic) direction there exists, with probability 1, a unique
semi-infinite path, framed by an infinite number of other semi-infinite paths of close
asymptotic directions. The set of (random) directions in which there is more than one
semi-infinite path is dense in [0, 2π). It corresponds to possible asymptotic directions
of competition interfaces. We show that the RST can be decomposed into at most five
infinite subtrees directly connected to the root. The interfaces separating these subtrees
are studied and simulations are provided.
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1. Introduction

In this paper, we are interested in semi-infinite paths of the two-dimensional radial spanning
tree (RST) introduced in [2]. Let us consider a homogeneous Poisson point process (PPP) N

on R2 (endowed with its usual Euclidean norm | · |) with intensity 1. Throughout this paper,
N is considered in its Palm version: it almost surely (a.s.) contains the origin O. The RST is
a random graph T (N) (or merely T ) defined as follows. Its vertex set is N . Its edge set E

contains each pair {X, Y }, X, Y ∈ N and X �= O, such that

|Y | < |X| and N ∩ B(O, |X|) ∩ B(X, |X − Y |) = ∅ (1.1)

(where B(c, r) denotes the open ball with center c and radius r). For any X ∈ N \ {O}, there is
a.s. only one Y ∈ N satisfying (1.1). Among the vertices of N ∩ B(O, |X|), this is the closest
to X. This vertex is denoted by A(X) and called the ancestor of X. With an abuse of notation,
for an edge e, we call the ancestor of the edge the endpoint that is the ancestor of the other
endpoint, which we call the descendant of the edge. The ancestor of e is the endpoint of e that
is closer from O. With probability 1, the graph T admits a tree structure (there is no loop)
rooted at the origin O. For convenience, we set A(O) = O.
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A sequence (Xn)n≥0 of vertices of N is a semi-infinite path of the RST T if, for any n, Xn

is the ancestor of Xn+1. A semi-infinite path (Xn)n≥0 has asymptotic direction θ ∈ [0, 2π) if

lim
n→∞

Xn

|Xn| = eiθ

(by identifying R2 with the complex plane C).
Radial random trees in the plane have been studied in many other papers, including [3],

[13], and [14]. The main difficulty in the case of the RST is that the local rule (1.1) used for
selecting the ancestor implies complex dependencies. The latter make it difficult to exhibit
natural Markov processes and prevent a direct use of martingale convergence theorems or
Lyapunov functions. However, our study can rely on the following result of [2, Theorem 2.1]
on the RST.

Theorem 1.1. The following properties hold a.s.

(i) Every semi-infinite path of T has an asymptotic direction.

(ii) For every θ ∈ [0, 2π), there exists at least one semi-infinite path with asymptotic
direction θ.

(iii) The set of θs in [0, 2π) such that there is more than one semi-infinite path with asymptotic
direction θ is dense in [0, 2π).

This result is based on a clever method due to Howard and Newman [11, Section 2.3]
proving that the above properties hold for any deterministic tree that satisfies some straightness
condition, which is shown to be a.s. satisfied for the RST (see [2, Theorem 5.4]).

Understanding the finer structural properties of radial random trees, such as the asymptotic
directions of their infinite branches or the shape of the interfaces that separate subtrees, has
been a recurrent research topic. See, for instance, [4], [6], and [5] for results on the geodesics
and interfaces of the last passage percolation tree. The aim of the present paper is to investigate
such properties for the RST.

Our first result concerns the number of intersection points between semi-infinite paths of
the RST T and the sphere with radius r centered at the origin; its expectation tends to ∞ but
slower than r (Theorem 2.1). The proof is based on the local approximation of the RST, far
enough from the origin, by the directed spanning forest (DSF). See [2] for details. Moreover, it
has been proved recently (see [7, Theorem 8]) that there is no bi-infinite path in the DSF. This
allows us to conclude.

We then focus our attention on semi-infinite paths with deterministic directions. Proposi-
tion 3.1 states that, for any given θ ∈ [0, 2π), there is a.s. exactly one semi-infinite path with
direction θ . Let γ0 be the path corresponding to θ = 0. Proposition 3.1 provides a further
description of the subtree of the RST made up of γ0 and all the branches emanating from it.

Finally, we study the subtrees of the RST rooted at the children of O. To do so, each of
these subtrees is painted a different color. This process produces the colored RST. Each of these
colored subtrees can be bounded or not. Since the origin can have at most five descendants
with probability 1, there are at most five distinct unbounded subtrees rooted at O. We prove
in Theorem 4.1 that their number may be equal to 1, 2, 3, 4, or 5 with positive probability.
The border between two colored subtrees is called the competition interface. Any unbounded
competition interface admits an asymptotic direction (Proposition 4.1). This direction is random
and corresponds to one of (at least) two semi-infinite paths, as in part (iii) of Theorem 1.1.
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It is worth pointing out here that our proofs strongly rely on the planarity of the RST and
the noncrossing property of its branches (see Lemma A.1 in Appendix A). They cannot be
extended to arbitrary dimensions.

The paper is organized as follows. In Section 2, the sublinear character of the expected
number of intersection points between semi-infinite paths and the sphere with radius r is
established. Section 3 contains results on semi-infinite paths with deterministic directions.
The colored RST and competition interfaces are defined in Section 4. Finally, open questions
and numerical studies are gathered in Section 5.

2. Sublinearity of the number of semi-infinite paths

Let r be a positive real number. Let us denote by χr the number of intersection points of the
sphere S(O, r) = {reiθ , θ ∈ [0, 2π)} with the semi-infinite paths of the RST. The main result
of this section states that the expectation of χr is sublinear.

Theorem 2.1. The following limit holds:

lim
r→∞ E

(
χr

r

)
= 0.

The idea of the proof is as follows. For r > 0, we introduce the points Ar = rei/r and
Br = re−i/r of the sphere S(O, r). In the sequel we will denote by [Ar, Br ] the line segment
with extremities Ar and Br, and by a(Ar, Br) = {reiθ , θ ∈ [−1/r, 1/r]} the arc of S(O, r)

with extremities Ar and Br, containing the point (r, 0). This arc is, by construction, of length 2.
We denote by χ̃r the number of intersection points between semi-infinite paths of the RST and
a(Ar, Br). By the rotational invariance of the PPP N , E(χr) = πrE(χ̃r ). Hence, using an
additional moment condition, the proof of Theorem 2.1 will be shown to amount to proving
that

lim
r→∞ P(χ̃r ≥ 1) = 0. (2.1)

To prove (2.1), note that, far enough from the origin, the RST can be locally approximated by the
DSF (see [2]). The DSF T−ex with direction −ex = −(1, 0) is a graph built on the PPP N and
in which each vertex X has as ancestor the closest point of N among those with strictly smaller
abscissa. This construction generates a family of trees, i.e. a forest, which bears similarities
with other directed forests introduced in the literature (see, e.g. [1], [8], and [9]). As r tends
to ∞, the neighborhood of (r, 0) in the RST increasingly looks similar to the neighborhood
of O in the DSF. Hence, the probability P(χ̃r ≥ 1) that there exists an infinite path crossing
a(Ar, Br) is close to that of having a path of the DSF crossing {0} × [−1, 1] that is very long
in the direction ex . Such a phenomenon is rare since the DSF is known to a.s. have only one
topological end [7].

In order to prove Theorem 2.1, we will need the two following lemmas whose proofs are
deferred to the end of the section.

Lemma 2.1. For any r > 0, the number of edges of the RST that intersect an arc of S(O, r)

of length 1 has finite second-order moment and, moreover,

lim sup
r→+∞

E(χ̃2
r ) < +∞.

Lemma 2.2 below specifies how the RST is approximated by the DSF: far from the origin
(around the point (r, 0)) and locally (for the neighborhood of radius rα of (r, 0)). Note that,
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since the distribution of the DSF is invariant by translation along ex, T−ex ∩ B((r, 0), rα) and
T−ex ∩ B(O, rα) have the same distribution.

Lemma 2.2. Let T and T−ex respectively denote the RST and DSF of direction −ex constructed
on the same PPP N . Then, for 0 < α < 1

3 ,

lim
r→+∞ P(T ∩ B((r, 0), rα) = T−ex ∩ B((r, 0), rα)) = 1.

The approximation also holds if we replace rα by a constant radius R.

Proof of Theorem 2.1. Step 1. Let us prove (2.1). First, note that all the paths which intersect
the arc a(Ar, Br) necessarily intersect the segment [Ar, Br ] (the converse is not necessarily
true). The segment [Ar, Br ] is perpendicular to the horizontal axis, and all its points have
abscissa r̃ = r cos(1/r). Its length is 2r sin(1/r) ≤ 2.

Heuristically, the event {χ̃r ≥ 1} (consisting of the existence of at least one semi-infinite path
crossing a(Ar, Br)) is hence close to the existence of a path of the RST crossing the vertical
segment [Ar, Br ] and then surviving until it has a large radius. For R > 0, let us therefore
consider the event where there exists a path of the RST crossing {r̃} × [−1, 1] ⊃ [Ar, Br ]
before intersecting the sphere S((r̃, 0), R). Our aim is to show that the probability of this event
is close to the probability that in the DSF T−ex there exists a path intersecting {0} × [−1, 1]
and then S(O, R) ∩ {x > 0}. To show that such an approximation holds, let us prove that our
event is local in the sense of Lemma 2.2.

Let us consider a path of the RST first crossing {r̃}×[−1, 1] and thenS((r̃, 0), R), i.e. towards
descendants, as described below. From this path, we can extract a subpath (Z0, . . . , Zn)

crossing only once {r̃}×[−1, 1] (between Z0 and Z1) and S((r̃, 0), R) (between Zn−1 and Zn).
See Figure 1. We show that this path is included in the ball B((r̃, 0), 2R), so that the local
approximation of the RST by the DSF (see Lemma 2.2) holds. If Z0 is outside the ball
B((r̃, 0), R) then B(Z1, |Z1 −Z0|) contains B((r̃, 0), R/2) for large enough R. Consequently,
the set B(O, r̃)∩B((r̃, 0), R/2) is empty of points of the PPP N . So, Z0 belongs to B((r̃, 0), R)

with high probability as r and R tend to ∞ (with r tending to ∞ faster than R). The same
is true about the endpoint Zn and the ball B((r̃, 0), 2R). To sum up, given ε > 0 and large

Zn−1

Zn

Z1Z0
−1

1+

˜(( ))S Rr 0, ,

Figure 1: The subpath (Z0, . . . , Zn) of the RST crossing the vertical segment {r̃} × [−1, 1] (thick line)
and the sphere S((r̃, 0), R). Here Z0 and Zn belong to B((r̃, 0), 2R), which occurs with high probability.
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enough r, R,

P(χ̃r ≥ 1) ≤ P(there exists a path of the RST that first crosses {r̃} × [−1; 1] and

then S((r̃, 0), R), whose endpoints belong to B((r̃, 0), 2R)) + ε

≤ P(there exists a path of the DSF that first crosses {0} × [−1; 1] and

then S(O, R)) + 2ε. (2.2)

Theorem 8 of [7] states that each path of the DSF is a.s. finite towards descendants. Then
the probability on the right-hand side of (2.2) tends to 0 as R tends to ∞. This means that
P(χ̃r ≥ 1) is smaller than 3ε, i.e. (2.1).

Step 2. Let us prove that E(χr) is sublinear. As mentioned at the beginning of the section,
it is sufficient to show that limr→∞ E(χ̃r ) = 0.

Since, by the Cauchy–Schwarz inequality,

E(χ̃r ) ≤
√

E(χ̃2
r )

√
P(χ̃r ≥ 1) ,

the desired limit follows from (2.1) if we prove that lim supr→+∞ E(χ̃2
r ) is finite, which is the

result of Lemma 2.1.

We end this section with the proofs of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1. Let Ar and Br be as in the proof of Theorem 2.1. Let Wr be the
intersection point of the two tangents to S(O, r) that pass through the points Ar and Br . See
the left-hand diagram of Figure 2.

The number of semi-infinite paths that cross a(Ar, Br) is upper bounded by the number
χ̌r + χ̂r of edges of the RST which intersect [Ar, Wr ]∪ [Wr, Br ], where χ̌r and χ̂r respectively
denote the numbers of edges crossing [Ar, Wr ] and [Wr, Br ], whose ancestors belong to the
same half-plane delimited by the line supporting [Ar, Wr ] and [Wr, Br ], respectively, as O.
Since χ̌r and χ̂r are identically distributed,

E(χ̃2
r ) ≤ E((χ̌r + χ̂r )

2) ≤ 4E(χ̌2
r ),

and it is sufficient to show that lim supr→∞ E(χ̌2
r ) is finite. By rotational invariance, the

distribution of χ̌r is also the distribution of the number of edges with ancestors of smaller

O

Ar

B r

Wr

S O r

A(X)

r 0

J(X)

Ir ⊕B 0 c

z X

X

)( ,

,( )

( )

( ),

Figure 2: Left: the sphere S(O, r) with center O and radius r is depicted by a thick line. The tangents
(dashed lines) to S(O, r) at Ar and Br intersect the horizontal axis at Wr . Right: the segment [X, A(X)]

crosses Ir (thick line) on J (X). Here X is outside Ir ⊕ B(0, c).
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abscissa and that cross the vertical segment Ir = [(r, r tan(1/r)), (r, 0)]. With an abuse of
notation, we will again denote by χ̌r the last random variable. Also, note that the length of Ir is
bounded by 2 as soon as r is sufficiently large. Let c > 2 + 3

√
2 (a technical condition needed

in the sequel), and let us use ‘⊕’ for the Minkowski addition. Then

χ̌r = χ̌≤c
r + χ̌>c

r a.s.,

where χ̌≤c
r (respectively χ̌>c

r ) denotes the number of these edges with descendants belonging to
Ir⊕B(O, c) (respectively being a distance at least c from Ir ). The number χ̌≤c

r is upper bounded
by card(N ∩ (Ir ⊕ B(O, c))) and admits a moment of order 2 that is bounded independently
of r . It remains to study χ̌>c

r . Our idea is that each long edge is accompanied by a large empty
space, so that it is rare that many long edges intersect Ir .

Let us consider an edge [A(X), X] that crosses Ir at J (X) and such that the distance from
X to Ir is larger than c. If X = (x, y) then let us consider z(X) the point with coordinates
([x] + 1, sgn(y)[|y|]), where [x] denotes the integer part of x. Among the points with integer
coordinates that have an abscissa larger than x and which are closer to the abscissa axis than
X, z(X) is the point that is the closest to X. See the right-hand diagram of Figure 2.

By construction, |X − z(X)| ≤ √
2. Hence, B(O, |z(X)| − √

2) ⊂ B(O, |X|), where
the radius of the first ball is positive as soon as r ≥ √

2. Let us consider the ball B(z(X),

|z(X) − (r, 0)| − 2 − 2
√

2). For our choice of c,

|z(X) − (r, 0)| − 2 − 2
√

2 ≥ c − √
2 − 2 − 2

√
2 ≥ 0

and the radius is positive. If U ∈ B(z(X), |z(X) − (r, 0)| − 2 − 2
√

2) then

|U − X| ≤ |U − z(X)| + √
2 ≤ |z(X) − (r, 0)| − 2 − √

2 ≤ |X − J (X)| ≤ |X − A(X)|
and, thus, B(z(X), |z(X) − (r, 0)| − 2 − 2

√
2) ⊂ B(X, |X − A(X)|). As a consequence, if we

introduce
�(z, r) = B(O, |z|) ∩ B(z, |z − (r, 0)| − 2 − 2

√
2)

for z = (zx, zy) ∈ Z2 and sufficiently large r , we have

card(N ∩ �(z(X), r)) ≤ card(N ∩ B(O, |X|) ∩ B(X, |X − A(X)|)),
the latter quantity being 0 since [A(X), X] is an edge of the RST, implying that there is no
point of N in �(z(X), r). Thus, for r ≥ √

2,

X̌>c
r ≤ Yr :=

∑
z=(zx ,zy)∈Z

2

zx≥r

1{�(z,r)∩N=∅} a.s.

Note that if r and r ′ are such that zx ≥ r ′ ≥ r , then �(z, r) ⊂ �(z, r ′). This implies that
r �→ Yr is a.s. a decreasing function of r . Then, if we fix r0 ≥ √

2 for all r ≥ r0, X̌>c
r ≤ Yr0 .

The volume of �(z, r0) is of the order of |z|2 and, for a given integer ρ ≥ r2
0 , the number of

points z such that |z|2 = ρ is of the order of
√

ρ. Thus, for two positive constants C and C′,

E(Yr0) =
∑

z=(zx ,zy)∈Z
2

zx≥r0

P(�(z, r0) ∩ N = ∅) ≤ C
∑
ρ≥r2

0

√
ρe−C′ρ < +∞. (2.3)
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It now remains to prove that E(Y 2
r0

) < +∞. For this, we compute

E(Yr0(Yr0 − 1)) =
∑

z=(zx ,zy)∈Z
2

z′=(z′
x ,z′

y)∈Z
2

zx≥r0, z
′
x≥r0

zx �=z′
x

E(1{�(z,r0)∩N=∅} 1{�(z′,r0)∩N=∅})

≤ 2
∑
ρ≥r2

0

∑
z=(zx ,zy)∈Z

2

|zx |2=ρ

∑
z′=(z′

x ,z′
y)∈Z

2

z′
x≥r0

|z′|≤|z|

P(�(z, r0) ∩ N = ∅)

≤ C
∑
ρ≥r2

0

ρ3/2e−C′ρ

< +∞ (2.4)

for two positive constants C and C′. Equations (2.3) and (2.4) show that E(Y 2
r0

) < +∞, and
this concludes the proof.

Proof of Lemma 2.2. We follow here the proof of Baccelli and Bordenave [2, Section 3.6],
where the case of a fixed radius R is considered. Recall that T and T−ex are the RST and DSF
with direction −ex , constructed on the same PPP N . We denote by A(X) and A−ex (X) the
ancestors of X in T and T−ex . Let r > 0, α > 0, and β > 0. Then

P(T ∩ B((r, 0), rα) �= T−ex ∩ B((r, 0), rα))

= P

( ⋃
X∈N∩B((r,0),rα)

{A(X) �= A−ex (X)}
)

≤ P(N(B((r, 0), rα)) > rβ) + rβC sup
X∈N∩B((r,0),rα)

P(A(X) �= A−ex (X))

≤ exp

(
−rβ log

(
rβ−2α

eπ

))
+ rβC

rα + 1

r − rα
,

by using [15, Lemma 11.1.1] for the first term on the right-hand side and [2, Lemma 3.4] for the
second term. The first term converges to 0 if and only if β > 2α and the second term converges
to 0 if and only if α < 1 and β + α < 1. As a consequence, we see that, for any α < 1

3 , we
can choose β > 2

3 , so that both terms converge to 0 when r → +∞.

3. Semi-infinite paths in a given direction

In this section we fix a direction θ ∈ [0, 2π) and are interested in the semi-infinite paths
with asymptotic direction θ . Our first result (Section 3.1) refines Theorem 1.1 and states that
there a.s. exists a unique semi-infinite path with direction θ . We deduce from this a precise
description of the semi-infinite path with direction θ (Section 3.2).

For the proof, let us introduce further notation. We define as TX the subtree of T consisting
of X �= O and all its descendants, i.e. all the vertices of T that have X in their ancestry.
This tree is naturally rooted at X. If TX is unbounded then we can construct two particular
semi-infinite paths that we call the rightmost and leftmost semi-infinite paths, γ

X
and γ̄X, of

TX. The construction is as follows. Put X0 = X. Let

K0 = card{Y ∈ N, A(Y ) = X0, and TY is unbounded}
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be the number children of X0 with infinite descendance. Since the number of children of a
given vertex is a.s. finite (see [2, Section 3.3.2]) and since X0 has infinitely many descendants,
K0 ≥ 1 a.s. It is possible to rank the offspring X1

0, . . . , X
K0
0 in increasing order of the oriented

angles ̂A(X0)X0X
k
0 for k ∈ {1, . . . , K0}. Define X1 as the child of X0 corresponding to the

largest value of these angles. Iterating this construction, a semi-infinite path γ̄X = (Xn)n∈N

rooted at X is built. In the same way, a semi-infinite path γ
X

rooted at X is constructed
such that, among the semi-infinite paths of TX, γ

X
is the lowest path (in the trigonometric

sense). Consequently, any given semi-infinite path in TX is trapped between γ
X

and γ̄X (in the
trigonometric sense).

3.1. Uniqueness

Part (iii) of Theorem 1.1 ensures the existence of random directions with at least two semi-
infinite paths. However, there is no more than one semi-infinite path with a deterministic
direction (Proposition 3.1). This result completes part (ii) of Theorem 1.1.

Proposition 3.1. For all θ ∈ [0, 2π), there a.s. exists exactly one semi-infinite path with
asymptotic direction θ in the RST.

The idea of the proof of Proposition 3.1 is classical; see [10] for first passage percolation
models defined from homogeneous PPPs on R2 and [8] for a directed last passage percolation
model on the lattice Z2. Thanks to Fubini’s theorem, it follows that, for Lebesgue almost
every θ in [0, 2π), there is at most one semi-infinite path with asymptotic direction θ with
probability 1. Actually, this statement holds for all θ ∈ [0, 2π) by the isotropic character of
the PPP N .

Proof of Proposition 3.1. Let us denote by U(θ) the event that there exist at least two
different semi-infinite paths in the RST with asymptotic direction θ . Now, assume that the
event U(θ) occurs, and let γ1 and γ2 be two such semi-infinite paths. Let X be a point of
the PPP N belonging to γ1 but not to γ2. Thus, the semi-infinite subpath of γ1 rooted at X

belongs to TX. Then one of the two semi-infinite paths γ
X

and γ̄X is trapped between γ1 and
γ2, by planarity and since paths are nonintersecting (see Lemma A.1 in Appendix A). So, it
also admits θ as an asymptotic direction.

Let us denote by λ the Lebesgue measure on [0, 2π). We are interested in the Lebesgue
measure of the set {θ; U(θ)} of directions θ ∈ [0, 2π) where the event U(θ) is satisfied. The
previous remark implies that

Eλ{θ; U(θ)} =
∫

�

∫ 2π

0
1U(θ)(ω) dθ dP(ω)

≤
∫

�

∑
X∈N(ω)

1{TX unbounded}

×
∫ 2π

0
1{γ

X
or γ̄X admits θ as an asymptotic direction}(ω) dθ dP(ω)

(N is a.s. countable). For a given point X ∈ N and a given ω ∈ �, the indicator function

1{γ
X

or γ̄X admits θ as an asymptotic direction}(ω)

is equal to 1 for at most two different angles in [0, 2π). Its integral is then equal to 0. Using the
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Fubini theorem, ∫ 2π

0
P(U(θ)) dθ = Eλ{θ; U(θ)} = 0 .

So, the probability P(U(θ)) is 0 for Lebesgue almost every θ in [0, 2π). Actually, this is true
for every θ in [0, 2π) thanks to the isotropic character of the PPP N . Combining this with
part (ii) of Theorem 1.1, the announced result follows.

3.2. Further description of the semi-infinite path with direction 0

In the rest of this section we discuss some consequences of Proposition 3.1. For any given
θ ∈ [0, 2π), let us denote by γθ the semi-infinite path of the RST, started at the origin and with
asymptotic direction θ . It is a.s. well defined by Proposition 3.1. Since the distribution of the
RST is invariant by rotation, we will henceforth assume that θ = 0.

Let us recall that χ̃r denotes the number of intersection points of a(Ar, Br) with the semi-
infinite paths of the RST and that χ̃r → 0 in probability, by (2.1). We have the following
result.

Corollary 3.1. It holds that lim supr→∞ χ̃r ≥ 1 a.s.

Proof. Assume that there exists with positive probability a (random) radius r0 such that
χ̃r = 0 whenever r > r0. Let us work on the set where this event is realized. In this case,
no semi-infinite path crosses the abscissa axis after r0. Then we can exhibit two semi-infinite
paths, say γ and γ ′, respectively below and above the horizontal axis that satisfy the following
property: there is no semi-infinite path in the RST, different from γ and γ ′, and trapped between
them (in the trigonometric sense). Parts (i) and (ii) of Theorem 1.1 force γ and γ ′ to have the
same asymptotic direction, namely 0. Such a situation never happens by Proposition 3.1. In
other words,

P

(
lim sup
r→∞

χ̃r ≥ 1
)
= 1.

This completes the proof.

From vertices of γ0 (different from O), some paths (finite or not) emanate, forming an
unbounded subtree of the RST T for which γ0 can be understood as the spine. The next result
describes the skeleton of this subtree.

Let us denote by V +∞ and V −∞ the sets of points X ∈ N ∩ γ0 \ {O} from which (at least)
another semi-infinite path emanates, respectively above and below γ0. Of course, V +∞ and V −∞
may have a nonempty intersection.

Corollary 3.2. (i) Almost surely, V +∞ and V −∞ are of infinite cardinality.

(ii) For r > 0, let us denote by Dr the set of directions α ∈ [0, 2π) with a semi-infinite
path starting from a point X in V +∞ ∪ V −∞ with modulus |X| > r . Then there a.s. exist two
nonincreasing sequences (αr)r>0 and (βr)r>0 of positive random variables such that

Dr = [−αr, βr ] (modulo 2π ) and lim
r→+∞ αr = lim

r→+∞ βr = 0.

(iii) Let vr∞ be the cardinality of (V +∞ ∪ V −∞) ∩ B(O, r). Then

lim
r→∞ E

vr∞
r

= 0.
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The first two assertions of Corollary 3.2 state that an infinite number of unbounded subtrees
emanate from the semi-infinite path γ0. Each covers a whole interval of asymptotic directions
whose length tends to 0 as its starting point (on γ0) is far from the origin. The last assertion
of Corollary 3.2 can be understood as follows: the expected density of points of γ0 from
which emanates another semi-infinite path is 0. For this purpose, recall that the cardinality of
γ0 ∩ B(O, r) is of order r (see [2, Theorem 2.5]).

Proof of Corollary 3.2. On the event {V +∞ is finite}, let us consider the point Y of V +∞ of
highest modulus. Let Y ′′ be the child of Y belonging to γ0. From the definition of V +∞, the set

of points {X ∈ N, A(X) = Y, Ŷ ′′YX > 0, and TX is unbounded} is nonempty. The points
of this set can be ranked in increasing order of the angles Ŷ ′′YX. Let Y ′ be the point of this
set corresponding to the smallest positive angle Ŷ ′′YX. In the subtree TY ′ , we can define the
lowest semi-infinite path γ

Y ′ , as defined at the beginning of Section 3. Thanks to part (i) of
Theorem 1.1, γ

Y ′ has an asymptotic direction, say θ . Moreover, using the planarity and the
noncrossing property of paths together with the definitions of the points Y and Y ′, all the paths
between γ0 and γ

Y ′ (in the trigonometric sense) are finite. Using part (ii) of Theorem 1.1, we
deduce that γ

Y ′ and γ0 have the same asymptotic direction, i.e. θ = 0. Now, by Proposition 3.1,
such a situation never occurs. So the set V +∞ is a.s. infinite. The same goes for V −∞.

Let us prove part (ii) of Corollary 3.2. For any r , consider the point X of smallest modulus
among the points of γ0 ∩ B(O, r)c. The semi-infinite paths γ

X
and γ̄X a.s. have asymptotic

directions, say respectively −αr and βr (modulo 2π ) with αr ≥ 0 and βr ≥ 0. Hence,
(αr)r>0 and (βr)r>0 are by construction nonincreasing sequences of positive real numbers (by
Proposition 3.1).

Let us consider Dr, the set of directions corresponding to semi-infinite paths starting from
points in V +∞ ∪ V −∞ with modulus greater than r . The set Dr contains αr and βr defined above.
The bi-infinite path obtained by concatenation of γ

X
and γ̄X divides R2 into two unbounded

regions. Since the paths of the RST cannot cross, Dr is included in the real interval [−αr, βr ].
This also forces any given semi-infinite path with asymptotic direction α in [−αr, βr ] to go
through the vertex X. By part (ii) of Theorem 1.1, Dr is then an interval. It follows that
Dr = [−αr, βr ].

Finally, let us respectively denote by ᾱ and β̄ the limits of sequences (αr)r>0 and (βr)r>0.
Let β > 0. Let X0,β be the bifurcation point of γ0 and the semi-infinite path with asymptotic
direction β (whose existence and uniqueness are given by Proposition 3.1). Then β̄ ≥ β implies
that β belongs to any interval Dr . In other words,

P(β̄ ≥ β) = lim
r→∞ P(|X0,β | > r) = 0.

As a consequence, β̄ is a.s. equal to 0. Similarly, we can prove that ᾱ = 0.
Part (iii) of Corollary 3.2 follows directly from the inequality vr∞ ≤ χr , where χr counts

the intersection points of S(O, r) with the semi-infinite paths of the RST, and Theorem 2.1.

4. The colored RST

The aim of this section is to describe the subtrees of the RST T rooted at the children of O.
In order to distinguish them, let us start by allocating a color or a label (denoted by integers
i, j, k, . . .) to each child X of O. Recall that, for this purpose, there are a.s. at most five (see
Lemma 3.2 of [2]). Then we paint all the vertices of the subtrees TX with the color of X.
This process provides a coloration of points of N \ {O}. Finally, each segment [X, A(X)] for
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Figure 3: (a) Empirical distribution for the number of children of O. Over 5000 simulations,
1 (respectively 2, 3, 4, and 5) child is obtained in 114 (respectively 2232, 2449, 203, and 2) cases.
Simulations of m = 1, . . . , 5 subtrees of the RST rooted at the children of O are given in (b) to (f). They

seem to be unbounded.

X ∈ N \ {O} is painted with the color of X. This can be done without ambiguity thanks to the
planarity and the noncrossing property of paths. See Figure 3.

There are several ways to label the subtrees of T rooted at O with the colors. We use the
notation i, j , etc. when the labeling is not important and can be any labeling (one possibility is
to start from the angle 0 (abscissa axis) and label by 1 the subtree rooted at the first descendant
of O that we encounter when exploring the directions in the trigonometric sense). However,
to take advantage of the exchangeability of the different colored trees, one may also proceed
as follows. To each of the direct descendants of O, a uniform independent random variable
is attached. We then define the tree with color 1 as the tree consisting of the offspring of the
descendant with the smallest uniform random variable. This amounts to choosing one of the
descendants at random for the first tree. When we proceed so, we use the notation 1, . . . , i, . . .

for the labels.
The next step is to define the competition interfaces, i.e. the borders between the subtrees of

the RST rooted at the children of the origin. To do so, let us introduce the spatially embedded
version of the RST T , denoted by T, as the following subset of R2:

T =
⋃

X∈N\{O}
[X, A(X)].

For any positive real number r , the normalized trace of T over the sphere S(O, r) is

Tr = 1

r
(T ∩ S(O, r)).
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An element u of Tr inherits its color from the element ru ∈ T. So, for any given color i, we
denote by Tr (i) the points of Tr with color i. By the noncrossing paths property of the RST,
the points of Tr are ‘gathered’ on the unit sphere S(O, 1) according to their color. This can be
formalized as follows: for any r > 0, θ1, θ2, θ3, θ4 ∈ [0, 2π) such that (θ1 − θ3)(θ2 − θ3) > 0,
(θ1 − θ4)(θ2 − θ4) < 0, eiθ1 , eiθ2 ∈ Tr (i), and eiθ3 , eiθ4 ∈ Tr , at least one of the two points eiθ3

and eiθ4 is of color i.
For all (θ, θ ′) ∈ [0, 2π)2, let us denote by a(θ, θ ′) and ā(θ, θ ′) the arcs of the unit sphere

from eiθ to eiθ ′
in the trigonometric sense, respectively without and with the endpoints eiθ

and eiθ ′
. Furthermore, let T(i) be the subset of T with color i.

Definition 4.1. (Competition interfaces.) Given a couple of colors (i, j) with i �= j , there
exists at most one couple (θ, θ ′) ∈ [0, 2π)2 such that

eiθ ∈ Tr (i), eiθ ′ ∈ Tr (j), and a(θ, θ ′) ∩ Tr = ∅.

When such a couple (θ, θ ′) exists, we denote by θr(i, j) ∈ [0, 2π) the (direct) angle of the line
coming from O and bisecting the arc a(θ, θ ′) in two equal parts (see Figure 4). In this case,
the competition interface between the sets T(i) and T(j) is defined as the curve

ϕ(i, j) = {reiθr (i,j) ∈ C, β(i, j) < r < ∂(i, j)},
where β(i, j) and ∂(i, j) are respectively defined as the infimum and the supremum of the set
{r > 0, θr (i, j) exists}.

From β(i, j) to ∂(i, j), the trees T(i) and T(j) evolve in the plane side by side, separated
by the competition interface ϕ(i, j). The real numbers β(i, j) and ∂(i, j) can respectively be
interpreted as the birth and death times of the competition interface ϕ(i, j). When ∂(i, j) =
+∞, both sets T(i) and T(j) are unbounded. When ∂(i, j) < +∞, one of the two sets T(i) and
T(j) is included in the closed ball B̄(O, ∂(i, j)), say T(j). In this case, ∂(i, j) coincides with
another death time ∂(j, k) and two situations may occur according to the color k. Either k = i,

ie θ ′

ie θ

�
θr i j( ),

Figure 4: On the unit sphere, the black squares are the points of Tr (i) and the black circles are the points
of Tr (j). The arc a(θ, θ ′) is divided into two equal parts by the line � whose angle (represented in gray)

is θr (i, j).
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which means that i is the only existing color outside the ball B̄(O, ∂(i, j)) and there is no
competition interface beyond that ball, or k is a third color (different from i and j ). Then the
competition interface ϕ(i, k) extends ϕ(i, j) and ϕ(j, k) (until its death time ∂(k, j)). Its birth
time satisfies

β(i, k) = ∂(i, j) = ∂(j, k) > 0.

Let us remark that the application r �→ θr(i, j) may be discontinuous. Finally, note that
θr(i, j) �= θr(j, i) and that one may exist and the other not. So, we distinguish the interfaces
ϕ(i, j) and ϕ(j, i).

Our first result below states that there can be up to five unbounded competition interfaces
with positive probability. See Figure 5 and Table 1 for empirical results.

Theorem 4.1. For any m ∈ {1, 2, 3, 4, 5}, there exist (exactly) m unbounded subtrees of T
with different colors, with positive probability. In other words, for any m ∈ {0, 2, 3, 4, 5}, there
exist (exactly) m unbounded competition interfaces, with positive probability.

0.6
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n
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tio
n
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Figure 5: (a) Empirical distributions, obtained after N = 5000 simulations, for the number of children
of O (solid lines) and for the number of unbounded subtrees (dashed lines). Percentages are given in

Table 1.

Table 1: The percentages relating to the empirical distributions of Figure 5. The two distributions are
different since the tree associated with each child of O is not necessarily unbounded. Note that the cases
m ∈ {4, 5} are very rare (less than 2% of the simulations) compared with the cases m ∈ {2, 3} (more than
93%). Actually, configurations corresponding to m ∈ {4, 5} are very constrained around the origin and,

therefore, rare.

m Children of O Unbounded subtrees

1 2.28 5.28
2 44.64 58.68
3 48.98 34.64
4 4.06 1.38
5 0.04 0.02
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Our proof relies on part (i) of Theorem 1.1. Thinning and local modification of the PPP are
other ingredients.

Proof of Theorem 4.1. We consider the cases m ∈ {1, . . . , 5} separately.
Case 1: m = 5. Our purpose is to construct a set of configurations of N , with a positive

probability, on which there are five children of the origin O giving birth to infinite subtrees.
For any 1 ≤ k ≤ 5, part (i) of Theorem 1.1 ensures the almost-sure existence of a semi-

infinite path γk with asymptotic direction 2kπ/5. Hence, for ε > 0 and with probability 1,
there exists a (random) radius rk such that γk is included in the cone section

C2kπ/5,ε,rk =
{
ρeiθ ; ρ > rk and

∣∣∣∣θ − 2kπ

5

∣∣∣∣ < ε

}
for any integer 1 ≤ k ≤ 5. Without loss of generality, we can require that γk starts from a
vertex Xk ∈ N whose norm satisfies rk < |Xk| ≤ rk + 1 and for rk to be a positive integer.
Hence, writing

Aε(r1, . . . , r5) = {for any 1 ≤ k ≤ 5, there exists a semi-infinite path γk

included in the cone C2kπ/5,ε,rk and starting from a

vertex Xk satisfying rk < |Xk| ≤ rk + 1},
we find that, for all ε > 0, there exist some (deterministic) radii r1, . . . , r5 ∈ N∗ such that
Aε(r1, . . . , r5) occurs with positive probability.

Let R = max{rk + 1; 1 ≤ k ≤ 5} and Vε(r1, . . . , r5) be the complementary set of the five
cones in the ball B(O, R):

Vε(r1, . . . , r5) = B(O, R) \
[( 5⋃

k=1

C2kπ/5,ε,rk

)
∪ {O}

]
.

Now, we are going to change the configuration of the PPP N in Vε(r1, . . . , r5) in such a way
that the Xk are all different colors. Let Ñ = N ∩ V c

ε (r1, . . . , r5) be the thinned PPP obtained
by deleting all the points of N belonging to Vε(r1, . . . , r5) (see, e.g. [12, Section II.4.b]). It
is crucial to note that deleting the points of Vε(r1, . . . , r5) does not affect the occurrence of
Aε(r1, . . . , r5). In other words, if N satisfies the event Aε(r1, . . . , r5), so does Ñ :

P(Ñ ∈ Aε(r1, . . . , r5)) ≥ P(N ∈ Aε(r1, . . . , r5)) > 0.

Now let us consider a PPP N̂ on Vε(r1, . . . , r5) with intensity 1. Let us denote by r the minimum
of the rk .

The event N̂ ∈ Bε(r1, . . . , r5) is defined by the three following conditions.

(C1) For any k ∈ {1, . . . , 5}, if rk > r then, for all integers r ≤ n ≤ rk − 1,

N̂(B(nei2kπ/5, ε)) = 1;
otherwise,

N̂(B(rei2kπ/5, ε) ∩ B(O, r)) = 1.

(C2) For any k ∈ {1, . . . , 5} and all integers n such that 0 ≤ n ≤ (R − rk − 1)/2ε,

N̂(B((rk + 1 + 2nε)ei(2kπ/5±2ε), ε) ∩ Vε(r1, . . . , r5)) = 1.

(C3) The previous points are the only points of N̂ .
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Figure 6: RST of the PPP N satisfying both events Aε(r1, . . . , r5) and Bε(r1, . . . , r5). Note that, in
order not to overload the figure, condition (C2) of Bε(r1, . . . , r5) has not been represented. The two balls
are centered at O with radii r = mink∈{1,...,5} rk and R = maxk∈{1,...,5} rk + 1. The Xk are represented

by gray squares, while the other points of N are represented by black circles.

It is clear that the event N̂ ∈ Bε(r1, . . . , r5) occurs with positive probability for all ε > 0.
Roughly speaking, the points of N̂ introduced in (C1) form a chain from rei2kπ/5 to
(rk − 1)ei2kπ/5 for any index k such that rk > r . See Figure 6.

For Figure 6, imagine that R = r4 +1 is much larger than r = r5 (indeed, we have no control
over the rk). Henceforth, the semi-infinite path γ5 could prefer to branch on the points of N̂

introduced in (C1) and with direction 8π/5 rather than on X5. To prevent this situation from
occurring, we contain each path γk in the cone C2kπ/5,3ε,rk thanks to the points of N̂ introduced
in (C2). These points form ‘landing runways’ for the γk (they may also slightly change the γk).

Let us denote by Aε and Bε the events Aε(r1, . . . , r5) and Bε(r1, . . . , r5). Then

{Ñ ∈ Aε} ∩ {N̂ ∈ Bε} ⊂ {Ñ + N̂ ∈ A3ε ∩ Bε},
where Ñ + N̂ denotes the superposition of the two processes N̂ and Ñ . These two processes
can also be assumed independent. In this case, Ñ + N̂ is still a PPP on R2. It follows that

P(N ∈ A3ε ∩ Bε) = P(Ñ + N̂ ∈ A3ε ∩ Bε)

≥ P(Ñ ∈ Aε, N̂ ∈ Bε)

≥ P(Ñ ∈ Aε)P(N̂ ∈ Bε)

> 0.
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To conclude the proof, it remains to prove that the above event implies the existence of (at
least) five unbounded subtrees of T with different colors. Actually, there will be exactly five
unbounded subtrees since the degree of O is a.s. upper bounded by 5. Let us denote by Yk the
point of N belonging to the ball B(rei2kπ/5, ε). On the event N ∈ A3ε ∩ Bε, the point Xk is a
descendant of Yk for any k. Hence, the subtrees rooted at Y1, . . . , Y5 are unbounded. Finally,
it suffices to note that the Yk have O as a common ancestor. Indeed, each Yk is at a distance
smaller than ε from ei2kπ/5. So,

|Yk+1 − Yk| ≥ |rei2(k+1)π/5 − rei2kπ/5| − 2ε ≥ 2r sin

(
π

5

)
− 2ε ≥ 1.17r − 2ε,

which is larger than the maximal distance between Yk and O, i.e. r + ε for small enough ε

(using r ∈ N∗).
Case 2: m ∈ {3, 4}. The previous construction applied to m ∈ {3, 4} allows us to state that,

with positive probability, the origin O has at least m descendants from which m unbounded
trees arise. Now, so as to ensure the number of unbounded subtrees of different colors is exactly
m, an additional precaution must be taken. More precisely, the following condition is added to
the event N̂ ∈ Bε.

(C4) For any k ∈ {1, . . . , m}, the argument of the point Yk of N̂ ∩ B(rei2kπ/m, ε) belongs to
(2kπ/m − ε, 2kπ/m).

Thanks to (C4), each sector of the ball B(O, r + 1) with angle 2π/m contains (at least) one of
the points Y1, . . . Ym. Assume that N ∈ A3ε ∩ Bε, which still occurs with positive probability.
By construction, the origin O has exactly m children in the ball B(O, R). Let us consider a
point X ∈ N \ {O, Y1, . . . , Ym} such that |X| ≥ R ≥ r + 1. Then B(O, |X|) ∩ B(X, |X|)
contains a sector of the ball B(O, r + 1) with angle 2π/3, and so contains one of Y1, . . . , Ym.
The origin O cannot be the ancestor of X. This proves that O is exactly of degree m and
completes the proof for m ∈ {3, 4}.

This latter argument no longer works when m is equal to 1 or 2.
Case 3: m = 2. Following the construction for m = 5, there exists r1 and r2 > 0 such that

there exist with positive probability two semi-infinite paths γ1 and γ2 included in the cones
C0,ε,r1 and Cπ,ε,r2 . The following event has a positive probability.

• For a given increasing subsequence (θj )j∈N of [0, π) with a sufficiently small step, and
for a sufficiently small ε > 0,

N(B((r1∧r2)(1+cos(θj ))e
iθj , ε)) = 1, N(B(−(r1∧r2)(1+cos(θj ))e

iθj , ε)) = 1.

• For all integers n and m such that 0 ≤ n ≤ (r2 − r1)/2ε and 0 ≤ n ≤ (r1 − r2)/2ε, if
they exist,

N(B((r1 + 2nε, 0), ε)) = 1, N(B((0, r2 − 2nε), ε)) = 1.

• The rest of B(O, r1 ∨ r2) is empty.

The idea is that in B(O, r1 ∧ r2) the points are roughly aligned following the reunion of two
cardiods {ρ(θ) = ±(1+ cos(θ)), θ ∈ [0, π)}. Note that this curve is differentiable at O with a
horizontal tangent. If r1 < r2, we add points along the line segment [(r1, 0), (r2, 0)]. If the θj

define a sufficiently fine subdivision of [0, π) then there cannot be more than two descendants
of O by construction. We conclude as in the m = 5 case.
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We note that the two semi-infinite paths previously built have asymptotic directions opposed
to the argument of the descendant of O from which they stem.

Case 4: m = 1. Since the RST T is unbounded, it suffices to prove that the origin O may
have only one child with positive probability.

From z1 = eiπ/3, we build five complex numbers z2, . . . , z6 by induction: for k ≥ 2,
zk = |zk|eikπ/3, whose modulus |zk| is such that |zk − zk−1| < |zk|. This construction forces
|zk| > |zk−1|. Let ε > 0 be small enough such that |zk| − ε > |zk−1| + ε. Hence, the six balls
B(z1, ε), . . . , B(z6, ε) do not overlap. Let �ε be the event that, for all 1 ≤ k ≤ 6,

N(B(zk, ε)) = 1 and N(B(O, |z6| + ε)) = 7

(these seven points including the origin). For all ε > 0, P(�ε) > 0. So, it remains to choose
ε > 0 small enough in order to ensure that, on the event �ε, the origin O has only one child.

Let us denote by Xk the point of N ∩ B(zk, ε). Since N ∩ B(O, |X1|) is reduced to O, the
ancestor of X1 is the origin O. Thus, for 2 ≤ k ≤ 6, we can choose ε such that

|Xk − Xk−1| ≤ |zk − zk−1| + 2ε < |zk − O| − ε ≤ |Xk − O|.
This condition does not prove that Xk−1 is the ancestor of Xk , but it is not O. Finally, let X be
a point of the PPP N which does not belong to B(O, |z6| + ε). The set B(X, |X|) ∩ B(O, |X|)
contains an angular sector of the ball B(O, |z6|+ε) with central angle 2π/3. So, it also contains
one of the Xk , preventing X from being a child of O. To sum up, X1 is the only child of the
origin O. This completes the proof of Theorem 4.1.

Let �(i, j) be the event corresponding to an unbounded competition interface ϕ(i, j). It
occurs with a positive probability thanks to Theorem 4.1. Recall that ϕ(i, j) separates the two
colored subtrees T(i) and T(j) in the trigonometric sense. The next result states that ϕ(i, j)

a.s. has an asymptotic direction on the event �(i, j). In other words, if T(i) is unbounded then
it asymptotically behaves as a cone.

Proposition 4.1. On the event �(i, j), the sequence (θr (i, j))r>β(i,j) converges a.s. to a
random angle θ(i, j) ∈ [0, 2π).

Proof. Let us consider the event �(i, j) satisfied. Let X(i) and X(j) be the children of
the origin of colors i and j . On �(i, j), both subtrees TX(i) and TX(j) are unbounded. Recall
that γ̄X(i) denotes the highest (in the trigonometric sense) semi-infinite path in TX(i) (see the
proof of Proposition 3.1). In the same way, γ

X(j)
is the lowest semi-infinite path in TX(j).

On �(i, j), the region delimited by γ̄X(i) and γ
X(j)

(in the trigonometric sense) contains only

finite paths. It may also contain some vertices of a third color (different from i and j ). Then,
by parts (i) and (ii) of Theorem 1.1, γ̄X(i) and γ

X(j)
have the same asymptotic direction, say

θ(i, j). To conclude, it suffices to note that the competition interface ϕ(i, j) is trapped between
γ̄X(i) and γ

X(j)
. It then admits the same direction.

Proposition 4.1 states that every competition interface that separates the colors i and j

has an asymptotic direction θ(i, j). The next proposition gives a result on the distribution
of the asymptotic directions, which remains, however, partial. Recall that we use the labels
1, . . . , i, . . . when the subtrees rooted at O are labeled randomly. If the marginal distributions of
the θ(i, i + 1) are easy to obtain, this is not the case for the distributions of the θ(i, i +1) which
necessitate knowledge of the joint distributions of the asymptotic directions (or, equivalently,
the distribution of the sectors between the competition interfaces). In Section 5 we provide
numerical simulations and conjectures.
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Proposition 4.2. Conditionally on having m ≥ 2 infinite trees, and when the tree with color 1
is drawn randomly, the asymptotic directions θ(i, i + 1) are uniformly distributed on [0, 2π).
Moreover, the distribution of θ(i, j), on �(i, j), admits a density with respect to the Lebesgue
measure on [0, 2π).

Proof. Thanks to the rotation invariance property of the PPP and the random labeling
1, . . . , i, . . . , the distribution of the asymptotic direction θ(i, i + 1) is also invariant by rotation.
This property characterizes the Haar probability measure on the circle. The first part of
Proposition 4.2 follows.

The event {θ(i, j) = α} implies the existence of at least two semi-infinite paths with the
deterministic direction α. This is forbidden by Proposition 3.1. So, θ(i, j) has no atom (when
it exists). In fact, the distribution of θ(i, j) is even absolutely continuous with respect to the
Lebesgue measure λ on [0, 2π). Let A be a measurable subset of [0, 2π) such that λ(A) = 0.
Let us denote by M the random number of interfaces that exist. Then, for i �= j , since θ(i, j)

corresponds to one of the θ(k, l) when we relabel the subtrees rooted at O randomly,

P({θ(i, j) ∈ A} ∩ {M ≥ 2} ∩ �(i, j))

=
5∑

m=2

P({θ(i, j) ∈ A} ∩ {M = m} ∩ �(i, j))

≤ P

( ⋃
i �=j∈{1,...,m}

{θ(i, j) ∈ A} ∩ {M = m} ∩ �(i, j)

)

≤
5∑

m=2

∑
i �=j∈{1,...,m}

P
({θ(i, j) ∈ A} ∩ {M = m})

≤ 0,

since λ(A) = 0. The Radon–Nikodym theorem completes the proof.

We conclude this section with a corollary that states that the asymptotic directions of
competition interfaces and of semi-infinite paths are related.

Corollary 4.1. The asymptotic direction of the competition interface ϕ(i, j) belongs to the
(random) set D of directions with at least two semi-infinite paths. This set is a.s. dense in
[0, 2π) and countable.

Proof. The fact that D is dense in [0, 2π) follows from part (iii) of Theorem 1.1. It is also
a.s. countable. Indeed, let us consider the set � of couples (γ1, γ2) of different semi-infinite
paths of the RST such that the region they delimit (in the trigonometric sense) contains only
finite paths. Associating to each element (γ1, γ2) of � the child in γ1 of their bifurcation point,
we get an injective function from � to the PPP N . Consequently, � is a.s. countable. Moreover,
parts (i) and (ii) of Theorem 1.1 allow us to associate to each element (γ1, γ2) of � its common
asymptotic direction. This provides a surjective function from � onto the set D. Hence, D is
a.s. countable.

5. Distribution of the θ(i, j) and conjectures

In this section we provide some clues and conjectures that may help the understanding of
the distribution of the vector (θ(1, 2), . . . , θ(m − 1, m), θ(m, 1)) of asymptotic directions of
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the interfaces, given that there are m unbounded trees and assuming that the latter are labeled
in the trigonometric sense. For this purpose, it is equivalent to study the distribution of the
sectors (φ(i + 1) := θ(i + 1, i + 2) − θ(i, i + 1), i ∈ {1, . . . , m}) (with the convention that
θ(m, m + 1) = θ(m, 1) and θ(m + 1, m + 2) = θ(1, 2)), which characterize the asymptotic
width of the unbounded trees.

Proposition 5.1. Conditionally on having m unbounded trees, the angles between two
interfaces are identically distributed with expectation 2π/m.

Note first that this rules out the possibility that the asymptotic directions θ(i, j) are
independent, uniform random variables on [0, 2π). Otherwise, the distributions of the sectors
would be beta distributions, B(1, m), whose expectation is 2π/(m+1). There is thus interaction
between the θ(i, j).

Our conjecture is as follows.

Conjecture 5.1. Conditionally on m ∈ {2, 3, 4, 5}, the vector (φ(1), . . . , φ(m)) has a
distribution close to a symmetric Dirichlet distribution of order m on [0, 2π) with parameter
α �= 1, Dir(m, [0, 2π), α).

Symmetric Dirichlet distributions of order m and parameter α > 0 on [0, 2π) are probability
distributions on Rm with support in � = {η = (η1, . . . , ηm) ∈ Rm,

∑m
i=1 ηi = 2π}, and with

the following density with respect to the Lebesgue measure on �:

f (η1, . . . , ηm; α) = 1

B(α)

m∏
i=1

(
ηi

2π

)α−1

.

Here

B(α) = (
∫ +∞

0 tα−1e−t dt)m∫ +∞
0 tmα−1e−t dt

is the beta function. If we had a Dirichlet distribution conditionally on m, the marginal
distribution of the exchangeable sectors would be a beta distribution B(α, (m−1)α) on [0, 2π)

with expectation 2π/m. This would also show that the distributions of the asymptotic directions
θ(i, j) depend only on the number m of unbounded trees and not on the number of offspring
of O, which is a local phenomenon that is forgotten at large radii.

Let us illustrate the Conjecture 5.1 using simulations. We compute the angle between two
interfaces and calibrate beta distributions. Whereas there are no closed-form formulae for the
maximum-likelihood estimates, the moment estimates are as follows:

α̂ = x̄

2π

(
x̄(2π − x̄)

var(x)
− 1

)
, β̂ = 2π − x̄

2π

(
x̄(2π − x̄)

var(x)
− 1

)
.

The different densities and the associated beta approximations are given in Figure 7.
We discuss the cases m = 2 and m = 3 for which a sufficiently large number of simulations

are done to perform statistical tests.
Case 1: m = 2. In this case, the joint law of (θ(1, 2), θ(2, 1)) is completely described by the

distribution of one of the two sectors, say φ(1). Conditionally on the first interface θ(1, 2), we
can wonder whether the other interface is uniformly and independently distributed, i.e. whether
φ(1) is a uniform random variable on [0, 2π ]. Testing H0: α = β = 1, and a likelihood
ratio test provides a test statistic of 2274.93, which leads us to reject the null assumption and,
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Figure 7: Density estimation for the angles between two interfaces, given the number m of unbounded
trees. Given m, the distribution concentrates around 2π/m (dashed lines) and has a smaller variance
for larger m values. Calibration with beta distributions have been carried out (dotted lines), but the
KS test (with test statistic D) rejects the null hypothesis of the beta distribution B(̂α, (m − 1)β̂) in the
three cases with p-values smaller than 2.2e − 16, although the distributions look similar graphically.
(a) α̂ = β̂ = 2.74, D = 96%. (b) α̂ = 2.69, β̂ = 5.38, D = 91.77%. (c) α̂ = 2.99, β̂ = 8.99,

D = 88.79%.

hence, the independence between the asymptotic direction of the two interfaces. We can easily
be convinced of this by looking at Figure 7(a). As a consequence, the asymptotic directions
θ(1, 2) and θ(2, 1) are not independent.

Case 2: m = 3. In this case we performed a χ2-test to test the adequation of the joint
distribution of the sectors to a Dirichlet distribution. Since the sum of the sectors is equal to
2π , we consider the couple (φ(1), φ(2)). With our simulations, the χ2-test statistic is equal to
176.49 and the adequation with the Dirichlet distribution is rejected. However, we can see that,
as conjectured, the simulated sample looks like a simulated sample from a Dirichlet distribution.

Appendix A. Noncrossing property for the paths of the RST

Lemma A.1. Any two paths γ and γ ′ of the RST (finite or not) cannot cross

(X, A(X)) ∩ (X′, A(X′)) = ∅ for all X ∈ γ and all X′ ∈ γ ′

(where (a, b) denotes the segment [a, b] in R2 without its endpoints).

Proof. Let us assume that there exists a point I belonging to both (X, A(X)) and (Y, A(Y )).
It is easy to check that this assumption and the construction rule of the RST force X, Y, A(X),

and A(Y ) to be four different points. The same is true for their Euclidean norms with
probability 1. Moreover, without loss of generality, we can also assume that |Y | < |X|.
Then two cases can be distinguished.

Case 1. If |A(X)| < |Y | then Y is closer to A(Y ) than A(X): |A(Y ) − Y | < |A(X) − Y |.
In the same way, the inequality |A(Y )| < |Y | < |X| implies that |A(X) − X| < |A(Y ) − X|.
Now, the triangular inequality leads to a contradiction:

|A(Y ) − Y | + |A(X) − X| < |A(X) − Y | + |A(Y ) − X|
< |A(X) − I | + |I − Y | + |A(Y ) − I | + |I − X|
< |A(Y ) − Y | + |A(X) − X|.

Case 2. We now assume that |Y | < |A(X)|; see Figure 8. The points X and A(X) do not
belong to the open ball B(O, |Y |) which contains A(Y ) by definition. Hence, the existence
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X

Y

O

I

A(Y )

S (X, |X−A(X)| )

T2
S (O, |Y | )

T1

A(X)

Figure 8: The hatched area corresponds to the one of the sets U and V which is included in the
ball B(X, |X − A(X)|). Here, it contains A(Y ). Note that the origin O cannot belong to the ball

B(X, |X − A(X)|).

of the point I forces the segment (X, A(X)) to intersect S(O, |Y |) at two distinct points, say
T1 and T2, dividing the closed ball B̄(O, |Y |) into two nonoverlapping sets, say U and V . By
hypothesis, each of these two sets contains (exactly) one of the points Y and A(Y ). Since
|T1 − X| and |T2 − X| are smaller than |X − A(X)| by construction, one of the regions U or
V is included in the ball B(X, |X − A(X)|). So, one of the points Y and A(Y ) belongs to the
ball B(X, |X − A(X)|). This contradicts the fact that A(X) is the ancestor of X.
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