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ABSTRACT

This paper gives the classification of the Whittaker unitary dual for affine graded Hecke
algebras of type E. By the Iwahori-Matsumoto involution, this is also equivalent to the
classification of the spherical unitary dual for type E. Together with some results of
Barbasch and Moy (D. Barbasch and A. Moy, Unitary spherical spectrum for p-adic
classical groups, Acta Appl. Math. 44 (1996), 3-37; D. Barbasch, The spherical unitary
spectrum of split classical real and p-adic groups, Preprint (2006), math/0609828) and
Ciubotaru (D. Ciubotaru, The Iwahori spherical unitary dual of the split group of type
FJ4, Represent. Theory 9 (2005), 94-137), this work completes the classification of the
Whittaker Iwahori-spherical unitary dual or, equivalently, the spherical unitary dual of
any split p-adic group.

1. Introduction

1.1 The present paper completes the classification of the unitary representations with Iwahori-
fixed vectors and is generic (i.e. admitting Whittaker models) for split linear algebraic groups
over p-adic fields by treating the groups of type F.

The full unitary dual for GL(n) was obtained in [Tad86], and for Gg in [Mui97]. The
Whittaker unitary dual with Iwahori-fixed vectors for classical split groups was determined
in [BM96, Bar08]. For Fj, this is part of [Ciu05]. Using different methods, the Whittaker unitary
dual for classical quasi-split groups over p-adic fields was identified in [LMTO04].

It is well known that the category of representations with Iwahori fixed vectors admits
an involution called the Iwahori-Matsumoto involution, denoted by IM, which takes hermitian
modules to hermitian modules, and unitary modules to unitary modules [BM89]. In particular,
it interchanges spherical modules with generic modules. For example, IM takes the trivial
representation into the Steinberg representation. Thus, this paper also gives a classification of
the spherical unitary dual of split p-adic groups of type E, completing the classification of the
spherical unitary dual as well.

Let G be a split (F-form of a) reductive linear algebraic group over a p-adic field F of
characteristic zero. Recall that F D R D P, where R is the ring of integers and P the maximal
prime ideal. Assume that the residue field R/P has ¢ elements. The group G is defined
over R, and we fix a hyperspecial maximal compact subgroup K = G(R). Let Z be an Iwahori
subgroup, Z C K. Fix also a rational Borel subgroup B = HAN/, such that G = KB. An admissible
representation (m, V) is called spherical if VX # (0). It is called Iwahori-spherical if VT # (0).
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Let us first describe the philosophy behind our classification of unitary G-representations.
In terms of Weil homomorphisms, the Iwahori-spherical representations are parameterized by
admissible maps

O : Wy /Iy x SL(2,C) — G, (1.1.1)
where G is the complex group dual to G and Wy is the Weil group with inertia group Iy. Define
log q
e=log ® | ex 01 oo=o | ex 2 ! oc=71-009 where T=®(w)
- g p O 0 9 0— p 0 B log q 9 - 0 - )

(1.1.2)
for some Frobenius element w € Wg/Ir. The elements o, 7 are semisimple in G, and e € g, :=
{z € g| Ad(0)x = qx}, where g is the Lie algebra of G. Assume that G is simply connected
and that ® is real, that is, 7 is a hyperbolic element (modulo the center) of G. The results
in [BM89, BM93] allow a reduction for unitary representations to this setting. The centralizer of
o in G is denoted by G(c). This is a connected group and it acts with finitely many orbits on g,.
By [KL87], the irreducible Iwahori-spherical G-representations are parameterized by G-conjugacy
classes of triples (o, e, ¥), with o, e as above, and 1) certain representations (of ‘Springer type’) of
the group of components Ag(®) = G(®)/G(®)° of the centralizer G(®) of the image of ® in G.
By [BM94, Ree94|, a representation parameterized by a triple (o, e, 1) is Whittaker-generic if
and only if ¢ =triv and e is in the unique open dense orbit of G(c) in g,. Let Lg denote the
centralizer in G of ®({1} x SL(2, C)). It is well known that this is a (potentially disconnected)
reductive group. Let L% be its identity component. Clearly, we have 7 € Lg, and since 7 was
assumed hyperbolic, 7 € L%. Thus, one may attach to ® the following Weil homomorphism

& We/Ir x SL(2,C) — LY,  ®|y/r, = Py, and  Plspoc) = 1. (1.1.3)

Then & parameterizes a spherical representation for the split group E% whose dual is L%. Since ¢
and therefore ® are assumed real, the centralizer of the image of ® in L% is connected even
though L3 may not be simply connected. If there exists nonzero €’ € lp = Lie(Lg), such that
Ad(r)e’ = g€, then we would have e + te’ € g, for all t € C. So if e is in the dense orbit in g,
then necessarily the g-eigenspace of Ad(7) in lg is zero. This means that if ® corresponds to
a Whittaker-generic G-representation, then ® must also be Whittaker-generic (and spherical)
for Eg. (The converse is false however.)

Our main result, Theorem 1.1, implies that almost always (and the few exceptions are
determined explicitly), the generic G-representation parameterized by @ is unitary if and only
if the generic spherical E%—representation parameterized by P is unitary. In addition, we give
an explicit description of the generic spherical parameters for any split p-adic group, which has
interesting combinatorial properties. One would naturally like to have the unitary correspondence
d —  as part of a correspondence for the larger classes of hermitian representations. However,
for this, one would have to consider nonconnected groups L¢ dual to Lg instead of E% and L%.
This is the role played by the extended Hecke algebras that we consider in this paper (see §4).

1.2 We recall the well-known classification of irreducible admissible spherical modules. For every
irreducible spherical representation 7, there is a character y € ‘H such that x|nnx = triv, and =

is the unique spherical subquotient L(x) of X (x) = Ind% [x ® 1]. A character x whose restriction
to H N K is trivial is called unramified. Two modules L(x) and L(x’) are equivalent if and only if
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there is an element in the Weyl group W such that wx = x’. A module L(x) admits an invariant

hermitian form if and only if there exists w such that wy =Y.

More generally, by a theorem of Casselman [Cas80], an irreducible G-representation is Iwahori-
spherical if and only if it is a subquotient of an unramified X (x). Every X(x) has a unique
irreducible subquotient which is Whittaker-generic [Rod73]. When G is adjoint, a subquotient
is both generic and spherical if and only if it is the full X(x), in other words, if X(x) is
irreducible [BM94].

The main theorem in [BM89] shows that in the p-adic case the classification of the Iwahori-
spherical unitary dual is equivalent to the corresponding problem for the Iwahori—-Hecke algebra,
under the assumption of real infinitesimal character. In [BM93], the problem is reduced to
computing the unitary dual affine graded (Iwahori-)Hecke algebras and real infinitesimal
character.

We review these notions later in the paper, for now we recall the notion of real infinitesimal
character. A character x is called real if it takes only positive real values. An irreducible
representation 7 is said to have real infinitesimal character if it is the subquotient of an X (x)
with x real. So we start by parameterizing real unramified characters of H. Since G is split,
H = (F*)™ where n is the rank. Define

L(H)L = X*(H) @2 R, (1.2.1)

where X*(H) is the lattice of characters of the algebraic torus H. Each element v € L(H) defines
an unramified character x, of H, determined by the formula

Xu(7(a)) = o], aeF*, (1.2.2)

where 7 is an element of the lattice of one-parameter subgroups X.(H). Since the torus is split,
each element of X*(H) can be regarded as a homomorphism of F* into H. The pairing in the
exponent in (1.2.2) corresponds to the natural identification of L(H)y with Hom[X,(H), R].
The map v — X, from L(H); to real unramified characters of H is an isomorphism. We often
identify the two sets writing simply x € L£(H)g.

As we will be dealing exclusively with the graded affine Hecke algebra H (as in [Lus89]) which
is defined in terms of the complex dual group, we denote by G the complex group dual to G,
and let H be the torus dual to H. Then the real unramified characters x are naturally identified
with hyperbolic elements of the Lie algebra h. The infinitesimal characters are identified with
orbits of hyperbolic elements (§2.1). We assume that all characters are real.

1.3 Next we explain in more detail the nature of our classification of the Whittaker unitary dual
in the equivalent setting of affine Hecke algebras.

We attach to each x a nilpotent orbit O = O(x) satisfying the following properties. Fix a Lie
triple {e, h, f} corresponding to O such that h € h. We write Z(e, h, f), respectively 3(e, h, f),
for the centralizer of {e, h, f} in G, respectively g, and abbreviate them as Z(0O), respectively
3(O). Then O is such that

(1) there exists w € W such that wy = 1h + v with v € 3(O),

__ 1.3.1
(2) if x satisfies property (1) for any other O, then O’ C O. ( )

The results in [BM89] guarantee that for any x there is a unique O(x) satisfying properties (1)
and (2) above. Another characterization of the orbit O = O(x) is as follows. Set

gr:={reg|[x,z]=2}, go:={zrecg|lx 2]=0} (1.3.2)
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Then Gy, the complex Lie group corresponding to the Lie algebra gg, has an open dense orbit
in g1. The G-saturation in g of this orbit is O.

Every generic module of H (and every spherical module of H) is uniquely parameterized by
a pair (O,v), O=0(x) as in (1.3.1). In order to make this connection more precise, we need to
recall the geometric classification of irreducible H-modules [KL87, Lus95], and we postpone this
to §2.3. (See, in particular, Remark 2.1.)

Remark. The pair (O, v) has remarkable properties. For example, if v =0 (x = h/2), then the
generic representation parameterized by (O, 0) is tempered, therefore unitary. The corresponding
spherical module L(h/2) is one of the parameters that the conjectures of Arthur predict to play
a role in the residual spectrum. In particular, L(h/2) should be unitary. This is true because it
is the Iwahori-Matsumoto dual (Definition 2.2) of the generic tempered module.

DEFINITION 1.1. The spherical modules L(h/2) will be called spherical unipotent repre-
sentations.

In our main result, Theorem 1.1, the tempered generic modules can be regarded as the
building blocks of the Whittaker unitary dual. In the spherical unitary dual, this role is played
by the spherical unipotent modules.

We partition the Whittaker (equivalently, the spherical) unitary dual into complementary
series attached to nilpotent orbits. We say that an infinitesimal character x as above is unitary
if the generic module parameterized by x (equivalently, the spherical L()) is unitary.

DEFINITION 1.2. Fix a nilpotent G-orbit O C g. The (generic or spherical) O-complementary
series is the set of unitary parameters x such that O = O(x) as in (1.3.1). The complementary
series for the trivial nilpotent orbit is called the 0-complementary series.

Our first result is the identification of O-complementary series for type F in § 3. These are the
irreducible principal series X (x) which are unitary. (For a summary of the relevant results for
classical groups from [Bar08], and G, Fj, from [Ciu05], see §§3.2 and 3.1.) The 0-complementary
series have a nice explicit combinatorial description: they can be viewed as a union of alcoves
in the dominant Weyl chamber of h, where the number of alcoves is a power of two, e.g. in Go
there are two, in E; there are eight and in Eg there are 16. The explicit description of the alcoves
is in §§7.2.1-7.2.3.

The main result of the paper is the description of the complementary series for all O in
type F, and can be summarized as follows. We use the Bala—Carter notation for nilpotent orbits
in exceptional complex semisimple Lie algebras (see [Car85]).

DEFINITION 1.3. Set

Exc = {Al + 12[1, A2 + 3A1, A4 + A2 + Al, A4 + AQ, D4(CL1) + AQ, Ag =+ 2A1, A2 + 2A1, 4A1}
— e N ~

in Fy in E7 in Fg

(1.3.3)

Recall that 3(O) denotes the reductive centralizer in g of a fixed Lie triple for O.

THEOREM 1.1. Let H be the affine graded Hecke algebra for G (definition in §2.1), and O be
a nilpotent G-orbit in the complex Lie algebra g. Denote by H(3(O)) the affine graded Hecke
algebra constructed from the root system of 3(O).
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Assume that O ¢ Exc (see (1.3.3)). A (real) parameter x = $h + v is in the complementary
series of O (Definition 1.2) if and only if v is in the 0-complementary series of H(3(O)).

The explicit description of the complementary series, including when O € Exc, are tabulated
in§7.

The complementary series for O € Exc are smaller than the corresponding 0-complementary
series for H(3(0)), except when O =4A; in Eg. For this one orbit, the complementary series is
larger (see §6.4.1).

The proof of the theorem for G of classical type is in [Bar08]. For types G2 and Fy, this is part
of [Ciu05]. In the present paper, we treat the case of groups of type E. The method is different
from the above-mentioned papers. The main method of the proof (Proposition 5.3) consists of
a direct comparison between the signature of hermitian forms on the generic modules for H
parameterized in the geometric classification (see §2.3) by O, and the signature of hermitian
forms on the spherical principal series which are irreducible (that is, representations which are
both spherical and generic) for the Hecke algebra H(3(©)). This method of comparing signatures
has the advantage that it explains the match-up of complementary series in Theorem 1.1. It
often extends to non-generic modules (see, e.g., [Ciu062] for non-generic modules of Eg).

1.4 If one assumes the infinitesimal character (the y above) to be real, one can use the same
set for the parameter spaces for the spherical dual of a real and p-adic split group (attached to
the same root datum). The main criterion for ruling out nonunitary modules is the computation
of signature characters: in the real case on K-types, and in the p-adic case on W-types. So it is
natural to try to compare signatures on K-types and W-types. In [Bar08, Bar04], the notion of
petite K -types was used to transfer the results about signatures from the p-adic split group to the
corresponding real split group. The methods employed there are very different from this paper.
More precisely, to every petite K-type there corresponds a Weyl group representation such that
the signature characters are the same. In this paper, we inherently use signature computations
for all Weyl group representations. Since not all W-representations are known to arise from
petite K-types, the results here cannot be used directly towards the spherical unitary dual of
the corresponding real groups.

In different work, however, we studied the signature of petite K-types for exceptional groups
of type E. The main consequence of that work is that the spherical unitary dual for a split real
group G(R) is a subset of the spherical unitary dual for the corresponding p-adic group G(FF)
(conjecturally they are the same). Details will appear elsewhere.

1.5 To obtain the results of this paper, we made a minimal use of computer calculations,
essentially for linear algebra, e.g. conjugation of semisimple elements by the Weyl group, or
multiplication of matrices in a variable v for some of the ‘maximal parabolic’ cases in §5.3.

However, by the machinery presented in §§3.1 and 3.2, for every given Hecke algebra H, one
can reduce the identification of the unitary parameters x to a brute-force computer calculation.
More precisely, one considers sample points with rational coordinates for every facet in the
arrangement of hyperplanes given by coroots equal to one in the dominant Weyl chamber. (These
are the hyperplanes where X () is reducible.) It is known (see [BCO05]) that the signature of the
long intertwining operator is constant on each facet of this arrangement.

One can then run a computer calculation of the long intertwining spherical operator (§3.1)
on each representation of the Weyl group at every sample point. Then one finds the signature
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of the resulting hermitian matrices. The unitary parameters y correspond to those facets for
which these matrices are positive semidefinite for all Weyl group representations. The size of
the calculation can be reduced significantly by making use of some ideas in this paper. This is
not the approach we use in this paper, but we did carry out this calculation independently for
exceptional groups in order to confirm the results of this paper.

1.6 We give an outline of the paper. In §2, we review the relevant notions about the affine
graded Hecke algebra, and its representations. We introduce the construction of intertwining
operators that we need for the signature computations. In §3, we restrict to the setting of
modules which are both generic and spherical, and determine the 0-complementary series. In §4,
we describe a construction of extended Hecke algebras for disconnected groups, and apply it to
the setting of centralizers of nilpotent orbits. Section 5 contains the main results of the paper,
Theorem 5.1, Propositions 5.2 and 5.3, and presents the method for matching signatures of
intertwining operators. The explicit details and calculations needed for the proofs are in §6. For
the convenience of the reader, the results, including the exact description of the complementary
series for O € Exc, and of the O-complementary series are tabulated in §7.

Notation. If & is an algebraic group, we denote by &Y its identity component. The center will be
denoted by Z(&). For every set of elements £, we denote by Zg(E) the simultaneous centralizer
in & of all elements of £, and by Ag () the group of components of Zg(E).

2. Intertwining operators

2.1 As mentioned in the introduction, we work only with the Hecke algebras and the p-adic
group will not play a role. Therefore, in order to simplify notation, we call the dual complex
group G, its Lie algebra g, etc.

Let H be a maximal torus G and B D H be a Borel subgroup. The affine Hecke algebra .77
can be described by generators and relations. Let z be an indeterminate (which can then be
specialized to ql/ 2). Let I € AT C A be the simple roots, positive roots, and roots corresponding
to H C B, respectively, and let S be the simple root reflections. Set A~ = A\A*. Let G,, :=
GL(1,F), X := Hom(G,,, H) be the (algebraic) lattice of one-parameter subgroups, and X :=
Hom(H, Gy,) the lattice of algebraic characters. Then ¢ will denote the Hecke algebra over
C|z, z7'] attached to the root datum (X, X, A, A, II). The set of generators we use is that first
introduced by Bernstein.

The algebra # is generated over Clz,271] by {Ty}lwew and {0.}.cx, subject to the
relations [Lus89, Proposition 3.6]:

Tw Ty = Typw (L(w) + L(w') = L(ww")), 020y = Oty

01: - Hs:v
1—6_,

(2.1.1)

TSQ:(ZQ—I)TS—I—ZQ, HITS:TSGSI—I—(,ZQ—I) (s =sq €95).

This realization is very convenient for determining the center of 57 and thus computing
infinitesimal (central) characters of representations. Let &/ be the subalgebra over C[z, z71]

generated by the 6,. The Weyl group acts on this via w - 6, := 0.

PROPOSITION 2.1 (Bernstein-Lusztig [Lus89, Proposition 3.11]). The center of ¢ is given by
W | the Weyl group invariants in < .
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Infinitesimal characters are parameterized by W-orbits x = (¢, t) € C* x H. We always assume
that ¢ is real or at least not a root of unity. In particular, such an infinitesimal character is called
real if ¢ is hyperbolic. Unless indicated otherwise, we assume from here on that the infinitesimal
character is always real. The study of representations of .7 can be simplified by using the graded
Hecke algebra H introduced in [Lus89]. One can identify <7 with the algebra of regular functions
on C* x H. Define

I ={fed|f(1,1)=0}. (2.1.2)
This is an ideal in & and it satisfies J# ¢ = F#. Set #'=H - ¢ (the ideal #°
in 2 consists of the functions which vanish to order at least 7 at (1,1)). Thus, .# has a
filtration [Lus89, Lemma 4.2]

H=H"D DA DTS (2.1.3)
and denote the graded object by H. It can be written as
H=C[W|®C[r]® A, (2.1.4)

where r = z — 1(mod _# ), and A is the symmetric algebra of h* = X ®z, C. The previous relations
become [Lus89, Proposition 4.4]

twtw =tww, w,w €W, t2=1, s€ 8,

(2.1.5)
wts =tss(w) + 2r{w, @), s=s54€95, webh™

The center of H is C[r] ® AW (see [Lus89, Proposition 4.5]). Thus, infinitesimal (central)
characters are parameterized by W-orbits of elements ¥ = (r,t) € C & b.

THEOREM 2.1 (Lusztig [Lus89, Theorem 9.3 and § 10.3]). There is a matching X «<— x between
real infinitesimal characters X of H and real infinitesimal characters x of ¢, given by (r,t) —
(e, e), so that if Hy and JZ, are the quotients by the corresponding ideals, then there is an
algebra isomorphism

S, = Hy.

When z = ,/q, 5 is isomorphic with the Iwahori-Hecke algebra of a split p-adic group dual
to G. Therefore, it has a natural *-operation coming from the usual *-operation on complex
functions (i.e. f*(g):= f(g~1)). In order to transfer the question of unitarity to H, one needs
a x-operation on H which is compatible with the grading process and the isomorphism in
Theorem 2.1. The *-action on the generators of H is computed in [BM93, Theorem 5.6]:

ty, =ty-1, wewWw,
W=-T+ Y (@ a)t,, web, (2.1.6)
acAt

and the compatibility with J# is checked in Corollary 5.2. Finally, [BM93, Theorem 4.3] shows
that the isomorphism from Theorem 2.1 is analytic in (r,t).

From now on, we fix 7 = 1/2, and transfer the study of the representation theory of 5 to H.

2.2

DEFINITION 2.1. A H-module V is called spherical if V|y contains the trivial W-type. The
module V' is called generic if V| contains the sign W-type.

The latter definition is motivated by the main theorem in [BM94].
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DEFINITION 2.2. The Iwahori—Matsumoto involution IM is defined as

IM(ty) := (1) @ty weW, IMw):=—-w, webh* (2.2.1)

Here IM takes spherical modules into generic modules and it preserves unitarity. In particular,
IM(triv) is the Steinberg module St.

2.3 Next we need to recall certain results about the (geometric) classification of irreducible
H-modules. The results of [KL87] can be used in the setting of H via [Lus89]. Alternatively,
the representation theory of H is a special case of [Lus88, Lus95, Lus02].

We parameterize irreducible representations of H by G-conjugacy classes (x, e, ¥), where
X € g is semisimple, e € g is nilpotent such that [x,e] =e, and (¢, Vi;) are certain irreducible
representations of A(e, x), the component group of the centralizer in G of e and y. Embed e into
a Lie triple {e, h, f}. Write x = h/2 4+ v where v centralizes {e, h, f}.

The constructions of [KL87, Lus95] attach to each (G-conjugacy class) (e, x) a module X (e, x)
which decomposes under the action of A(e, x) as a sum of standard modules X (e, x, 1):

X(e, x) = @ X(e, x,v) ® Vi, (2.3.1)

—

(¥, Vip)eA(ex)o

—

where A(e, x), will be defined below.
As a C[W]-module,
X (e, x) = H*(Be, C), (2.3.2)

where B, is the variety of Borel subalgebras of g containing e. (See [BM89, §4], for a detailed
explanation and references.) The action of W is the generalization of that defined by Springer.
The component group A(e, x) is naturally a subgroup of A(e) because in a connected algebraic
group, the centralizer of a torus is connected. The group A(e) acts on the right-hand side
of (2.3.2), and the action of A(e, x) on X (e, x) is compatible with its inclusion into A(e), and
the isomorphism in (2.3.2). Let O be the G orbit of e. According to the Springer correspondence,

H*(B.,C)= P H*(B.,C)” &V} (2.3.3)

—

peA(e)
Furthermore, H24m(Be)(B, C)? is either zero, or it is an irreducible representation of W. Denote

Ale)y = {¢ € Ale) | H24me(B(B,, €)% 0}, (2.3.4)

—

and define A(e, x), to be the representations of A(e, x) which are restrictions of representations

of A(e) in 1@.

For ¢ € A(e),, we denote the Springer representation by u(O, ¢). Each representation of
W is uniquely of the form p(O, ¢) for some (O, ¢). The correspondence is normalized so that if
e is the principal nilpotent, and ¢ is trivial, then pu(O, ¢) = sgn.

Moreover, a result of Borho-MacPherson says that the u(O'; @) occurring in H*(B,, C) all
correspond to @ such that O C O'.

Comparing with (2.3.1) and (2.3.2), we conclude that
Hommw [1(0, 6) : X (e, x, )] = 6 |aceny: 9] (2.3.5)
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DEFINITION 2.3. Following [BM89, Theorem 6.3], the W-representations in the set

{IU,(O, (b) : [¢ ’A(e,x): ¢] 7é 0} (236)

will be called the lowest W-types of X (e, x,1). When 1) = triv, we call the W-type u(O, triv)
in (2.3.5) the generic lowest W-type.

Clearly, the generic lowest W-type always appears with multiplicity one in X (e, x;, triv).

By [KL87, Theorems 8.2 and 8.3|, or [Lus02, Theorem 1.21], if v =0, then X (e, h/2,1)) is
tempered irreducible, and it has a unique lowest W-type, u(O, 1), whose multiplicity is one. (In
this way, there is a one-to-one correspondence between tempered irreducible modules with real
infinitesimal character and WW; see [BM89, Corollary 4.8].) If, in addition, e is an element of a
distinguished nilpotent orbit in the sense of Bala—Carter, then X (e, h/2,1) is a discrete series
module.

By [BM89, Theorem 6.3], the module X (e, x, ) has a unique irreducible subquotient
X (e, x, %) characterized by the fact that it contains each lowest W-type u(O, ¢) with full

multiplicity [@ |4(e,y) : ¥]-

Remark 2.1. In the geometric classification, the spherical modules are those of the
foorm X(0, x, triv). The generic modules are X(e,,triv), such that X(e,x,triv) is
irreducible [BM94, Ree94|. For the generic modules, the semisimple element x determines the
nilpotent orbit O = G - e uniquely, according to (1.3.1).

2.4 The analogous formula to (2.3.1) holds whenever the data (e, x) factor through a
Levi component M (see [BM89, §7]). This gives the connection with the classical version of
the Langlands classification, which we recall next. Let Aps(e, x) denote the component group
of the centralizer in M of e and y. The following lemma is well known.

LEMMA 2.1. The natural map Aps(e, x) — Ac(e, x) is an injection.

Proof. If T = Z(M)°, then M = Zg(T). We have that Zg(T) N Zg(e)° = Z ¢y (T) is connected,
since the centralizer of a torus in a connected algebraic group is connected. Therefore,
M N Zg(e)’ = Zy(e)P.

‘We have
X(e,x) =H®m,, Xm(e, x) and
H&m, Xaule, . 7)= P [Wlaye 71X (e x9). (2.4.1)
beAlex)o

Notation. We write Ind§;[x] for the induced module H ®y,, 7. It has a basis {t, @ v |v e T,z €

Define
M) :=Zg(v), (2.4.2)
and P= M (v)N is such that (v,a) >0 for all roots o € A(n). Write M (v) = My(v)Z(M(v)),
where Z(M(v)) is the center.

LEMMA 2.2. We have Aps(,)(e, x) = Ac(e, x)-

Proof. This is because the centralizer of e is of the form LU with U connected unipotent, and L
is the centralizer of both e and h. It follows that every component of Ag(e, x) meets L, and
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therefore
AG(ev X) - AG(ev h, V) = AM(V) (67 h) = AM(V) (6, X) (243)
Od
For 7 € Ay (e, X) = Apgy(v)(€),
Xuwy(e, x, 7) = Xy (e, h/2,7) @ C,. (2.4.4)
The representation
o= X (e, h/2, 1) (2.4.5)
is a tempered irreducible module. Let ¥ € AG/((?X) be the representation corresponding to
7 € Ay (e, X) via the identification in Lemma 2.2. Then

X(e,x,v)=H ®OH () XM(,,)(e, X, T)- (2.4.6)
DEFINITION 2.4. In general, whenever o is a tempered representation of Hj; corresponding to
the parameter (e, h/2,7), 7 € Ap(e), and v € 3(m), x = h/2 + v, we write

X(M, o, v) :=Ind§[oc @ ], (2.4.7)
and also call it a standard module. By (2.4.1), it decomposes as
X(Mo,v)= B [Wlaye 71X (e, x,9). (2.4.8)
peAg(e,r),
If M =M(v), then
X(M,o,v)=Xl(e, x, ), (2.4.9)

where 9 corresponds to 7 as in Lemma 2.2.

The terminology is justified by the fact that X (M, o,v) is (via the Borel-Casselman
correspondence) the Z-fixed vectors of an induced (standard) module in the classical form
of Langlands classification for the p-adic group. In particular, tempered modules for H
are the Z-fixed vectors of tempered representations of the p-adic group. In particular,
via [BM89, Theorem 1.1], irreducible tempered H-modules are unitary (with respect to the
s-operation (2.1.6)). If (v, a) >0 for all positive roots, then X (M, o, v), with M = M(v), has
a unique irreducible quotient X (M, o, v). If (v, a) <0 for all positive roots, then X (M, o, v/),
M = M(v) has a unique irreducible submodule X (M, o,v). In the setting of graded Hecke
algebras, this form of the classification is proved in [Eve96, Theorem 2.1].

2.5 Let 3(e, h, f) be the centralizer of the triple {e, h, f}, and fix apc C 3(e, h, f) a Cartan
subalgebra such that v € agc. Let mpe be the centralizer of apc, with decomposition
mpc =mpcoo + agc. (2.5.1)

Then the Lie triple is contained in [mpc, mpc] C [mpco, mpc,o]. Thus, mpc o is semisimple (its
center centralizes the triple, so must be contained in apc). So mpc o is the derived algebra of mpc,
and the nilpotent element e is distinguished in mpc 9. The Levi component mpc is that used in
the Bala—Carter classification of nilpotent orbits [Car85], hence the notation. Let Mpc, Mpc,o

be the corresponding groups. The triple (e, h/2, ) with ¢ € Ay, (€, x) determines a discrete
series parameter on Mpc . Clearly, for any v € apc, if M (v) is as in (2.4.2), then Mpc C M (v).

1572

https://doi.org/10.1112/50010437X09004230 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004230

WHITTAKER UNITARY DUAL

We are interested in the question of reducibility for the induced modules X (M, o, v), where
Mpc C M, and o is generic. Denote by My the derived subgroup of M.

PROPOSITION 2.2. Let M be a Levi subgroup such that Mpc C M. Assume that o is a tempered
generic module of Hyso corresponding to (e, h/2,triv), and consider the standard module
X(M,o,v). Set x =h/2+ v for the infinitesimal character and O = G -e. Then X(M, o,v) is
reducible if and only if one of the following two conditions is satisfied:
(1) there exists O satisfying O’ D O, such that O has a representative e’ satisfying [x, €/] = ¢/;
(2) there is no O" as in condition (1), but A(e, x) # Ac(e, x), and there exists a nontrivial
character ¢ € Ag(e, x)o satisfying [t |4, (ey): triv] # 0.

Proof. Condition (1) follows from [BM89], see also [BM96, §2.1]. Condition (2) is an immediate
consequence of formula (2.4.1). O

Remark 2.2. By (2.4.3), when M D M (v), condition (1) in Proposition 2.2 is necessary and
sufficient.

2.6 In the following sections we construct intertwining operators associated with elements which
preserve the data (M, o).

Assume first that M is the Levi component of an arbitrary standard parabolic subgroup, and
(0, Vs) a representation of Hj;. Let

m=mgp+a (2.6.1)

be the Lie algebra of M, with center a, and derived algebra mgy. Write h =t + a for the Cartan
subalgebra, with t C mg. If w € W =W (g, b) is such that w(m) =m’ is another Levi subalgebra
(of a standard parabolic subalgebra), choose w to be minimal in the double coset W (M )wW (M').
Let w = sq, - . - Sq, be a reduced decomposition. In [BM96, Lemma 1.6], the elements

ro =ts, 00— 1 (2.6.2)
are introduced. Set
Tw i =Tay ** Tay- (2.6.3)

By [BM96, Lemma 1.6], the definition does not depend on the choice of reduced expression.
As w is minimal in its double coset, it defines an isomorphism of the root data, and therefore an
isomorphism ay, : Hp; — Hyr. Let (w - 0, Vo) be the representation of Hy, obtained from o
by composing with a_;!. Then 7, defines an intertwining operator

Ay(o,v) : Ind§ [0 @ v] — Ind§p [w -0 @ w - v, (2.6.4)
tRuistr, ®ay'(v), teW,veV,.
For each (i, V),) € W, Ay (o, v) induces an intertwining operator
Ay (0, v) : Homyy [V, : Ind§ [0 @ v]] — Homyy [V, : nd§ [w - o0 @ w - 1], (2.6.5)
which by Frobenius reciprocity can be written as
A (o, v) : Homyy (a) [V, : Vo] — Homyy [V 2 Viweo]- (2.6.6)

These operators are defined for all v not just real ones. We assume that v is complex for the rest
of the section. If 3 € A" (respectively A™), we also use the notation 3> 0 (respectively 3 < 0).
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Define the element x,, € A:

o= ][ (B°-1) (2.6.7)

£>0,wB<0
PROPOSITION 2.3. The operators Ay, (o, v) have the following properties:
(1) Ay(o,v) is polynomial in v;
(2) Ay—1(w-o,w-v)o Ay(o,v) = (0 @v)(Ky), where Kk, is defined in (2.6.7); furthermore Ky,
is an element of the center of Hys, so the right-hand side is a scalar multiple of the identity;

(3) assume that o is hermitian, then the hermitian dual of Ay (o, v) is Ay(o,v)* = A1 (w -
o, —w - V).

Proof. Part (1) is clear from the definition. Part (2) follows from the fact that in the Hecke
algebra,

r2 = (tqa —1)>=0a® —1 for a a simple root. (2.6.8)
The fact that k,, is in the center of H; follows from the fact that w is shortest in the double coset.
Let p=m+n and p’ =m’ + n’ be the standard parabolic subalgebras. If 3 ¢ A(m)™" is such that
wf3 <0, then —wB € A(w'). If o € TI(m) is a simple root, then —w(s4(3)) = =8y () (wWB) € A(n),
because wa is a simple root of m’, and so preserves n'.

For part (3) we recall from [BM96, Corollary 1.4], that the hermitian dual of Ind§;[c ® 1] is
Ind§;[0 ® —7] with the pairing given by

(tz @11y, ty @ val_p) = <U(6M(ty_1tx)v1), v2). (2.6.

)
In this formula, z,y € W/W (M), vy, v2 € V,, and €y is the projection of C[IW] onto C[W (M )]
(see [BM96, Equation (1.4.1)]). We omit the rest of the proof. O

Remark 2.3. The formula for the pairing in (2.6.9) follows from [BM96, §1.4], which uses the
fact that H has the * operation given by (2.1.6).

2.7 We still assume that v is complex. We specialize to the case when o is a generic discrete
series for Hjz,. So in this case M = Mpc, and the induced module in the previous section is
X(M,o,v). Asin (2.4.1), this decomposes into a direct sum of standard modules X (M, o, v, 1),
with ¢ € f@,\y)o. In particular, X (M, o, v, triv) is the only generic summand.

In this case we normalize the operators A, so that they are Id on u(QO, triv), and restrict them
to the subspace X (M, o, v, triv). We denote the normalized operators Ay, (o, v) (on X (M, o, v)),
respectively A, (o, v, triv) (on X (M, o, v, triv)). They define, by restriction to Hom spaces as
in (2.6.6), operators Ay, for p € w.

Assume that w decomposes into w = wyws, such that £(w) = £(wy) + ¢(ws2) ({(w) is the length
of w). The fact that ry = 7y, rw, (see [BM96, Lemma 1.6]) implies one of the most important
properties of the operators A, the factorization:

Ay (0, V) = Ay, (w2 - 0, wa - v) 0 Ay, (0, v)  and similarly (2.7.1)

Apyw, (0, v, triv) = Ay, (we - 0, wa - v, triv) o Ay, (0, v, triv).

PROPOSITION 2.4. Assume that m is the Levi component of a maximal standard parabolic
subalgebra. Then A, (o, v, triv) does not have any poles in the region of v satistying (v, 5) >0
for all B > 0 such that wi < 0.
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Proof. Either wv =v or otherwise (wv, 3) <0 for all §€ A(n). By [Eve96, Theorem 2.1], if
(B,v)y >0 for all g€ A(n), then X(M,o,v,triv) has a unique irreducible quotient, while if
(V, B) <0 for all g€ A(n'), then X (M’, o', v/, triv) has a unique irreducible submodule. By the
results reviewed in §2.3, this is the unique subquotient containing p(O, triv). Thus, A,, maps
X (M, o, v, triv) onto X (M, o, v, triv).

Assume that A, has a pole of order k>0 at vy with Ry > 0. Then (v — vo)*A(0, v, triv)
extends analytically to v =1g, and is nonzero. Its image is disjoint from X (M, o, v, triv),
which contradicts the fact that X (w- M, w-o,w-v) is the unique irreducible submodule of
X(w-M,w-o,w-v,triv).

Now suppose that 4,, has a pole at vy with Ry = 0. We use the analogues of relations (1)—(3)
from Proposition 2.3; the relation (2) implies that for the normalized operators we have

Ay-1 0 Ay = Id. (2.7.2)

Write

Ay (o, v, triv) = (v — 19)F[Ag + (v — v) A1 +- -] where Ay #0, and

At (W 0,w - v, triv) = (Aw(0, =7, triv))* = (—v + 10)F[AL + (—v + 1) AT + -+ - ]. (2.7.3)

Then if k£ < 0, relation (2) in Proposition 2.3 implies A§Ao = 0, which is a contradiction.

2.8 We present a standard technique for factorizing intertwining operators (see [SV80, § 3], for
the setting of real reductive groups).

DEFINITION 2.5. We say that two Levi components m, m’ are adjacent, if either m = m’ or there
is a Levi component ¥ such that m, m’ C 3 are maximal Levi components conjugate by W (X).

LEMMA 2.3. Let w be such that w(m) =w’, and w minimal in the double coset W (M )wW (M").

Then there is a chain of adjacent Levi components mg=m, ..., my =m’.

Proof. We perform an induction on the length of w. If m =m’ and w =1, there is nothing to
prove. Otherwise there is a simple such that wa < 0. Then let 37 be the Levi component with
simple roots A(m) U {a}. Then ww] ! has shorter length, and the induction hypothesis applies. O

We always consider minimal length chains of Levi subalgebras. The main reason for these
notions is the following. Let w%i be the longest element in W (X;), and w; be the shortest element
in W(mi_l)w%iW(mi). Then we can write

wW=wg - wi, Ay =Ay, 00 Ay,. (2.8.1)

The Ay, are induced from the corresponding operators for maximal Levi components, and so
Proposition 2.4 applies.

THEOREM 2.2. The intertwining operators A,, have the following properties:

(1) Ay(o, v, triv) is analytic for v such that (Rv, 3) >0 for all > 0 such that w( < 0;
(2) Ap—1(w-o,w- v, triv) o Ay (o, v, triv) = 1d;
(3) Ay(o,v,triv)* = A,-1(w - o, —w - T, triv).

Proof. This follows from Proposition 2.4 and Lemma 2.3. O

Remark 2.4. If there exists an isomorphism 7:w -0 — o, we compose the intertwining
operators A,, with (1 ® 7). For simplicity, we denote these operators by A, also. If in fact,
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w-o =0, w-v=—U, then the operator A,, gives rise to a hermitian form. This is because, as
recalled before, Ind§;[c ® —7] is the hermitian dual of Ind{;[o ® v].

2.9 We assume that v is real. Let = € G stabilize {e, h, f}. Then we can choose the Cartan
subalgebra apc of 3(e, h, f) so that it is stabilized by x. Furthermore, since z stabilizes mp¢c
and mpc, by a classical result of Steinberg, there is a Cartan subalgebra t C mpc o, stabilized
by x. Let

et + anc (2:9.1)

be the Cartan subalgebra of mpco. We can also choose a Borel subalgebra of mpc containing b
which is stabilized by x. So x gives rise to a Weyl group element w,, the shortest element in the
double coset Wis,2War,,- Thus, we obtain an intertwining operator A,,, by the construction
in §§2.6-2.8.

fz-v=-—vand 72 0 — o, by Remark 2.4, A, gives rise to a hermitian form.

2.10 We apply the construction of §2.9 in the following special case. Let @ be a simple root
of agc Ci(e, h, f). Let xg € Z(e, h, f)° be an element inducing the reflection sy on . Then
xg stabilizes mpc. The element xz may need to be modified by an element in Mpco so as
to stabilize t as well. Then it gives rise to a Weyl group element wg, shortest in the double
coset WarptaWhaige, and to an intertwining operator A,,. The new xzz may not fix the Lie
triple. However, since it modified the original element by one in Mpc , there is an isomorphism

Ta WgO — 0.
Then, as in Remark 2.4, we have a normalized intertwining operator
Az : X (Mpe, o, v, triv) — X (Mpc, o, wav, triv). (2.10.1)
2.11 We construct intertwining operators for another class of elements normalizing 0. We

consider an M D Mpc, and write m =mg + a, a C apc, as in (2.6.1). Let A and H be the Cartan
groups corresponding to a, h, and let o be a tempered representation of Hjs . Define

N(a):={we W |wa=a},

C(a, M) :={w e N(a) | w(AT(m)) = AT (m)}. (2.11.1)

The following formula is a particular case (which we need here for the construction of
intertwining operators) of a more general result that we postpone to §4.1.

LEMMA 2.4. We have the following results
(1) N(a)=C(a,M)x W(M). (2.11.2)
(2) Ng(a)/M =C(a, M). (2.11.3)
Proof. (1) From (2.11.1), we see that
N(a)=C(a, M) - W(M). (2.11.4)
In fact, as in the proof of Lemma 4.1,
Cla, M)NW (M) = {1}, (2.11.5)

and W (M) is a normal subgroup, because any element zmz~! with # € Ng(a) centralizes a, so
must be in M.
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(2) Clearly M is normal in Ng(a). Let n € Ng(a). Then na = a, and nh=§" =t + a. There

is an element m € M such that
mnh=h, mn(AT(m))=AT(m). (2.11.6)
Thus, the M-coset of mn isin C'(a, M). This map is a group homomorphism, and an isomorphism

onto C(a, M). O

If ceC(a, M) is such that c¢-o =0, then by the construction in §2.7, in particular
Remark 2.4, there is a normalized intertwining operator

Ao, v): X(M,o,v) — X(M,0,c-v). (2.11.7)

and for every (u, V) € W, this induces an operator Acpu(o,v) as in (2.6.5) and (2.6.6).

2.12 We put the constructions in the previous sections together. We consider the case when
M = Mpc.

Let W (3, apc) denote the Weyl group of apc in 3:=3(e, h, f). Denote by H(3) the graded
Hecke algebra constructed from the root system of 3. In this section we study the relation
of W (3, apc) with C(apc, Mpc), in particular we show that C(apc, Mpc) contains naturally
a subgroup isomorphic to W(3, a). Elements in this subgroup give rise to H(3)-intertwining
operators of the (spherical) principal series Xp ;) (0, v) of H(3), as well as H-intertwining operators
for X(M, o, v) by (2.11.7).

Set

ABC = ZZ(e,h,f)(aBC)~ (2.12.1)

Then Apc C A BC, So there is a surjection

NZ(e,h,f) (Cch)/ABC — NZ(e,h,f)(aBC)/ABC- (2.12.2)

Furthermore, there is an injective group homomorphism,

W (3, a80) = Nz(epn.p)(aBc)/Apc — Nalape)/Za(ape) = Na(apo) /Mpe. (2.12.3)
PRrROPOSITION 2.5. We have the following results.

(1) The composition of the map in Lemma 2.11.3 with the map in (2.12.3) gives an injective
homomorphism

W (s, apc) — Clapc, Mpo).
(2) The composition of the map in Lemma 2.11.3 with the map in (2.12.2)

Ag(e) x W(3,apc) = Ny(enf)(apc)/Apc — Nalape)/Mpe = C(apo, Mpc)

is onto.

Proof. Part (1) is clear. For part (2), let n € Ng(apc) be given. Then n induces an automorphism
of mpe. So it maps the Lie triple {e, h, f} into another Lie triple {¢/, h’, f’}. The Levi component
is of the form

mpe = my X gl(ar) x -+ x gl(a,), (2.12.4)

with my simple, not type A. The nilpotent orbit is a distinguished one on my, and the principal
nilpotent on the gl(a;) factors. Since any automorphism of a simple (or even a reductive algebra
with simple derived algebra) maps a distinguished orbit into itself, there is m € Mp¢, such that
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mn stabilizes the triple {e, h, f}. Thus, every Mpc coset of Ng(apc) contains a representative
in Ny (en,p)(aBc), which is the claim of the proposition. O

The image of the map in part (2) consists of elements which stabilize o. Thus, each element
in z € Ag(e) x W (3, apc) gives rise to an intertwining operator

A (o, v): X(M,0,v) — X(M, 0, w; - V) (2.12.5)

normalized to be Id on p(O, triv). In particular, we obtain an action of Ag(e, v) on X (M, o, v).
This action should coincide with that defined geometrically, but we have not been able to verify
this abstractly.

2.13 Denote by W (3(0)) = W (3, apc) the abstract Weyl group of 3(e, h, f), and similarly A(O)
for the component group, and set W(Z(0)) := A(O) x W(3(0)).

We restrict now to the case of hermitian Langlands parameters, (M, o, v), where o is a
discrete series for M. Recall that this means that M = Mpc, but in order to simplify notation,
we drop the subscript in this section. As before, there must exist w € W such that

wM =M, wo=c¢ and wv=-—r. (2.13.1)

For (u,V,) € /W, §2.11 defines an operator A, (o, v) (by Frobenius reciprocity) on the space

Homyy (a7 (Vyu, o). The group C(a, M) acts on W (M), and therefore on W (M), and preserves o.
Let ppr(O, triv) be the unique lowest W (M)-type of o. Then

Homyy [u(O, triv) : X (M, o, v)]
= Homyy (ap) [11(O, triv) : o] = Homyy (ap) [11(O, triv) = puar (O, triv)] = 1.
In the calculations in §6, we only consider W-types p in X (M, o, v) with the property that
Homyy () [p 2 0] = Homyy(ap)[1e e (O, triv)].

We need the fact that C(a, M) preserves up (O, triv). By [BM89, Corollary 4.8], since o is
tempered, this is equivalent to the fact that C(a, M) preserves o.

DEFINITION 2.6. Let o be a discrete series for Hj; parameterized by O, where M = Mpc of O.
The space Homyy(ar) (11, o) has the structure of a representation of C(a, M) and via the map
from Proposition 2.5, it is a W (3(O))-representation and a W (Z(QO))-representation, which we
denote by p(p) and p'(u), respectively.

2.14 In view of Lemma 2.1, for every Levi subgroup Mpc C M C G, one has Ays(e) C Ag(e). In
a large number of cases, Ag(e) = Ay (€), and analyzing the standard modules X (Mpc, o, v)
with o a discrete series is sufficient. In the other cases, we also need intermediate Levi components
M’ with the property that Ag(e, v) = App(e).
Consider the Levi subgroups M with Lie algebras m subject to the conditions:

(1) eem;

(2) Ag(e) = Amle).
We call the nilpotent orbit O quasi-distinguished if the minimal subalgebra with respect to
conditions (1) and (2) is g. Note that every distinguished O is also quasi-distinguished.

PROPOSITION 2.6. If O is a quasi-distinguished nilpotent orbit, then 3(O) is a torus.

Proof. Tt is easy to verify the statement case by case using the Bala—Carter [Car85] classification
of nilpotent orbits. O
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TABLE 1. Limits of discrete series.

Type of g Levi subalgebra m C g Nilpotent in m

Es Es Dy(ar)
Dy Ay = (3311)
E; E; FEg(a1)
E; As+ Ay
Dg Ds(ay) = (7311)
Ds Ay = (5511)
Dy As + Ag = (5331)
Ex Ey Dr(ay)
Ex Eg(a1) + Ay
Eg Dz (az)
Eg Ds + Ay
D7 Dﬁ(a1> = (9311)
Ds De(az) = (7511)
Dy Dy + As = (7331)
Ds Ag + 24, = (5531)

DEFINITION 2.7. If ¢ is a tempered irreducible module parameterized by a quasi-distinguished
O, we call o a limit of discrete series.

With this definition, any discrete series is a limit of discrete series. In Table 1 we list the
limits of discrete series, which are not discrete series, and appear for various Levi subalgebras of
FEg, E7, and Eg. Clearly, if o is a limit of discrete series for m in Fg, it will also be considered
in E; and Egs. Therefore, to eliminate redundancy, we list a pair (m, Q) only for the smallest
algebra for which this pair appears. For m of type D, we also give the notation of the orbit as a
partition. In type A, the only quasi-distinguished orbit is the principal orbit.

As before, consider the module X (Mpc, o, v), o generic discrete series. For the calculations in
§6, whenever Ay, (e, v) # Ag(e, v), we can find a pair (M’, ¢’), where M’ is a Levi component
M' D Mpe, with the following properties:

(1) AM'(€¢ V) = AG(ev V);
(2) o’ is the generic summand of Ind%;3 olo] and o' is a limit of discrete series for M’;
(3) X(Mpc,o,v,triv)=X(M' o', v).

3. The 0-complementary series

3.1 We specialize to the case of spherical principal series. Some of these results were already
presented in the introduction in the setting of the split p-adic group. Consider the principal
series module

X(x)=H®aCy, xcbh. (3.1.1)

As a W-representation, X (x) is isomorphic to C[W]. In particular, the module X (x) has a
unique generic subquotient and a unique spherical subquotient. The latter is denoted by X (x)-
We refer to a semisimple element x as unitary if X (x) is unitary.
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The construction of intertwining operators as presented in §§2.6-2.11 becomes simpler in
this setting. Consider the intertwining operator given by ry,,, where wy is the longest element
in the Weyl group, and normalized so that it is |d on the trivial W-type. Since the operator only
depends on x, we simply denote it by Ay, (x) : X (x) — X (wox)-

If x is dominant (i.e. (x, @) > 0 for all roots a € AT) the image of Ay, (x) is X (x). Moreover,
X (x) is hermitian if and only if wgx = —Y. The principal series X (x) is reducible if and only if
(o, x) =1 for some o € AT (see (3.1.3) below). The generic subquotient is also spherical if and
only if X () is irreducible.

Note that r,, =74, - - - Ta, acts on the right and, therefore, each «; in the decomposition
into 74, can be replaced by the scalar (aj, wjx), where w; = sj118j42 - - - 8 in the intertwining

operator Ay, (x). For every (i, V) € W, we use the notation
ap(x) = Awou(x) : Vi — Vi (3.1.2)

Remark 3.1. Assume wox = —x. The hermitian form on X (x) is positive definite if and only if
all of the operators a, () are positive semidefinite.

More precisely, the operators a,(x) are characterized by the fact that, in the decomposition
au(X) = apar (W1X) -+ Ao, (WrX) coming from the reduced expression for wg as above (see
also §2.8),

1 on the (+1)-eigenspace of s, on V,
alhOéj(V): 1_<aj7V>
1+ <Oéj, l/>

If a is a simple root, we have the formula [BM96, §1.6] ts_ 7y, = ryts
1

3.1.3
on the (—1)-eigenspace of sq; on V. ( )

. From this, since
[e3

w—1
Sy—1q =W Sqw, it follows that
twTw = Twly for any w e W. (3.1.4)

In particular, for w =wy, we obtain that every a,(x) preserves the (+1) (respectively (—1))
eigenspaces of wg on u*.

3.2 Counsider x in the (—1)-eigenspace of wp. In order to determine whether x is unitary, one
would have to compute the operators a,(x) on the W-type u. An operator a,(x) has constant
signature on any facet in the arrangement of hyperplanes

(x,a)=1, a€At and (y,a)=0, acll, (3.2.1)

in the dominant Weyl chamber C of h (see [BC05, Theorem 2.4]).

The 0-complementary series (Definition 1.1) is a union of open regions in this arrangement
of hyperplanes.

Recall that the fundamental alcove Cy is the set
Co={xeC:0<(a,x) <1, for all a €II}. (3.2.2)

If W,g denotes the affine Weyl group, an alcove is, by definition, any open region in C which is
Wag-conjugate with Cy. Clearly, any alcove is a simplex.

The main results of this section are summarized next.

THEOREM 3.1. The O-complementary series are:

— as in Theorem 3.2 for types A, B, C, D;
— as in Proposition 3.1 for types Ga, Fy;
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— the hermitian x (wox = —x) in the union of the two alcoves in § 7.2.1 for type Eg;
— the union of the eight alcoves in § 7.2.2 for type Er;
— the union of the 16 alcoves in § 7.2.3 for type Eg.

3.3 We recall the description of the 0-complementary series for Hecke algebras of classical types.

THEOREM 3.2 (Barbasch [Bar08, Theorem 3.1]). The parameters x = (vi, va,...,V,) in the
0-complementary series are:

A: x=(1, . VUpy—Vgyooy—1v1)0r (V1. Vg, 0, =k, ..., —11), withO< vy <+ - <y < 55

C: 0SU <1< << 3

B: there exists ¢ such that 0 <v; <--- <y <1 —v—1 <vip1 <---<vy <1, and between any
vj < Vjy1, 1 < j <n, there is an odd number of (1 —v;), 1 <1 <i;

D: same conditions as for type B, with vy replaced by |v1|; in addition, for x to be hermitian,
if n is odd, then v; = 0.

Ezample. If the Hecke algebra is of type Bg (which means the p-adic group is the split form of
PSp(12)), the 0-complementary series in the dominant Weyl chamber is a union of four alcoves,
in coordinates:

e O0<r <<y <y << <1—us;
e S <<y s<ry<l—y<yy<l—us;
e 0SSy sr<l—y<l—-ry<l—-r<<y<l—u;
e 0SSy <l—m<yy<l—mrm<y<l-—r.
In general, for type B,,, there are ol*3] unitary alcoves of this type.

3.4 We also need the description of the 0-complementary series for the Hecke algebras

of type Go and F;. We use the roots alz(%,—%,—%) and ay=(—1,1,0) for Gy and

a;=(1,-1,-1,-1), as =(0,0,0,2), ag =(0,0,1, —1), ay = (0,1, —1, 0) for Fy.
ProposITION 3.1 [Ciu05, § 3.3, Appendix B]. We have the following results.
(1) IfH is of type G and x = (11, v1 + va, =211 — 12), 11 = 0, 1o > 0, is a spherical parameter,
the O-complementary series is
{3V1 + 219 < 1} U {2V1 + 15 <1 <3 + VQ}. (3.4.1)
(2) If H is of type Fy and x = (v1,v2,v3,14), 1 — Vo —v3—vg 20, o >v3>142>0, is a
spherical parameter, the 0-complementary series is

{21 <1} U{ni+ v+ —vy <1<v)+ v+ 13+ 1y} (3.4.2)

Part (1) of Proposition 3.1 was first established in [Mui97] in the setting of the split p-adic
group Gb.

3.5 In the rest of this section, we determine the 0-complementary series for types E7 and FEs.
(The method also applies in type D,,, where we recover known results of [BM96, Bar08].) For
FEjg, the argument needs to be modified slightly due to the fact that wg # —1, but it is essentially
the same. It is presented in detail in [Ciu062, §3.5].

Assume that G is of type Da,, E7 or Eg. The notation for W-types is as in [Car85].
One important nonunitarity criterion that we use is the following. Let M be a Levi subgroup
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of type Ay. The nilpotent orbit A has that two lowest W-types, u(As,triv) and p(Asg,sgn)
as follows:
Dop, i (2m —2,1) x (1), (2m —2) x (11)
Br: 56, 21, (3.5.1)
Es: 112, 28,,
on which operators A(St,v) for the standard module X (M, St,v), M = Ay, have opposite
signature whenever Zg(v) = M. (The details for this type of calculation are in Lemma 5.1 and

in §6.) This means that for all v such that Zg(v) = M = Ay, the module X (As, St,v) is not
unitary. Therefore, we have the following.

LEMMA 3.1. The generic module X (Ag, St,v) is not unitary for all parameters v such that
ZG‘(I/) = AQ.

3.6 Recall the hyperplane arrangement (3.2.1). The connected components of the complement
of this hyperplane arrangement in C will be called regions. Inside any region F, the intertwining
operators a,(x) are isomorphisms, therefore their signature is constant in F.

We recall first that the unbounded regions are not unitary. This is a well-known result. A
proof in the setting of the Hecke algebra can be found in [BCO05, §3.3].

LEMMA 3.2. If the open region F is unbounded, and x € F, then the operator a,(x), for j the
reflection representation, is not positive definite.

3.7 Recall the relation of partial order on A™:
01> (o if B1 — B2 is a sum of positive roots. (3.7.1)

If 51 > By or B > (1, then (1, B2 are said to be comparable, otherwise they are incomparable. A
subset of incomparable positive roots is called an antichain. Two roots in an antichain, being
incomparable, must have nonpositive inner product.

IfII = {a1, ..., a,} are the simple roots and a positive root Sis 8=, ; mya;, call Y, m;
the height of 3. We consider the positive roots ordered in (3.7.1) on levels given by the height.
The simple roots are level one and the highest root is level h — 1, where h is the Coxeter number
(h=2(n—1)in Dy, h=18 in E7 and h =30 in Ej).

Any region F is an intersection of half-spaces (3, x) >1 or (3, x) <1, for all 3 € AT, and
(o, x) =0, for all a« € T1. Let

d(F) be the set of maximal roots among the roots <1 on F, and

0'(F) be the set of minimal roots among the roots 5’ > 1 on F. (3.7.2)

The following proposition is clear (and well known).
PROPOSITION 3.2. For every region F, both §(F) and ¢'(F) are antichains in A*. Moreover,
the correspondences F — 0(F) and F — §'(F) are bijections between the set of regions and the

set of antichains of positive roots.

Remark 3.2. A region F is infinite if and only if 6’'(F) N II # ().
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Proof. Let x € F and assume that («, x) > 1, for some simple root a. If w, is the corresponding
coweight, for all t >0, (8, x +twa) >1+t>1,if 8> «, and (', x + twa) = (', x), for all 5
incomparable to a. This implies that x + tw, is in F, for all £ > 0. O

The walls of the region F (regarded as a convex polytope) are given by the hyperplanes
B=1, for g €§(F)Ud(F), and possibly by o =0, for some simple roots .

Note that a simple root « does not give a wall « =0 of F if and only there exists a root
B € 0(F) such that f+ « is also a root (in the simply laced case, equivalently, (3, a) = —1).
This is because in this case, for all x € F, (5, x) <1< {8+ a, x), so one cannot set {(«, x) =0
without crossing a hyperplane § = 1. Similarly, one can formulate such a condition with the roots

in §'(F).

3.8 The signature of intertwining operators a,(x) on the walls of the dominant Weyl chamber is
known by unitary induction from smaller groups. In Do, by setting a simple root equal to zero,
we obtain a parameter unitarily induced irreducible from Ds,,_9 4+ A1, in E7 from Dg, and in Ejg
from E7. In particular, a region F, which has a wall o = 0, for some simple root «, is unitary if
and only if the parameters on the wall @ =0 are induced from a unitary region in the smaller
group. This is a well-known argument, see Lemma 5.4.

We need the following information about the antichains formed of mutually orthogonal roots.
We call such subsets orthogonal antichains.

LEMMA 3.3. If A is a simply laced root system, the maximal cardinality of an orthogonal
antichain in A" equals the number of positive roots at level [(h(A) +1)/2], where h(A) is
the Coxeter number.

Proof. We verified this assertion case by case. It also follows from the main theorem in [Som05],
which states that every antichain is W-conjugate to a subset of the Dynkin diagram of A. O

PROPOSITION 3.3. Any unitary region F has a wall of the form o = 0, for some simple root «.

Proof. In view of Lemma 3.2, we may assume that F is a finite region, that is, a convex polytope.
Assume by contradictions that all the walls of F are =1, for 3 € 6(F) U d'(F). There are two
cases which we treat separately:

(a) F has a dihedral angle of 27/3; and
(b) all dihedral angles of F are non-obtuse.

(a) Let 81 € 0(F), B2 € §(F) be such that (31, B2) = —1 and they give adjacent walls of F. Let
Xo be a parameter such that xo € (61 =1) N (B2 =1)NF, but (B, xo) # 1, for any 3 ¢ {1, B2}
This is possible, otherwise there should exist a positive root § such that §; =1, 82 = 1 implies
necessarily 3= 1. In particular, {31, B2, 8} are linearly dependent over Z. Since we are in the
simply laced case, one must be a sum of the other two roots, but then they cannot all be equal
to one simultaneously.

The principal series X (xo) is reducible. The generic factor is parameterized by the nilpotent
orbit As. By Lemma 3.1, this factor is not unitary, and therefore the region F is also nonunitary.

(b) Assume that all dihedral angles of F are non-obtuse. A classical theorem of Coxeter
implies in our case that F must, in fact, be a simplex. We are therefore in the following situation:

(B1,B2) =0 if By, B2 € 6(F) or B, B2 € ' (F),

_ (3.8.1)
(8,03")€{0,1} if B€§(F) and ' € §'(F).
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The antichains §(F) and ¢'(F) are orthogonal. Set k = |§(F)|, k' =|6'(F)|, and k + k' =n + 1,
where n is the rank of A. By Lemma 3.3, k<m+ 1 for D,, (n=2m) and k<4 for E;, Es,
and same for k. This immediately gives a contradiction for Eg (k+ k' <8 <9). In Ey, the
only possibility is k =k"=4, and in Dy, k=m+ 1, k' =m (k=m, k' =m+ 1 is analogous).
It remains to analyze these cases.

Fix 3’ € 0'(F). For all 5 € §(F), (B, 8') € {0, 1}. If for all 5 € §(F), B is not comparable to
(in particular, (3, 5") =0), {61,..., Bk, '} would be an antichain of k+ 1 orthogonal roots,
which is a contradiction. Thus, there exists 8 such that 3’ > 3. Let « be a simple root such that
(B,a)=—1, and ' > B+ «a > [ (this is always possible in the simply laced case). Since 3 < 1 is
a wall, 5+ a > 1, so necessarily 3’ = 8 + a (otherwise, ' > 1 would not be a wall).

To summarize, for each ' € §'(F), there exists 3 € 6(F) such that 5/ — (3 is a simple root.
Similarly, for each 3 € §(F) there exists 5 € §'(F) with 5/ — 3 a simple root.

If « is a simple root, @« =0 is not a wall of F if and only if there exists 3 € § such that
<1<+ «in F. From the discussion above, the region F is not adjacent to the walls of the
dominant chamber if and only if for any « simple root, there exists § € §(F) and 5’ € §'(F) such
that 8 — 3= «.

If this is the case, we are looking at a bipartite graph with k& + £’ vertices (roots) 6(F) U §'(F)
and at least n = k + k' — 1 edges (simple roots), such that any vertex has degree at least one. We
would like to claim that this graph is connected. The only way to fail connectedness is if there
exists a complete (bipartite) subgraph {01, 32} U {31, B5}. This means that there exist simple

roots aq, ..., ay such that
Bi=0+a=0+a, By=p0+az=0+ao (3.8.2)
Then
1= (1, B2) = (B1 + a1, f2) = (a1, f2), (3.8.3)
and similarly (ay, ) = 1. However, then
0= (61, 83) = (b1 + a1, B2 + aa) =2 + (a1, o), (3.8.4)
so (a1, aq) = —2, which gives a contradiction (simply laced case).

If the graph is connected, it means that §(F), respectively ¢’'(F), are formed from the positive
roots on the same level of the root system, and moreover the two levels are consecutive. However,
this is false by inspection.

COROLLARY 3.1. A parameter x is in the 0-complementary series if and only if x can be
deformed irreducibly to a point xo, such that X (xo) is unitarily and irreducibly induced from a
parameter in the 0-complementary series on a proper Levi component.

We also remark that part (b) of the proof of Proposition 3.3 can be applied to the regions F
for which the antichains 6(F) and ¢’(F) are formed only of roots at levels greater than or equal
to h(A)/2 (since the sum of two such roots cannot be a root, their inner product is non-negative).
Then, all such regions are adjacent to the walls of the dominant Weyl chamber. By induction,
we find that all unitary regions are of this form.

3.9 An important fact is that for the determination of the 0-complementary series, one only
needs to know the signature of intertwining operators on a small number of W-types (and not
on all of C[W]). In addition to its intrinsic interest, we need this information in §5 and for the
calculations in §6. (See §5.8 for the explanation.)
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TABLE 2. The O-relevant W-types.

Type O-relevant W-types

A {(n—-1,1)}

B,C,D {(n—1)x(1),(1,n—1)x (0)} or {(n—1) x (1), (n—2) x (2)}
Go {21, 22} or {21, 19, 13}

Fy {42, 91}

Eg {6p> 20p}

Er {7, 27,} or {7, 21}

E8 {827 35:}0}

DEFINITION 3.1. Assume that the root system of H is simple. The W-types in Table 2 are called
0-relevant.

PROPOSITION 3.4. A parameter x is in the 0-complementary series if and only if the operators
a,(x) are positive definite on all O-relevant p.

In every list of O-relevant W-types, the reflection representation refl appears. Recall
Lemma 3.2 which states that the signature of refl in any infinite region is not positive definite.
Note also that for every type of W not type A, the second W-type in a possible list of O-relevant
appears in Sym?(refl). (In fact, for exceptional groups, this is the unique nontrivial W-type in
Sym?(refl).)

Proof. For type A, the claim follows easily from the fact that, in this case, every region § 3.6 is
adjacent to a wall of the dominant Weyl chamber.

For types B, C, D, the proof is in [BCO05, Proposition 3.3 and Theorem 3.4]. The proof
is conceptual, and it is based on some simple calculations of determinants of intertwining
operators. An essential step in the proof is the fact that the centralizer 3(O) of the nilpotent
orbit O = A1 =(2,2,1,...,1) has a factor of type Aj.

Types G2 and Fj can be found in [Ciu05, Corollary 3.6 and Appendix B], and type Eg is
in [Ciu062, Corollary 3.5]. A similar argument as in the classical types works here as well; the
argument uses the fact that the centralizer of O = A; is of type A, more precisely, A; for Ga, As
for Fy, and As for Eg.

For E7 and Fg one cannot use the same argument. The difference is that the centralizers
3(O) for O = Ay do not contain a factor of type A. The proof of the proposition and corollary in
§ 3.8 shows that a spherical parameter x is in the 0-complementary if and only if the operators
a,(x) are positive definite on:

(i) pe{T,,27,,56,,21.} or pe{7,,21},56,,21,} for Er;

(i) pe{8;,35;,112,,28,} for Fg.
In other words, on a strictly larger set than what we called O-relevant in Table 2. In order to
show that, in fact, it is sufficient to consider only the signatures of the O-relevant W-types for
E;, Eg, we used a computer calculation. We only need to use this finer information for F7 in

one place in this paper, namely in §6.3.3, for the nilpotent Ay C Eg (whose centralizer is Er).
Proposition 3.4 for Eg will not be needed in the sequel. O
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4. Extended Hecke algebras

4.1 The goal is to construct graded Hecke algebras for certain disconnected groups.

Suppose that & is an arbitrary linear algebraic group with connected component &, and
component group R := & /6", Let H denote the graded Hecke algebra associated with &°. Choose
a pair (B, H), where B is a Borel subgroup, and H C B a Cartan subgroup in ®°. Denote by
W := Ngo(H)/H, the Weyl group of &°.

LEMMA 4.1. We have
Ne(H)/H=Rx W.

Proof. Let
R :={ge®|gH=H, gB=B}. (4.1.1)
We show that R = R'/H. It is clear that H C R’ and R’ N &° = H. Furthermore,
Ng(H)=R- Ngo(H). (4.1.2)

Finally, R’ meets every component of &. Indeed, if g € &, then g- B=DB', g- H= H’, where
(B, H') is another pair of the same type as (B, H). Then there is go € &° such that (go B, goH) =
(B, H). Then ggg € R’, and belongs to the same component as g. The proof follows. O

If g € 8, then (g - B, g - H) is another pair of Borel and Cartan subgroups. Thus, there exist an
element x € &° such that zg stabilizes the pair (B, H). Then g determines an automorphism ag
of the based root datum. If g € &, then ag = ld. Suppose that g1, g2 € &, and 21, 22 € &0 are
such that z1g1, x2gs stabilize the pair (B, H). Then the fact that

1017292 = (1917297 1) (9192), 1012297 ' € &Y, (4.1.3)
implies that
Qg Qgy = Qgygo- (4.1.4)

Thus, the group R = R'/H maps to the group of automorphisms of the root datum for &°, and
therefore maps to the automorphism group of H, the corresponding affine graded Hecke algebra.
We identify R with this automorphism group.

DEFINITION 4.1. Let H denote the graded Hecke algebra for the root datum of ° (as in (2.1.4)).
We define H' to be the semidirect product

H' := C[R] x H, (4.1.5)

where the action of R on H is induced by the a, defined earlier.

4.2 We are interested in the spherical representations of H’. This is a special case of Mackey
induction. Set

K''=RxW and K:=W. (4.2.1)

A representation of H' is called spherical if it contains the trivial representation of K'.

LEMMA 4.2. The center of H' is AKX,

Proof. This is clear from Proposition 2.1. O
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For every v € h*, we use the following notation:
R(v) = the centralizer of v in R, A'(v)=C[R(v)] x A, H(v)=C[R(v)] x H, (4.2.2)
where A is the abelian part of H (as in (2.1.4)), and the action of R(v) C R is as in Definition 4.1.
Consider
X'(v)=H ®u) Cy. (4.2.3)
PROPOSITION 4.1. Assume that (w, V) is a spherical irreducible representation of H'. The

multiplicity of the trivial representation of K' is one.

Proof. Let v be a weight of V under A, spanned by v,, and define
R,:={reR|7n(r)v, =uv,}. (4.2.4)

Set A/, := C[R,] x A. Then V is a quotient of H' ®4 , C,, via the map x ® 1, — 7(z)v,. However,
as a K’ module,

H @4, Cr =Y Vu® (V). (4.2.5)
pek
Thus, the trivial representation occurs exactly once in H' ®4, C,, and the claim follows. O
COROLLARY 4.1. We have
R, = R(v).

Proof. Let V' denote the spherical irreducible quotient of H' ®,, C,, as in the proof of
Proposition 4.1. Consider the subspace

{ > kye 1V} CH ®,, C,. (4.2.6)
yGR(V) keK’

This is H'-invariant, and isomorphic to X’(v) from (4.2.3). Since by the analogue of (4.2.5) X' (v)
is spherical, we obtain a nontrivial homomorphism (hence, surjective)

X'(v) —V. (4.2.7)
The claim follows from the fact that the stabilizer of 1, in R is R(v). O

4.3 There is a natural extension of the Langlands classification for spherical modules to H'. We
do not make use of it in an essential way in this paper, rather it is listed here in order to make
clearer the analogy between the description of O-complementary series (§ 5, especially §§5.5-5.7)

and the spherical unitary dual of the extended Hecke algebra constructed from the centralizer
Z(0) (see §4.5).

PROPOSITION 4.2. Every irreducible spherical module of H' is of the form
L/(l/) =1 ®H’(z/) L(V)

Two such modules L'(v) and L'(V') are equivalent, if and only if v and V' are in the same orbit
under K'.

Ifv >0, then X'(v) has a unique irreducible quotient L'(v), if v <0, then X'(v) has a unique
irreducible submodule L' (v).
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Proof. The proof is based on the Langlands classification for H and the restriction formulas listed
below. We omit the details of the proof. Corollary 4.1 implies that the restriction to H of X'(v) is

X'Wa= )  HoaCp. (4.3.1)
reR/R(v)
Moreover, if Ly is any spherical H-module in the restriction L'(v)|g, then
Uwle= > r-Lo (4.3.2)0
reR/R(v)
COROLLARY 4.2. We have the following results.
(1) If L'(v) is hermitian, but L(v) is not, then the form on L'(v) is indefinite.
(2) The module L' (v) is unitary if and only if L(v) is unitary.
Proof. 1f L'(v) is unitary, then so is every factor of its restriction to H; these are the L(kv) with
ke K'. Also, if a factor L(kv) is not hermitian, its hermitian dual occurs in the decomposition,

and necessarily the hermitian form on L'(v) cannot be positive definite. If, on the other hand,
L(v) is unitary, then all of the L(kv) occurring in the decomposition (4.3.1) are unitary as well. O

4.4 We can extend the definition of intertwining operators to this setting. Assume éw € R x W.
Then, similarly to §3.1, we define a spherical H'-operator

tw(V) : X' (V) = X' (§wr), @1, — 28y @ Ly, (4.4.1)

The operator A, is Ag, normalized to be the identity on the trivial K'-type. For every
K'-type 4/, this induces an operator

gy (V) Homper [ X' (v)] — Homyer [+ X' (§wv)]. (4.4.2)

Remark 4.1. When wv = —v, the H'-operator A, () gives rise to a hermitian form on Homy 1 :

X'(£v)] which can be naturally identified with the form induced by the H-operator A, (v) on
Hom g, (1 : triv] = (') B,

4.5 The definitions in the previous sections can be applied to centralizers of nilpotent orbits.
Let O be a nilpotent orbit in g, and Z(O) be the centralizer in G of a Lie triple {e, h, f}
of O, with identity component Z(0)?. We denote by H(Z(0O)) (respectively H(3(0))) the Hecke
algebras H' (respectively H) from Definition 4.1. In this particular case, we have

K=W(GO), K'=W(Z0), R=Asle), R0)=Agler).  (451)
By Corollary 4.2, one can identify the spherical unitary dual of H(Z(O)) with that of H(3(O)).

4.6 We present an interesting instance of the construction. Assume that the root system A is
simple and it has roots of two lengths. Let ¢: Il — Z>o be a function, such that ¢(a) = c¢(a’)
whenever o and o/ are W-conjugate. One defines the graded Hecke algebra H,. with parameter ¢
as in §2.1, in particular (2.1.5), but with commutation relation

wts =tss(w) + cla)(w, &), s=54, weh™. (4.6.1)
Consider the case
1 1 t
cla) =4 @ ONBIO% (4.6.2)
0, « short root.
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Denote the corresponding graded Hecke algebra by Hj o, and let A; C A denote the subset of
long roots, which is a root (sub)system, and II; be the simple roots in A;. (Note that II; ¢ II,
in fact rank A; =rank A.) Let W(4;) be the corresponding Weyl group, and let Wy denote the
reflection subgroup of W generated by the simple short roots in II. Then W; acts on A;, and on
W(A;) by conjugation.

LEMMA 4.3. We have W =Wy x W(A;).
Proof. This follows from the classification of simple root systems. O

Let H(A;) denote the graded Hecke algebra corresponding to the root datum
(X, X, A, Ay, II;). We can apply the construction in (4.1.5) with H =H(4;) and R = W.

PROPOSITION 4.3. We have H; o = C[W;] x H(4A;).

Proof. In view of the definitions with generators and relations, one only needs to check that if
B €11, then (4.6.1) holds with s = sg. There exists a reflection s in a simple short root and
a €1II (long root) such that 5= s(«a), therefore tg = t,t, ts. Using this, it is straightforward to
check that wty, = ts,s3(w) + (w, B). O

Remark 4.2. If A is simple, the possible cases are:

(1) H(Cn)1,0 = C[Sn] x H(AT);

(2) H(Bn)1,0 = C[S2] x H(Dy);

(3) H(G2)1,0 = C[S2] x H(Ay);

(4) H(F4)1,0 = C[S3] x H(Ds).

The cases (1), with n < 3, and (2)—(4) all appear as Hecke algebras H(Z(O)).

5. Main results

In this section we present the main results of this paper. The explicit calculations (for type Eg)
are presented in §6. We only consider modules with real infinitesimal characters.

5.1 Recall O Cg, where g is of type Eg¢, E7, FEg. Let {e, h, f} be a Lie triple for O, and
let X(e, x, triv) be a generic hermitian representation. Recall the centralizer Z(QO) with Lie
algebra 3(0), and the decomposition x =h/2 + v. The algebra 3(O) is a product of simple
algebras and a torus.

By Definition 1.2, the complementary series attached to O is the set of all y = %h—i—u
such that the generic module X (e, x, triv) is unitary (and irreducible). The parameter v € 3(O)
parameterizes a spherical module for the Hecke algebra H(3(0)), and by §4, also a spherical
module for the Hecke algebra H(Z(O)).

THEOREM 5.1. The parameter x = h/2 + v is in the complementary series attached to O if
and only if the corresponding parameter v is in the 0-complementary series of H(3(0)). The
0-complementary series for the Hecke algebras of simple types are listed in Proposition 3.1.

The following exceptions occur:

e O=A, + A in Fy;

e O=Ay+3A1 in E7;

e Oc{Ay+ As+ Ay, Ay + Ay, Dy(ay) + Az, A3+ 2A1, Ay + 2A;,4A,} in Eg.

1589

https://doi.org/10.1112/50010437X09004230 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004230

D. BARBASCH AND D. CIUBOTARU

In all of the exceptions, except O = 4A; in Eg, the complementary series attached to O is smaller
than the 0-complementary series of H(3(O)). The explicit description is recorded in § 7.

In the rest of this section, we present the elements of the proof.

5.2 The starting case is that of intertwining operators for induced modules from Levi components
of maximal parabolic subalgebras. We would like to relate these operators with operators for
Hecke algebras of rank one.

First we need to record some results about the reducibility of standard modules. Let
P=MN (p=m+n) be a maximal parabolic, and X (M, o,v) be a standard module. Using
Proposition 2.2, we can easily find the reducibility points of X (M, o,v), v > 0. The answer is
given in Theorem 5.2 below. Its nature is related to conjectures of Langlands.

Let {e, h, f} C m be a Lie triple parameterizing the tempered module o. Then n is a module
for the sl(2, C) generated by {e, h, f}. Let o be the unique simple root not in A(m), and @ the
corresponding coweight, which commutes with {e, h, f}. The eigenvalues of & on n are of the form
1,2,...,k, where k is the multiplicity of « in the highest root. (For classical groups, k < 2.) Let

k
n=Pn, (5.2.1)
=1

be the corresponding decomposition into eigenspaces, and decompose each n; into simple s[(2)
modules. The following statement follows from the geometric classification (and Proposition 2.2),
and it is also known as a consequence of the main result of [MS98].

THEOREM 5.2 (Mui¢ and Shahidi [MS98, Proposition 3.3]). Assume that o is a generic tempered
module. Let n; =€P;(dij) be the decomposition of n;, i=1,k, into simple sl(2) = C(e, h, f)
modules, where (d) denotes the simple module of dimension d. Then the reducibility points of
X(M,o,v), with v >0, are
{dij +1 }
2 ij

),

Now we restrict to the case when o is a generic discrete series, and set O = G - e. Moreover,
since m = mpc is a maximal Levi component, the algebra 3(O) is either s[(2) or a one-dimensional
torus [Car85]. If the trivial s[(2) module appears in the decomposition (5.2.1), let i(c) denote
the eigenvalue i for which it appears. This is the case precisely when 3(O) = A;. It turns out
that i(o) € {1, 2}.

PROPOSITION 5.1. We have the following results.
(1) If3(O) =T (i.e. a one-dimensional torus), then X (M, o, v) is reducible at v = 0.
(2) If 3(O) = Ay, then X (M, o, v) is irreducible at v = 0.
(3) When 3(0O)=A;, and O# Ay+ Ay + A1 in Eg, the first reducibility point of
X(M,o,v), v=0is

=—. 2.2
0= (5:2:2)
(4) When O = A4 + Az + A in Eg, the first reducibility point of X (M, o,v), v >0, isvy = 3/10
(while 1/i(o) =1/2).
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Proof. This follows from the conditions in Proposition 2.2. Alternatively, for the reducibility
points v > 0, one can use Theorem 5.2 which has a different proof. When O = A4 + Ao + Aq,
we have k=6. The trivial s[(2)-module appears in ny, so vy =1/i(c) =1/2. However, in
this case, X(M,o,v) is reducible at = because O'= A4+ As is as in Proposition 2.2(1).
Equivalently, because there is a two-dimensional s[(2)-module in n;, Theorem 5.2 gives a
reducibility point 1%. O

5.3 Assume that (M, o, v) is hermitian with o a generic discrete series, and let w € W be such
that w(M) =M, wo =0, wv = —v. Recall that u (O, triv) is the lowest W (M )-type of o, and
(O, triv) is the generic lowest W-type of X (M, o,v). As in §2, the element w gives rise to
intertwining operators A, ,(o, v) on each W-type p appearing in X (M, o, v). Recall that these
operators are normalized so that Ay, 0 tiv) (0, V) is the identity operator.

The following result is [BM96, Proposition 2.4]. For v > 0, X (M, o, v) is irreducible, so the
signature on any W-type is constant. We call this the signature at co.

LEMMA 5.1. Assume that the W-type p satisfies the conditions:
dim Homy [ : X (M, 0,v)] =1 and Homyyap[p: o] = Homyy a1 2 par (O, triv)].
Then the signature at oo of the operator A, ,(o, V) is
(1) = (—1)des pdeg p(Ostriv)
where deg 1 denotes the lowest harmonic degree of .

We now turn to the unitarity of X (M, o, v).

PROPOSITION 5.2. Let (M, o,v), v >0, be hermitian maximal parabolic data attached to a
nilpotent orbit O, with o a generic discrete series, and e € O.

(1) Assume that 3(O) = T\. Then there exists a lowest W-type u(O, ), ¢ # triv, of X (M, o, v),
occurring with multiplicity one, such that

Appotivy(o,v) =+Id and A, 0 (0,v)=—Id, forv>0. (5.3.1)

(2) Assume that 3(O) = A;. Let O’ be the nilpotent orbit in g which meets m x 3(O) in e
on m and the principal orbit on 3(Q). Then u(O’,triv) occurs with multiplicity one in
X(M,o,v), and

1—i(o)v

1+i(o)v

where { is some odd positive integer (which may depend on (M, o)).

1
Appopivy(o,v) =Id and Ay, o wriv) (0, V) = ( ) Id, forv>0, (5.3.2)

For uniformity, in case (1) of the proposition, or if (M, o, v) is never hermitian for v > 0, set
O’ = O. (This notation will be used in §5.4.)

Proof. We give an outline of the argument. Complete details for type Eg are presented in §6.2.

If 3(0) =Ty, and (M, o, v), v > 0, is hermitian, then A(O) # 1 [Car85]. The standard module
X (M, o, v) has two lowest W-types u(O, triv) and p(O, 1) both appearing with multiplicity one
and having lowest harmonic degrees of opposite parity. At v =0, X(M, 0,0) is reducible and
each factor is a tempered module, therefore unitary. If v > 0, u(O, triv) and p(O, ) always occur
in X (M, o, v). Having opposite signature at oo, they have opposite signature for all v > 0.

1591

https://doi.org/10.1112/50010437X09004230 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004230

D. BARBASCH AND D. CIUBOTARU

If 3(O)= A, then X(M,o,v) has a unique lowest W-type (O, triv) (see [Car85]). The
module X (M, o, 0) is irreducible and tempered. At v = 1/i(o), all factors other than X (M, o, v)
are parameterized by strictly larger nilpotent orbits. One of the factors corresponds to the orbit
O’ and lowest W-type u(O’, triv). We verify in every case that u(QO’, triv) satisfies the conditions
of Lemma 5.1. Moreover, u(Q’, triv) has harmonic degree of opposite parity to u(O, triv). The
claim follows then from the fact that for v > vy, the two W-types u(O, triv) and u(O’, triv) occur
in the factor X (M, o, v). a

We summarize this in the following corollary.
COROLLARY 5.1. We have the following results.

(1) If3(0O) is of type Ty, then X (M, o, v) is not unitary for v > 0.

(2) If 3(O) is of type Ay, then X(M, o, v) is unitary and irreducible if and only if 0 < v < vy,
where vy is the first reducibility point of X (M, o, v) on the half-line v > 0.

Proof. Part (1) follows directly from Proposition 5.2. For part (2), we also immediately have that
X (M, o0,v) can only be unitary in the interval [0,1/i(c)). Since X (M, o, v) is irreducible and
unitary at v = 0, it stays unitary until the first point of reducibility vy. When O # A4 + Ao + Ay,
we have vy = 1/i(0) (see Proposition 5.1), so this completes the argument. For O = A4 + Ay + A
in Eg, we need an extra argument to rule out the segment (v, 1/i(c)) = (3, 3). The details of
this case appear in §6.2.4.

Remark. Note that (5.3.2) only tells us that, at the reducibility point v = 1/i(o), the order of the
zero for the operator A, (o triv) (0, V) is an odd integer £. This is of course sufficient to conclude
that Corollary 5.1 holds. However, it is natural to expect that ¢ =1 for all (M, o), where M
is a Levi of a maximal parabolic, and o is generic. We verified this conjecture by computing
Aw u(0 wriv) (0, V) explicitly in all cases (M, o) as above, when G is simply laced of rank at most
seven.

5.4 Fix a nilpotent orbit O with Bala—Carter Levi mpc, and let o be the generic discrete series
of Hpg, (M = Mpc) parameterized by O.

DEFINITION 5.1. If mpe is a maximal (proper) Levi subalgebra, recall the orbit O constructed
in Proposition 5.2. We say that the W-type u is o-petite if p is a lowest W-type for O or for O'.

If mpe is not maximal, let mq, ..., mg be all of the Levi subalgebras, not necessarily of a
standard parabolic subalgebra, such that mpc C mj, and mpc is a maximal Levi subalgebra of
mj, j=1,..., k. Forevery j, let {y;;}; denote the set of W (M;)-types which are o-petite in m;.
We say that the W-type p is o-petite (in g) if for every j, the only W (M;)-types of o contained
in the restriction ply(yr;) are the petite W (M;)-types pu;.

Clearly, every lowest W-type of X (M, o, v) which contains (O, triv) in its restriction to
W (M) is o-petite.

FEzample. For the spherical principal series, that is, o =triv, M = H, this definition is a

tautology: every W-type is o-petite. The other extremal case is when M is maximal parabolic;
then there are exactly two o-petite W-types, those from Proposition 5.2.
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An intermediate example (for H of simply laced type) is when O = A, the minimal nilpotent
orbit. Then o = St for M = Ay, and a W-type p is o-petite if and only if 1|y 4,) does not contain
the sign representation.

5.5 The following lemma should be compared with Corollary 4.2.

LEMMA 5.2. We have the following results.

(1) The Langlands parameter (M, o, v) is hermitian if and only if v is a hermitian (spherical)
parameter for H(Z(O)).

(2) If (M, o, v) is hermitian, but either v is not a hermitian (spherical) parameter for H(3(O))
or v is not in the semisimple part of 3(O), then X (M, o, v) is not unitary.

Proof. We verify these assertions in §6. For part (2), the method is the same as in
Proposition 5.2(1): we find the two lowest W-types u(O, triv) and u(O, 1), 1 # triv of X (M, o, v),
occurring with multiplicity one, such that the operators A, o tiv) (0, v) and A, 0 .) (0, v) have
opposite signatures. O

5.6 The main result, Theorem 5.1, is a consequence of the construction in this section, which
also provides an explanation of why such a result should hold. The method of calculation is
uniform, but the details need to be checked in each case. (In §6, we only present the detailed
calculations in type Eg.) To help orient the reader, we give an outline of the method.

Recall that X(M,o,v) is an induced module, where o is a generic discrete series
parameterized by a Lie triple {e, h, f} Cm. Also from §2.12, recall that a denotes a Cartan
subalgebra of 3(O) with v € a and C(a, M) C W is defined by (2.11.1). For simplicity we drop
the subscript BC here. By Proposition 2.5, C(a, M) is the image of a homomorphism of W (Z(0))
to W. If w is an element of W (Z(O)), we denote by w its image in W under this homomorphism.

By Lemma 5.2, we may assume that (M, o, v) is hermitian and that v is hermitian (spherical)
for H(3(O)) and in the semisimple part of 3(©). This means that there exists

wyz € W(3(0)) such that wzr = —v. (5.6.1)

Let Aw, (0, v) be the H-intertwining operator (see §2.7) which induces the operators A, ,(0, V),
pew.
The element wz € 3(0) defines a spherical H(3(O))-intertwining operators (3.1.2) a,,)(v),

o —

p(u) € W(3(0)). We would like to show that for p a o-petite W-type, these two operators defined
by wyz actually coincide.

The idea is to decompose Ag, .(0,v) into a product of factors similar to the usual
decomposition of the spherical long intertwining operator (as in §3.1) for H(3(Q)), such that each
factor in Aw, ,(0, v) is identical to the corresponding simple factor in the spherical intertwining
operator of H(3(0)).

For each simple root & € II(3(O), a), we find an element 5, € C(a, M), which induces the
corresponding simple reflection on a. Then the 5, generate a subgroup of C(a, M) isomorphic
to W(3(0)). Let wz be the image in C(a, M) of wy.
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We apply the construction in § 2.7. First, the operators Az, (0, v) decompose into a product
of the form

.Agal“u(a, VO_él) T “4501,6,#(0? VC_%)? (5'6'2)
corresponding to a decomposition Wz = 54, - - - 5q,,-
Fix an @&. The reflection 3, preserves (M, o). By Lemma 2.3 there exists a chain of adjacent
Levi components m =my, ..., mgp =m, such that 5, can be decomposed into a product
Sq =Wk + - - W1, (5.6.3)

as in (2.8.1). The operator As, ,.(o, va) acquires a decomposition accordingly into a product of
maximal parabolic factors of the form Ay, w(Wjo, Wivg), where Wj = Wy, « - - Wi, -

Recall from Definition 2.6 that the space Homyy (a7 [, o] has a natural structure of a W (3(0))-
type, which is denoted p(u), and a structure of W (Z(O)-type, which is denoted p'(u).

LEMMA 5.3. With the notation above, if u is a o-petite W-type (Definition 5.4), and & is a
simple root of 3(O), then

where a,,)5(V) is given by (3.1.3).

Proof. In the discussion above, we have decomposed As, ,(o,vs) into a product of factors,
Awmj p(wjo, wivg), each induced from some maximal parabolic case m; C ¥;. As such, for

every j, the discrete series w;o is parameterized in Hyy, , by a nilpotent element whose reductive
centralizer 3»; in X; is either an s[(2) or a one-dimensional torus.

By inspection, in § 6, we find that in the decomposition induced by (5.6.3), there exists jo such
that 35, = sl(2), and if j # jo, then 35, is a torus. By the definition of o-petite in the maximal
parabolic case, and Proposition 5.2, the factors j # jo do not contribute, while the factor j = jgo
is identical with a,, (V). O

We summarize the construction in the following proposition. Retain the previous notation,
and let Xp(5))(v) denote the spherical principal series for H(3(0O)).

PROPOSITION 5.3. Assume that (M, o,v) (where M = Mpc) is hermitian with v hermitian
for H(3(O)) and wz as in (5.6.1). If p is a o-petite W-type (Definition 5.4), let p(u) be the
corresponding W (3(O))-type (§2.13).
The H-intertwining operator Az, (o, v) on the space
Homyy [p: X (M, o, v)]

coincides with the spherical H(3(O))-intertwining operator a,,)(v) on the space

*

Homyy ;00 [p(1) : Xag0)) (V)] = p(p)"
In this matching, the generic lowest W-type (O, triv) corresponds to the trivial W (3(O))-type.

5.7 Assume that we are in the setting of Proposition 5.3. If the parameter v is such that
Ac(e,v)# Ap(e, v), then the image of the intertwining operator Az, (o, ) is not irreducible.
In this case, by Proposition 2.5(2) (see also the remark after (2.12.5)), we have a decomposition
under the action of Ag(e, v)

X(M,o,v)= P  X(Mov¢)aV, (5.7.1)
(1,Vy)E4G (ev)
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which induces

Homp [u: X(M,0,v)]= @)  Homwlu: X(M,0,v,9)]® V. (5.7.2)

(¥, Vy)eAa(ew)

Recall that the intertwining operators are normalized so that the operator on the generic
lowest W-type is identically one. Then, as in §2.7, Az, (0, v) induces operators

A, (0, v, triv) : Homyy [p: X (M, o, v, triv)] — Homy (i : X (M, o, —v, triv)]. (5.7.3)

Recall that in §4 we constructed the spherical principal series Xﬁ(z(o))(”) (see (4.2.3)) for

the extended Hecke algebra H(Z(QO)), as well as the operators a;)(“,)(l/) (see (4.4.2)).

COROLLARY 5.2. Retain the notation from Proposition 5.3 and (5.7.3). The H-intertwining
operator Ag, (0, v, triv) on Homyy[u: X (M, o, v, triv)] is identical with the H(Z(O))-
intertwining operator a’p,(u)(u) (defined in (4.4.2)) on the space Homyy 7oy [p' (1) : X]%I(Z(O))(V)]’
which in turn is equivalent with the H(3(O))-intertwining operator a,,)(v) restricted to the

subspace ((p/ (p)*)4e(e).

Proof. Follows from Proposition 5.3 and §4.4. O

5.8 Fix O a nilpotent orbit in g, and let M = Mpc, {e, h, f}, and o be as before. Let S(O)
denote the set of o-petite W-types (Definition 5.1). Set

p(&(0)) = {p(n) € W(5(0)) | n € S(0)}. (5:81)
where p(u) is defined in Definition 2.6.

By comparison with the spherical intertwining operators in H(3(0)), the matching of
intertwining operators in §§5.3 and 5.2 tells us the signature of the hermitian form on the
o-petite W-types.

By §3.9, one knows a very small subset of W(;,/(\O)), the O-relevant W (3(O))-types
(Definition 3.1), which are sufficient to detect the unitarity of the 0-complementary series. Call

this set B(3(0)).
DEFINITION 5.2. We say that O satisfies the signature criterion if B(3(0)) C p(&(0)).

Our main criterion of nonunitarity follows from this discussion.
COROLLARY 5.3. We have the following results.

(1) If O satisfies the signature criterion, then necessarily a parameter x = h/2 + v is in the
O-complementary series of H if and only if v is the 0-complementary series for H(3(O)).

(2) IfH is of type E, the only nilpotent orbits which do not satisfy the signature criterion are
4Aq in E7, and Dy + Ay, 2As + 2A4, 4A; in Eg.

Proof. Part (1) is clear. Part (2) is established by computing the o-petite W-types. The
calculations for type Fg are in §6. O

Note that the nilpotent 4A4; in Fg is one of the exceptions in Theorem 5.1, and in fact the
complementary series turns out to be larger than the 0O-complementary series for the centralizer
3(0) = C4.
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For the other cases, 447 in E7, Dy + Ay, 2A5 + 2A1 in Eg, we use ad-hoc additional arguments
involving the signature of some other W-types which appears with small multiplicity (and by
Springer’s correspondence belong to nilpotent orbits close to O in the closure ordering), to prove
the inclusion of the O-complementary series of H into the 0-complementary series of H(3(O)).

5.9 Case O #4A; in Eg. Let us assume that, by the previous discussion, we know that the
complementary series of O is included in the 0-complementary series of H(3(O)).

Using the method of decomposing intertwining operators into factors coming from maximal
parabolic cases (§2.7), and the reducibility points for maximal parabolic cases (§5.2), we can
determine the hyperplanes of reducibility of standard modules X (M, o, v, triv).

We check whether any of these hyperplanes of reducibility intersects the 0-complementary
series of H(3(O)). When this happens, we are in one of the exceptions of Theorem 5.1. In these
cases, we need some extra arguments involving the signature of operators on W-types which
are not o-petite, but they rule out the nonunitary parameters xy = h/2 + v, with v inside the
0-complementary series of H(3(Q)). The details are given in §§6.2.4-6.4.5.

We consider the cases when the reducibility hyperplanes do not intersect the 0-complementary
series; in this case we need to show that the parameters in the 0-complementary series for
H(3(0O)) are unitary for H. Every parameter xy = h/2 + v in this set can be deformed continuously
and irreducibly to a parameter xo = h/2 + vy, for which the corresponding standard module is
unitarily and irreducibly induced from a unitary module on a Levi subgroup. The unitarity is a
consequence of the following well-known result.

LEMMA 5.4. For 0<t<1, let & € 3(m) be a family of characters which depend continuously
on t, and &y is unitary. Assume that Ind%[v ® &] is irreducible, where V is a module for Hy.
If V ® & is hermitian for all 0 <t <1, then Ind% [V ® & ] is unitary if and only if V is unitary.

Case O =4A; in Eg. Here 3(0)=Cy, M =4A; and o = St. The details are in §6.4.1. Using
the signature of the o-petite W-types, we find that the 4A;-complementary series is formed of
parameters y = h/2 + v, where v must lie in one of two regions.

The first region corresponds to v in the 0-complementary series of the H(3(0)), and we can
show that x is unitary by the same deformation argument as in Lemma 5.4.

If x is in the second region, called R in §6.4.1, a more delicate argument is needed. First we
analyze the signature of other W-types, which are not o-petite, and find that there exists only one
possible unitary subregion R3 of R. (The notation and explicit description are given in (6.4.1).)
Now assume v € R3. We deform v continuously to vy, such that X (44, St, v) is irreducible for
v # 1, but X (441, St, 1) is reducible. We find that X (441, St, 1) has two composition factors,
and that they are both unitary. Then we use a signature filtration argument (cf. [Vog84]) to
conclude that X (4A1, St, v) must be unitary.

6. Explicit calculations for type Eg

The simple roots «; and coweights w;, i =1,8 in type Eg are as in [Bou02]. The W-types
for Eg were classified in [Fra70], and we use the same labeling of the irreducible characters.
(See also [Car85].) The W-structure of standard modules is given by the Green polynomials
calculated in [BS84]; we also used the (unpublished) tables in [Alv05]. For restrictions of W-
types and for the computation of the associated W (3(O))-type p(i) to a given W-type p (with
notation as in §5.6), we used the software ‘GAP’. For some of the explicit computations with
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TABLE 3. Embeddings of discrete series.

Type Nilpotent Lowest W-type Levi component

Dy (5,3) 13 x1 Ds

Ds (7,3) 14 x1 Dy

Dsg (9, 3) 1°x1 Ds
(7,5) 14 x 12 As

Dy (11, 3) 19 x1 Dg
(9,5) 15 x 12 Ag

FEg FEg(a1) 6, Ds
E6(CL3) 30;7 A5

Er7 E7(a1) 7q Eg
E7(a2) 27;1 E6
E?(GS) 56(1 D6
Er(a4) 189, Ds + Ay
E7(a5) 315, As + Ay

intertwining operators in the maximal parabolic cases for exceptional groups (see the remark after
Proposition 5.2), we used integer matrix models of W-types, and the software ‘Mathematica’.
The classification and labeling of nilpotent orbits is as in [Car85].

6.1 If a nilpotent orbit is distinguished, it parameterizes discrete series and, in particular, exactly
one generic discrete series. The corresponding infinitesimal characters are in the tables of §7.

For the explicit calculations of intertwining operators that we need (see the remark at the
end of §5.3), when the standard module is not induced from a Steinberg representation on a
Levi subalgebra, we embed it into an induced from the Steinberg representation from a smaller
subalgebra, such that the generic lowest W-type appears with multiplicity one. This is possible
because the rank is small. Table 3 lists embeddings for discrete series. We give the distinguished
norﬁ)r\incipal nilpotent orbit O, the lowest W-type g corresponding to the trivial representation

in A(0), and a Levi component M such that dim Homyy [uo : Ind§,(St)] = 1.

6.2 For the maximal parabolic cases, we verify all of the details of the argument outlined in
the proof of Proposition 5.2. Depending on the details of the discussion, there are three types
of arguments that we consider. For each type, we present the details in one example, then list
the other nilpotents for which the same argument applies. The only exception is the nilpotent
Ay + As + Ay, which we treat separately.

To simplify notation, we denote by po, p, - - -, the lowest W-types (O, triv), p(O, ), . . .,
and by p1, g, . . ., the W-types of the form u(Q’, triv).

6.2.1 Nilpotent Ez. The centralizer is 3(O) = Ay, the lowest W-type is ug =84, and the
infinitesimal character is x = (0, 1, 2, 3,4, 5, —17/2,17/2) 4+ vwg, with v > 0.
The standard module corresponding to O = E7 is X (FE7, St, v). The first reducibility point

is at vg = %, where the generic factor is parameterized by the nilpotent orbit O = Eg(as) and

1597

https://doi.org/10.1112/50010437X09004230 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004230

D. BARBASCH AND D. CIUBOTARU

TABLE 4. Maximal parabolic cases, 3(O) = A, type one.

o X 1o o pa

E; (0,1,2,3,4,5, =3, 1) + vog 84! FEg(az) 112,
Er(a1) (0,1,1,2,3,4, -2 1) + vy 567,  Fs(bs) 560
Dy (0,1,2,3,4,5,6, 0) + v 400, FEg(as) 700
Er(az) (0,1,1,2,2,3, -4 ) + vg 1344!  Eg(bs) 1400/
Az (-4, -8 -9 -3 13 T Ty tuwy 1400, Es(be) 2240,
Fr(as) (0,0,1 1 1,2,-2,5) + vag 7168, Fs(a7) 4480,

TABLE 5. Maximal parabolic cases, 3(O) = A;, type two.

@ X 1o o’ 11 112
Eg+ A1 (0,1,2,3,4, -3, —%.4) + vy 448, Eq(a9) 1344’ 1008’
FEr(a3) (0,0,1,1,2,3, -3, 3) + vis 2268, Dr(ay) 3240, 1050/,
Fr(ay4) (0,0,1,1,1,2, =%, 2) + vig 6075"., D5+ Ay 4536, 840/,
Ag+ A1 (8,-5,-3, 1,37 W 4wy 2835, Ds+Ay 4536, 840,
Eglaz)Ar  (0,0,1,1,2, -3 =3 2) + vy 3150, FEr(as) 7168, 1680,
Ds(a1)A>  (0,1,1,2, =5, -3 —2.3) + vig 1344,, FEglaz)A1 1134, 448,
Ag+A4s  (0,1,2, -3, -3 -2 1 1) 4+ vws 420,  Ds(ay)As 1344, 1134,

lowest W-type p; =112,. The W-types uo and p; have opposite signs at infinity. Since the
nilpotent O’ is distinguished, there cannot be another factor with lowest W-type py for v > vy.
Therefore, pg and pq stay in the same factor for v > vy. The complementary series is 0 < v < %
The other cases of this type are listed in Table 4.

6.2.2 Nilpotent Eg + Aq1. The centralizer is 3(0) = Ay, the lowest W-type is pg = 448/, and
the infinitesimal character is (0, 1,2, 3,4, —3, — %, 4) + vir.

The standard module is X (Fg + A1, St, v), v > 0. The first reducibility point is at vy = %,
where the generic factor is parameterized by the nilpotent orbit Eg(bs) and lowest W-type
1400’,. (However, the argument from the nilpotent E; does not apply here since 448/, and 1400/,
have the same signature at oo.)

At v = 1y there may also be a factor parameterized by the nilpotent orbit O’ = E7(a2) with
lowest W-type pq = 1344/.. The W-types p and g3 may only be separate for v = 1. The reason
is that for v > 1y, any irreducible factor with lowest W-type @1 must also contain the W-type
p2 = 1008’,. However, us does not appear in X (Eg + A1, St, v)|w at all. Moreover, since o and
w11 have opposite signs at infinity, they must be separate at least once, so they are separate
exactly at v = 1. The complementary series is 0 < v < % The other cases of this type are listed
in Table 5

6.2.3 Nilpotent Dr(ay). The centralizer is 3(O) =1T1, and the infinitesimal character is
(0,1,1,2,3,4,5,0) + vr.

1598

https://doi.org/10.1112/50010437X09004230 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004230

WHITTAKER UNITARY DUAL

TABLE 6. Maximal parabolic cases, 3(O) =T7.

O X Ho Io
D7(ay) (0,1,1,2,3,4,5,0) + vin 3240°, 1050/,
Egla1) + A1 (0,1,1,2,3,—2,—-2.3) + vy 4096, 4096/,
Dr(as) (0,1,1,2,2,3,4,0) + v 4200, 3360/,
D5 + As (0,1,2,3, -3, -2, —1,2) + vwg 4536, 840,

The standard module X (D7, o, v), where o is the generic discrete series parameterized by
the nilpotent orbit (11, 3) in the Hecke algebra of type D7, is reducible at v =0, and it has two
lowest W-types for v > 0, po = 3240/, and p, = 10507,

At v =0, X breaks into the sum of tempered modules, each containing one lowest W-type,
which are unitary. For v > 0, pp and g, stay in the same factor, and they have opposite signs
at infinity. There is no complementary series. The generic module is unitary only at v = 0. The
other cases of this type are listed in Table 6.

6.2.4 Nilpotent A4+ Ag + Aq. The centralizer is A;, the lowest W-type is pg = 2835,
and the infinitesimal character is (0, 1, —%, —%, —%, %, %, %) + vwy. The standard module is
X(Ag+ A2+ Ay, St,v), v > 0. The first reducibility point is at vy = %, where the generic factor
is parameterized by the nilpotent O" = A4 + Az and the W-type p; = 420,. There are exactly
two composition factors at this point, one parameterized by O (with lowest W-type ), and the
generic factor. Then, either all of the W-types in the generic factor change sign at v = 1, or none
of them do. A direct calculation shows that the determinant of the operator on the W-type 35/,
has opposite sign to the scalar on the sign representation 17, in this interval. It follows that on
the interval (%, %), also p1 has negative sign. The next reducibility point is at v = 3. A similar
argument as for the nilpotent Eg + A (§6.2.2), shows that X (A4 + Aa + A1, St, v) is not unitary
for v > 1/2. The complementary series is 0 < v < %.

For the rest of the nilpotent orbits in Fg, we check the details of the argument outlined in the
proof of Proposition 5.3 in every case, and determine the correspondences between intertwining
operators on W-types and spherical operators on W (3(QO))-types. The exceptions (i.e. the
nilpotent orbits for which the complementary series is not the same as the 0-complementary
series of the centralizer) are discussed separately. If A; is a root system, and As C A; is a
subsystem, we denote by wy, (A1, Ag), the element w(A7) - wo(As).

6.3 Single lowest W-type orbits

We begin with two representative examples.

6.3.1 Nilpotent Eg. The centralizer is 3(O) = Ga, the lowest W-type is ug = 525/, and the
infinitesimal character is (0, 1, 2, 3,4, —4, —4, 4) 4+ 1,(0,0,0,0,0,0, 1, 1) + 14(0, 0, 0,0, 0, 1, 1, 2),
with v; >0, vy > 0. The standard module is X (Eg, St, v), v = (v, 12).

The subgroup W (3) = W (G2) C W is generated by

§1 = wm(E7, EG), So = 8g. (631)
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TABLE 7. The restrictions of W-types.

Nilpotent

Eg EgAq E7(a2) Eg(b5) Eg(b5) Eg(a5)

W-type 525/ 448, 1344, 1008, 1400, 700,
Multiplicity 1 1 2 1 2 1
Eg C Ey 21, 21y 27:1, 21y 27; 27;, 21y 27;
Ay 2 a2, a0y 2 (2, 1) 1
W(GQ) 1 14 29 15 21 1o

The intertwining operator A(Eg, St,v) decomposes according to the decomposition w,, =
(§1 . 52)3.

The restrictions of W-types are given in Table 7.

On the factor corresponding to 39, the root ag takes values 3v1 + 2v5, 311 + o, and vs.

The factor corresponding to s7 is induced from an intertwining operator for the Hecke algebra
of type E7, with the nilpotent orbit Fg in Er, and infinitesimal character (0, 1, 2, 3,4, —4, —4,4) +
v(0,0,0,0,0,1, —%, %), where o takes the values v1, 211 + v9 and vy + vo.

The reducibility hyperplanes for X (Fg, St,v) are vy, vo 4+ 2v1, 11 + 19 =1 and 2v, + 3vy,
vo + 311, v2 =1 (as in the centralizer Gs), and vy, vo 4+ 2v1, 11 + 19 =5, 9.

The operators match as follows:

W 5250 448, 1344, 1008, 1400, 700/,
W(Gs) 11 1i 2 15 2 1

and all of the relevant W (G2)-types are matched.

6.3.2 Nilpotent D4 + A1. The centralizer is 3(O) = Cs, the lowest W-type is 9 = 700, and

the infinitesimal character is (0, 1,2, 3, —%, %, 0,0)+(0,0,0,0, vy, v1, —vo + 13,19 + v3). The

standard module is X (D4 + Ay, St, v), where v = (v1, 12, 13).

The hyperplanes of reducibility are v; = 1 v; £v;=1, as for the centralizer C3, and

2
l/i:%,%,%, +v; £ v; =4 and :|:I/1:|:l/2:|:l/3:%.
The operators match as follows:
w 700,, 2800, 6075, 5600,

—

W(C3) 3x0 0x3 1x2 0x12

The W-types that match operators from C3 are not sufficient for concluding that the
generic complementary series is included in that for C3. They are positive in the unitary
region for C3: {0< 3 <<y < %}, but also in the region R ={v; +v3>1, v > %, vy —
vy <1, V2+V3<1}.

We also need to use the signature of the operator on the W-type 4200,, which has
multiplicity four.
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Among the extra hyperplanes of reducibility, v1 + 19 —v3 =2 cuts the region R into two
open subregions as follows.

— Region Ri: v1 + 19 — 13 < %, sample point (1, %, 1%) The determinant of 4200, is negative

in this region.

— Region Ro: 11 + 19 — 13 > 3 5, and the determinant of 4200, is positive. We choose a point
on the boundary of the reglon, which is unitarily induced: (%, %, %) The corresponding
parameter is induced from D7, with (0, 1,2, 3, g, g, %) in D7. Furthermore, this can be

deformed irreducibly to (0,1, 2, 3, —%, %, %), which unitarily induced from (0, 1, 2, 3, )

D5 and the signatures are induced from Ds. In Ds, for this parameter, 212 x 0 and 14 x 1

have opposite signs.

Since 4200, contains in this restriction 213 x 0 and 1% x 1, it follows that the form is indefinite
on it, so the lowest W-type factor is not unitary at this boundary point. However, then the entire
region Ry must be nonunitary.

6.3.3 We list the matching of W-types for the other nilpotent orbits in Eg of similar kind.
The infinitesimal characters x = h/2 + v are in the tables in §7.

6.4 Exceptions

6.4.1 Nilpotent 4A1. We present the case of the complementary series for the nilpotent
orbit 4A4; in detail. This is the only case in which the complementary series is larger than
the O-complementary series of the centralizer, which is of type C4. The standard module is

X (44, St 1/) = (v1, 2, 3, 14), and it has lowest W-type pg = 50,. The infinitesimal character
is (0,1, — 2, 2, %, ;, 0,0) + (0,0, v1, 11, Vo, Vo, —V3 + Vg, U3 + 1y).
The operators match as follows.

W 50, 210, 560, 567, 300,

—

W(Cy) 4x0 0x4 1x3 0x13 0x22

These W-types only change sign when passing a hyperplane as in Cy: v; = % and +v; +v; = 1.
We know that the region v4 < % is the only unitary 0-complementary series in Cy. The W-types
above are not sufficient however to rule out all other (four-dimensional) open regions in Cy. They
are all positive semidefinite also in the region R = {11 + vy < 1, o+ v3<1l,vo+ vy > 1,03 > %}

3

The hyperplanes of reducibility —vs +v3 +vs=15, —v1 +v3+ 14 :% and v1 +v3+ 1y :%
cut the region R into the following open regions:
(i) R {I/1+V4<1,V2+V3<1,V2+V4>1,V3>%,—V2+V3+V4>%};
(i) Re={mi+wm<lvo+rvs<lyvg+uvy>1, V3>%,—V2+V3+V4<%<—V1+V3+V4};
(iii) Rg—{l/1+u4<1 vo +v3<1l,vg+uvg>1, V3>2, V1+V3+V4<%<I/1+V3+1/4};
(iv) Ra={ri+wmu<lve+uv3<lvg+uvy>1, V3>2,V1+I/3+V4>2}

In R1, Re and R4, one can deform the parameter to v; = 0, where the module is unitarily
induced irreducible from a nonunitary module attached to 44; in Fx.

ProproSITION 6.1. The open region R3 is unitary:

i+ <1, m+uvs<lvg+uyy>1, —u1—|—1/3—|—1/4<%<ul+1/3+1/4}. (6.4.1)
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TABLE 8. Nilpotent orbits O with single lowest W-type.

o 3(0) Matching
e G 525. 448, 1344, 1008, 1400, 700,
6 2 11 14 22 13 21 12
972, 2268, 3240, 1050,
Ds B2 2x0 11x0 1x1 0x2
4200, 6075, 2835/,
Ao 24 @e) ()o@ @0l
3200, 5600, 6075,
Ds 1A 24 @8 @ell) (11)ed11)
2016, 3150, 4200,
As A 24 @e) @el) (1))
b 5 2100, 3200, 5600, 2400, 6075,
5 3 3x0 12x0 2x1 0x3 1x2
6075, 4200, 2400,
Ds(a) + A 24 @8 @edl) (1)@
5600. 3150, 7168, 5600, 4480, 1680,
Eg(as) Go 1, 1 2 2 2, 13
N Gu 4, 3200 2016, 5600, 4200, 3150, 4480, 1680,
(11),(2)  (14),(2) (11),(11) (22),(2) (La), (11) (21),(11) (1s),(11)
4536. 2835, 6075,
AatAs 24 @8 @l (1))
840, 4200, 4536,
2A3 B2 2x0 11x0 1x1
700..  2800. 6075, 5600.
Da+ Aq Cs 3x0 0x3 1x2 0xI12
1400.. 4096/, 2240,
Ast Azt A 24 @2 )o@ @0l
1050, 1400, 972, 3240,
Az + 241 Bt i 00022 (0x2)®(@2) (11x0)®(2) (0x2)@(11)+(1x1)o(2)
175, 1050, 972, 3240,
282 +2A4 Bs 2%x0 11x0 0x11 1x1'
o - 525, 700, 2800. 2100, 6075, 4200. 5600.
4 4 11 23 42 21 91 83 81
1344, 1400, 1050, 1400, 350,
Az t+As BstAdr 5 0002 @Bx0)odl) (21x0®(2) @xDadl) (0x3)a (1)
448, 1344, 175 1050,
2A2+ A Gatdi 100 Le(l) L) 2 11)
A 5 567, 1344, 1400, 56, 1050, 1400, 350,
3 5 5x0 41x0 4x1 0x5 32x0 3x2 1x4
400, 700, 148, 1344, 1008. 1400,
Az +3Aq Gatdi 0@ Le(l) Ledl) 2ol lyo(ll) 2io(11)
560, 567, 400, 700, 300,
Az +2A, BstAdi 5 002 @Bx0)edl) (12x002(2) @ExDe@) 0x3) Q)
50, 210, 560. 567, 300,
4A1 Ca 4x0 0x4 1x3 0x13 0x22
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TABLE 8. (Continued.)

(@] 3(0) Matching

844 112, 504 2104 160,

L®R) Lel) 23202 4011 29®11)

35, 84, 112, 28, 50,

6x0 15x0 5x1 0x6 33x0

8 35 84, 50;

la Ta 21, 15,

O =2A5 + 2A;: although not identical with 1 x 1, the operator on 3240, has the same signature as 1 x 1
in the open regions of Bs.

3A1 Fu+ Ay

2A1 Bs

A]_ E7

Proof. We divide the proof into four parts.

Step 1. The generic modules are unitary on the walls of R3.

For each wall, we find the nilpotent orbit O’ parameterizing the generic module: vy + vy =
1, o +v3=1, 1o +v4 =1 correspond to As + 241, and v1 +v3+vs= %, —vturvst+uyy= %
correspond to As + 3A;1. The claim follows then by comparison with the complementary series
attached to the nilpotent orbits A + 247 and Ag + 3A4;.

We deform the parameter to a particular point on the walls: p = (%, 13—2, 1%, 1%) The point p
lies at the intersection of the walls vo +v3=1 and 19+ 14 =1. The corresponding point

1 : . ‘o= 5 7 3 9 18
p = 5h+p, in Eg-coordinates is p= (0, 1, =13, 15, =15 15> 19+ 0)-

Step 2. The standard module X (441, St,p) has two composition factors: X (441, St,p) and
X(Ag + 244, St, p).

The standard module X (441, St, p) is reducible. A necessary condition for a nilpotent 0" > O
to parameterize a composition factor is that wp = %h' + v/, for A/ the middle element of a Lie
triple {e’, 1/, f'} of O', we W and V' € 3(0’). We check that the nilpotent O satisfying the
condition are As + Ay and As + 2A;1, so potentially there are three factors. Here As + 2A4;
parameterizes the generic factor. The lowest W-type of As + A; is 210,, and the operator on
210, matches 0 x 4 in (Y, so it is invertible at p.

Step 3. The non-generic factor X (441, St, p) is unitary.

The point p is unitarily induced reducible from D7. The corresponding nilpotent in D7 is
(13243) and the infinitesimal character is of the form (0, 1, —% + vy, % + vy, —% + s, % + g, 13),
with (71, g, 3) = (%, %, %) Moreover, the parameter in D7 can be deformed irreducibly to
a unitarily induced from D3 x GL(4), where the parameter on Ds is (0, 1, 35) (nilpotent (133)

12
in D3) and on GL(4), it is (=%, 3, -2, 3) + (35, — 15, — 13+ 13) (nilpotent (22)). Therefore, the
signature of the form on Eg can be computed from the signatures on D3 and GL(4) as follows.
Ds 0,1,v) v=18 111x0 11x1 12x0
+ -+ —~
GLM4) (-3+v.i+v,-t-vi-v) v=% (220 (211) (1%
- - -

The signature of the hermitian form on Dz x GL(4) will therefore be (24,12). The
unitarily induced form on D7 will have signature (13440, 6 720) and the unitarily induced
form in Eg has signature (29 030400, 14 515 200). Since the W-dimension of X (A +24;) is

1603

https://doi.org/10.1112/50010437X09004230 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X09004230

D. BARBASCH AND D. CIUBOTARU

|W]/|W(A2)W7(A1)2| =29030400 and X (A2 + 2A;) is unitary, it follows that the induced form
on the factor X (44;) is (negative) definite, so after the appropriate normalization, the factor
X (4A4,) is also unitary.

Step 4. In the interior of R3, the intertwining operator A,(4A;,St,v) is positive definite for
all peWw.
It is sufficient to calculate the intertwining operator on a single W-type which appears in

both factors X (441, St,p) and X (Ag + 241, St, p). The W-type 560, has this property, and
Aseo, (441, St, v) = a1 x3(v) which is positive definite inside R3. This concludes the proof. O

6.4.2 Nilpotent Dg(a1) + A1. The centralizer is 3(O) =2A;, the lowest W-type is pg=
6075, and the infinitesimal character is (0, 1, 1, 2, 3, —% + vs, % + v9, 2v1). The standard module
is X (D5 + A1, 0 ®St, v), where v = (v1,15) and o is the discrete series parameterized by the
nilpotent (73) in Ds.

The matching of operators in Table 8 imply that the complementary series is
included in {0 < <1,0< 12 <1/2}, the complementary series of the centralizer. There are
hyperplanes of reducibility 2v; 4+ v = % which cut this region. We need to use the scalar operator
on 1344,, (a W-type with multiplicity one). This is negative in the region {2v; —1n < % <
2v1 + Vg, 19 < %} It follows that the complementary series is {0 < v < %, 2V + 19 < %} and
{0<V1<1,2I/1—V2>%}.

6.4.3 Nilpotent A4+ Ag. The centralizer is 3(0)=2A4;, the lowest W-type is 4536,
and the infinitesimal character is s= (—%, %, —%, —%, —%, %, %, %) +1»(1,1,0,0,0,0,0,0) +
v1(0,0,1,1,1,1,1,5), with »; >0 and vy >0. The standard module is X (A4 + Ao, St,v),
v=(v, ).

The matching of operators in Table 8 imply that the complementary series is included in
{0< v <1/2,0 < vy < 1/2}, the complementary series of the centralizer. There are hyperplanes
of reducibility 511 + vo = 2 which cut this region. We need to use the scalar operator on 420, (a
W-type with multiplicity one). This is negative in the region {511 — vy <2 < 5y + 19, 12 < %} It
follows that the complementary series is {0 < vy < %, S+ <2bU{0<1y < %, Svp — vy > 2}

6.4.4 Nilpotent A + 3A1. The centralizer is 3(O) = Gy + A1, the lowest W-type is pg =
400,, and the infinitesimal character is (0,1, —1,0, —1,0, —%, %) +11(0,0,1,1,1,1, —-2,2) +
v2(0,0,0,0,1,1,—1,1) +13(0,0,0,0,0,0,1,1). The standard module is X(As + 341, St,v),
v= (v, v, 13).

The matching of operators in Table 8 imply that the complementary series is included in
{81+ 21<1l,13< %} and {3v1 +1v2>1>20) + 19,13 < %}, the complementary series of the
centralizer. There are hyperplanes of reducibility 3v; 4 2v9 4+ v3 = %, 31 + 219 — 3= % and
3v1 + v+ 3= % which cut the second region into five (open) subregions. We need to use the
determinant of the operator on 175, (a W-type with multiplicity two). This is negative in two
of the five subregions. It follows that the complementary series is the union of four regions (see

§ 7 for the explicit description).
6.4.5 Nilpotent Ag + 2A1. The centralizer is 3(O) = B3 + A1, the lowest W-type is po =

560,, and the infinitesimal character is (0,1, —1,0,1,0,0,0)+ (0,0, v, v1, 11, V2, V3, v4). The
standard module is X (Ag + Ay, St,v), v = (v1, 12, V3, 14).
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TABLE 9. The restrictions of W-types.

Nilpotent

Dy(ay) Dy(aq) Dy(aq) Dy(a1)Ar Az As
W-type 1400/, 1008, 56", 1400/, 32407,
Multiplicity 1+04+40 04140 0404+1 24140 3+3+0
Ds 211 x 1 211 x 1 13 x2 2.-211 x 1 6-211x1

13 x 2 2-13x2 3-13x2

A 2 2.2 (2)  3-(2),(11) 6-(2),3-(11)
W(F4) 11 21 12 42 91
Dy 4x0 2-4x0 4x0 3x1 2x2,31x0

The matching of operators in Table 8 imply that the complementary series is included
in the complementary series for the centralizer By + A1 : R1={0<v; <1, v3+rv4<1} and
Ro={0<11 <1l,va+wv4>1,10+1v3<1,v4<1}. There are hyperplanes of reducibility 3v; +
vo+uvs—uvy=3, vy —vo—v3t+uvy=3, 3+ —v3+vs=3, 3vy—1re+rst+urys=3, 3v;+
vy + v3 + v4 = 3, which cut Ry and R5 into 12 open subregions. We need to use the determinant
of the operator on 448, (a W-type with multiplicity four). This is negative in five subregions,
the other seven forming the complementary series (see § 7 for the explicit description).

6.5 Multiple lowest W-types orbits
We begin with two typical examples.

6.5.1 Nilpotent Dy(ay). The centralizer is 3(O) = Dy, with component group A(O) = Ss.
The infinitesimal character is (0,1, 1,2,0,0,0,0)+ (0,0, 0,0, v4, v3, V2, V7).

The standard module X (Dy, 0, v), v = (v1, 19, 13, v4), with o the discrete series parameterized
by the nilpotent (53) in Dy, has three lowest W-types, po = 1400, uf = 1008,, and uj = 56,.
Note that i has multiplicity two. They have the same signature at infinity, and stay in the same
factor unless the parameter satisfies v4 =0 or 1 — 9 — 3 — vy = 0.

If, for example, v4 = 0, the standard module corresponding to the generic case is X (D5, o’, V),
V' = (v1, 19, 3), where ¢’ is the generic limit of discrete series parameterized by the nilpotent
(5311) in Ds, and it contains two lowest W-types, po and pg.

If, vy, =0 and v; — 9 — v3 — vy = 0, the standard module corresponding to the generic case is
X (Es, 0", V"), V" = (11, 12), where ¢” is the generic limit of discrete series module parameterized
by the nilpotent orbit D4(a;) in Eg, and it contains a single lowest W-type, po.

The subgroup C(a, M) = W (F}) is generated by
S1 =88, 82=87, 83= wm(D5(2), D4), S4 = wm(D5(1), Dy), (6.5.1)

and the subgroup W (3) = W (Dy) by {83 - 52 - §3, S2, S1, S4- 53528354}

The restrictions of W-types are as in Table 9.

In addition to the hyperplanes of reducibility as in Dy, there are the following reducibility
hyperplanes: v; =2,3,1=1,4, +v1 + 15 + v3 + vy =4, 6.

The operators (normalized by the scalar on ) match operators for the Hecke algebra of

type Fy with parameter 0 on the long roots, or equivalently operators for the Hecke algebra
of type Dy (see §4.6):
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1% 1400, 1008, 56, 1400, 3240,
W(F4) 11 21 12 42 91

—

W(Ds) 4x0 2-4x0 4x0 3x1 2x2+431x0

6.5.2 Nilpotent A4. We realize the Bala—Carter Levi subalgebra m = {as, ag, a7, as}.
The centralizer of the nilpotent orbit is 3(O)= A4, and it is realized by {as,aq,
(—3.—3.4, 3.4, 22 1), ay}. The infinitesimal character is x = (0,0, -2, -1, 0,1,2,0,0) +
(V4, —v1 + 9, V3, V3, V3, V3, V3, V] + VQ).

The standard module X (A4, St, v), v = (11, 12, 3, v4) has two lowest W-types, uo = 2268,
and g, =1296,. They have opposite signs at infinity, and they are separate if and only if
v3 = v4 = 0. We assume that this is the case; therefore, x = (0, —v1 + v, —2, —1,0, 1, 2, v; + v9).
The standard module corresponding to the generic case is X (Dg, o, v), v = (v1, 12), where o
is the generic limit of discrete series parameterized by the nilpotent (5511) in Ds.

The subgroup W (3) = W (A4) C W is generated by

51 =83, 82 =51, §3:wm(A5,A4) -wm(D6,A4) - S1 "wm(Dg,A4) -wm(A5,A4), S4 = S9.
(6.5.2)
The intertwining operator decomposes according to the decomposition w,, =51 - 52 - 53854 - 81 -
So 838189+ 87.
We compute the restrictions of W-types as in §6.5.1. The operators on W-types in the generic
factor of X (A4, St, v) match hermitian spherical operators in A4 as follows:

W-type 2268, 4096, 4096, 4200, 3360,

W (Ay)-type (5) (41) (41) (32) (32)
eigenspace of wo(A44) +1-eig. +1-eig. —l-eig. +1-eig. —1-eig.

6.5.3 We list the matching of W-types for the other nilpotent orbits of similar kind in
Table 10. The infinitesimal characters are in the tables in § 7.

7. Tables of generic unitary parameters

7.1 Parameters for O #0

Tables 11, 12 and 13 contain the nilpotent orbits (see [Car85]), the hermitian infinitesimal
character, and the coordinates and type of the centralizer.

The nilpotent orbits which are exceptions are marked with * in the tables. The description
of the complementary series for them is recorded after the tables. For the rest of the nilpotents,
an infinitesimal character y is in the complementary series if and only if the corresponding
parameter v is in the 0-complementary series for 3(Q). The parameter v is given by a string
(v1,...,v), and the order agrees with the way the centralizer 3(O) is written in the tables. The
parts of v corresponding to a torus 77 or 7% in 3(O) must be zero, in order for x to be unitary.
In addition, if v corresponds to Ay, the complementary series is 0 < v < %, while the notation A‘i
means that it is 0 < v < 1. If a string (v1, . . ., %) of v corresponds to type Ay, the last k — [k/2]
entries must be zero in order for y to be unitary. For example, in the table for Fg, for the
nilpotent A4 + Aj, the v-string is (v1, 12, v3) and the centralizer is As + T7. This means that the
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TABLE 10. Nilpotent orbits O with multiple lowest W-type.
o 3(0), A(O) Matching
2800°, 4096, 4096,
Es(a1) Az, 7o (3) (21) (21)
+1-eig. +1-eig. —1l-eig.
5600, 2400 6075!
D 2A1, 7 z Z z
s(a1) b 22 @@ @ed)+(11)x(2)
4200 2688 7168
D 2A1, 7 Y Y v
o(22) i @@ @@ @e0)+1)e®)
4200, 1344, 3150,
Di+ Az Az, Zo (3) (21) (111)
+1-eig. +1-eig. +1-eig.
4200, 4536,
Ay +2A, A1+ T1,Zs (2) (11)
2800, 6075, 4200,
Ds(a1) As, L» (4) (31) (22)
+1-eig. +1-eig. +1-eig.
4096, 4200, 3360
As+ Ay A +T1,Zs (3) (21) (21)
+1-eig. +1-eig. —1l-eig.
2268, 4096, 4096, 4200, 3360,
Ay Ay, Zo (5) (41) (41) (32) (32)
+1-eig. +1-eig. —1l-eig. +1l-eig. —l-eig.
2240, 4096 4096,
D4(a1) + Ao As, 7o (3) (21) (21)
+1-eig. +1-eig. —l-eig.
3240, 1400,, 2240, &840,
As + Az Bt T2z 50 q11x0 1x1 0x2
1400, 3240,
D A 344, S
sl@) A 341, 5 @22 ()e@)e(@2)+2)e1)e2)+(2)®(2)e(11)
1400, 1008, 56, 1400, 3240,
Da(as) D, S5 4%x0 2-4x0 4x0 3x1 2x2+431x0
700, 300, 448, 1344, 1400, 1008,
2A. 2Gl2, Zo LeoL 14®1; 22011 21011 13®@1
Lol Liels 11®2 11®21 1:1®13
210, 560 400,
Az +A; As (6) (51) (33)
+1-eig. +1-eig. +1-eig.
112, 210, 160. 560, 400, 700, 300,
Ao Es 1, 6p 6p 20, 154 30, 15,
+1-eig. +1-eig. —1l-eig. +1-eig. +1-eig. +1l-eig. —1l-eig.

unitary parameters are those for which 3 =0 (this is the T}-piece), vo =0 and 0 < vy < % (this
is the 0-complementary series of Asg).

There is one difference in Eg due to the fact that we only consider hermitian spherical
infinitesimal characters x. In Table 11, the v-string already refers to the semisimple and hermitian
spherical parameter of the centralizer. For example, the nilpotent Ay + Ay in Fg has centralizer
Ay + T1, and the corresponding x has a single v. This v corresponds to the hermitian parameter
in the Ay part of 3(0), so it must satisfy 0 < v < %
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TABLE 11. Table of hermitian parameters (O, v) for Eg.

()] X 3(0)
Fe (0,1,2,3,4, —4, —4, 4) 1
Eo(ar) (0,1,1,2,3, -3, —3,3) 1
1 1 3 3 5 5 5 5
D5 (575757575,_57_575) Ty
Fe(as) (0,0,1,1,2, -2, —2,2) 1
D5(a1) (i7%7%7%a_%7_£7£) T1
11 7 3 1 5 5 5 5 11 1 1 1 1
A5 (_17_17_17Z:27_17_17§)+V(§,§7§7§7§7_§7_7 B Al
A4+A1 (07%7%717%77%77%7%) T1
Dy 0,1,2,3,v, —v, —v, v) Ao
A4 (_27_170,172707070)"’_”(%7%7%7%7%7_%7_%7%) Al +T1
Da(as) (0,0,1,1,1, 1, -1, 1) Ty
5 1 3 5 1 3 3 3 1 1 1 1 1 1
A3+A1 (_17_1317_17_13_Z)_Z7Z)+V(§?§7§7§a§7_§a_7 2 A1+T1
2A2+A1 (07 17 27_%7%7_57_%7%)"'”(0707 17 1717_11_17 1) Al
A (-2,-1,1,20,0,0,0)+ (%, 4,4 U ra v vz 12 By + T;
3 2y T 2y 32r 2% Uy, 27 29 23 2 2 2 2 1
5 1 3 3 1 1 11 1 1 1 3 3 3 3 3
A2+2A1 (Za_Za17_1725_17_17Z)+V(_§’§7§a§7§a_§a_§’§) A1+T1
T T A 2
(Q ve 2ui1+vy 2vi4vg 2vi4ve | 2vi1+4ve  2v1+4vg 2V1+V2)
27 20 2 ’ 2 ’ 2 ) 2 ) 2 ) 2
11 1 1 11 1 1 1 1 1 1
A2+A1 (75557717057577577575)4»”(575757575575777 b} A2+T1
As (0,-1,0,1,0,0,0,0) + (=472, =42, 245
—vitvey —vitry wvitvy —vitvy —vitva V1+V2)
2 ? 2 ) 2 ) 2 ? 2 ? 2
3A1 (07 17_%7%70707 07 O)+(O7 07 V17V27V17_V17_V17V1) A2+A1
24, (=14 -1100,0,0)+ Bs +T1
PRI R R R
(*V1+V2 —vitvy wvitve wvidtve vi _vi _vi ﬂ)
2 ) 2 ) 2 ) 2 20 2 27 2
Ay (%7%707070707070)4_(%%71’1;71/27 A5

—V 1% V] — UV 1% 1% v 1% 1% 1% 1% 1%
12+2+l/3, 12 2+I/3, 1-5277 1;2 _vitva vitvs

? 2 ) 2
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TABLE 12. Table of parameters (O, v) for Er

(@) X 3(0)
7
E7 (07172a 3743 57_17?g) 1
3 13
E7(a1) (07171727 37 47_1771?) 1
11 11
E7(a2) (07171727 2, 3,_?77) 1
E7(a3) (07 Oa 17 17 27 37 7%7 %) 1
Es (0,1,2,3,4, —4, —4,4) +1(0,0,0,0,0,1, -1, 1) Al
Ds (0,1,2,3,4,5,0,0) + 1(0,0,0,0,0,0, —1, 1) Ay
EG(al) (07151a27 33 73, 737 3)+V(0a 07 07 07 Oa lafévé) T1
T 7
E7(a4) (07071a171727_§7§) 1
De(a1) (0,1,1,2,3,4,0,0) + (0,0,0,0,0,0, —1, 1) Ay
Asg (_%’_27_33_%’%7%’_%’g)—’_y(%’%’%’%’%’%’_l’l) Ali
Ds + Ay 0,1,2,3,-2,-2,-2,2)+1(0,0,0,0,1,1, -1, 1) Ay
5 5
E7(a5) (0,07 1, 17172,_575) 1
De(az) (0,1,1,2,2,3,0,0) + 1(0,0,0,0,0,0, —1, 1) Ay
Atd LR A R LR DR BLLLEL-LD A
Ds (0,1,2,3,-2,-2,-2,2) + 11(0,0,0,0,1,1, -1, 1) 24,
+15(0,0,0,0,—1, 1,0, 0)
Eﬁ(a3) (0707]-’1723 27_27 2)+V(0707 Oa 07 07]-’_%7%) AI{
Ds(a1) A1 0,1,1,2,-2,-1,-3,3)+1(0,0,0,0,1,1, -1,1) Al
(A5)/ (_ga_%7_%v%a%723070)+V1(050707050705_1a1) A1+Al{
+V2(%7 %a %a %7 %7 %>0a 0)
A4+A2 (071527 72771507717 1)+V(07 07 07 17 17 177%7%) A{
(A5)” (gv_%v_%aévgvgaov 0)+V2(03 0,0,0,0, 05_171) G2
EAE SRR T
Ds(a1) (0,1,1,2,3,0,0,0) + 11(0,0,0,0,0,0, —1, 1) A+ T
+l/2(07 07 07 07 07 17 _%7 %)
A4+A1 (%77%77ia%7%77i37%7i)+y1(%a%7%7%a%7%77131) T2
+V2(07 07 07 07 07 17 _%7 %)
Dy+ Ay (0,172737_%7%7070)—’—”1(0707070, ;7_%7_%7%) B;
+V2(07 07 0707 %7 %7 _%7 %
As+ A+ A (0,1,-2,-1,0,1, -3, ) +7(0,0,1,1,1,1, -2, 2) Ay
A4 (0,—2,-1,0,1,2,0,0) +21(0,0,0,0,0,0, —1, 1) Ay +Th
+V2(_%> %7 %7 %7 %7 %7 _%7 %) + V3(%7 %7 %7 %a %7 %7 _17 1)
As + A, (0,1,2,—1,0,1,0,0) + v1(0,0,0,0,0,0, —1, 1) A+ T
+15(0,0,0,1,1,1,0,0)
Dy (0,1,2, 3, l/2—l/1,l/2—‘r1/1,—l/3,1/3) Cs
Da(a1) + A; (0,1,1,2,—-1,1,0,0)+ (0,0,0,0, vz, v2, —v1, 1) 241
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TABLE 12. (Continued.)

O X 3(0)

Az 4+ 244 (0,1,-2,-2,2,2,0,0)+ (0,0, va, v2, v2, 2, =11, 111) 24,

Dy4(ar) (0,1,1,2,v2 — v3, V2 + v3, —11, V1) 3A,

(As+ A1) (0,1,2,0,—%,1,0,0)+(0,0,0,2vs, v3, v3, —11, 11) 34,

245 + Ay (3, -5 2, -3, -4 2 —2 ) +wn(1,-1,-1,1,1,1,0,0) 2A:
DA RS B

(A3+A1)” (%7 %,% % _% %7070) B3

b) b b
_A'_(_ﬂ vy Y1 V1 v3—vy v3—vy _ Vv3+vy V3+V2)
27207 297 2 2 ’ 2 2 ? 2

)

Az + 344 (0,1,-1,0,-1,0, =%, 2) +14(0,0,1,1,1,1, -2, 2) G2
+V2(0705 07 071317_17 1)

245 (b b=t b b L D) nO0 L L1~ —1 1) Gat A
+V2(§7%7%7%7%7_%7_7 7)+V3(OOOOO 1, 272)

As (0,1,2, 1, v2, 13, 14) Bs + Ax

*As +24;  (0,1,-1,0,1,0,0,0) + (0,0, vz, v2, v2, v3, =11, 1) A; + 245

A2—|—A1 (1 O 1 0 2, 2, ) (O, 07 O, 0, 1/271/27_1/171/1) A3+T1
+1/3(0707 07 17 17 17 7%7 %) +V4(7%7 %7 %a %7 %7 %7 7%7 %)

4A, (0, 1,—%,%,—%,%,0, O)+(O, 0, 7/3,1/3,1/2,1/2,—1/1,7/1) Cs

A2 (10100000)+(0000V2 V37V2+V3, 1/17111) A5
+V4(_%7%7%7%7%7%7_5’5)—"_”5(0OO 1 1 1 272)

(3A1)l (7%7%77%7%77%7%707 0)+(V17V17V27V25V37V3771/471/4) O&+Al

(3A1)" (% % % %,—%,%,0, O)—‘r(—1/4,1/4,1/3,1/3,1/2,1127—1/1,1/1) Fy

2A; (0,1, v1, v2, 3, V4, —Vs5, Us) By + Ax

Al (V1+V2+V3 V47 V1+V2;V3+V4’ 1/1*11242r1134rv47 *V1+V22+V3+V47 Dg

—v5+ 1 —v5+ vstve vs+v

7§+ v V67§+ V52V677 267 26)

E7 exception:

A +2A;. Three regions: {0<v1<1/2,0<1n<1,0<r3<1, 1y +31n/2+1v3/2<3/2},
{0<V1<1/2,0<l/2<1,0<l/3<1,—V1—|—3l/2/2—|—l/3/2<3/2,l/l—|—3V2/2—I/3/2>3/2}, and
{0<V1<1/2,0§I/2<1,0§I/3<1,31/2/2—|-V3/2>3/2,V1—|—3V2/2—I/3/2<3/2}.

Eg exceptions:

As+Ax+ AL {0<v< 3}

Ds(a1) + A1. Two regions: {0 <1a < %, 21 + 1y < %}, 0K <1,2y —1p > %}
A4+ Ag. Two regions: {0 <1p < %, S+ 1y <2}, and {0< 1y < %, Sy —vg > 2}

A5 + 3A,. Four regions: {3V1+2V2<1,0§I/3<%}, {2V1—|—I/2<1<31/1+V2,0<V3<%,3I/1+
2V2+V3<%}, {2V1+V2<1<3V1+1/2,0<V3<%,3V1+V2—|—1/3<%<3V1+2V2—I/3}, and
{2V1+I/2<1<3I/1+U2,0<I/3<%,31/1—|—2U2—I/3<%<3V1—|-V2+V3}.

Az +2A;. Seven regions: {0<v; <1l,v34+1vy4<1,31+1va+rv3+14<3}, {0<1y<l,u3+
vy <1,3v1 + v — 3+ <3<3v; —vo+vs+ sl {0<m <lv3+wvs<1,3v; —v9 —v3+
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TABLE 13. Table of parameters (O, v) for Eg.

0] X 3(0)
Es (0,1,2,3,4,5,6,23) 1
Es(ay) (0,1,1,2,3,4,5,18) 1
FEs(az) 0,1,1,2,2,3,4,15) 1
Es(as) (0,0,1,1,2,3,4,13) 1
Es(aa) (0,0,1,1,2,2,3,11) 1
Er (0,1,2,3,4,5, -3, 1) +1(0,0,0,0,0,0, 1, 1) Ay
Es(bs) (0,0,1,1,1,2,3, 10) 1
Es(as) 0,0,1,1,1,2,2,9) 1
Er(ay) (0,1,1,2,3,4, -1, 13) +(0,0,0,0,0,0,1,1) Ay
Es(bs) (0,0,1,1,1,2,3,8) 1
Dy (0,1,2,3,4,5,6,0) +(0,0,0,0,0,0,0,2) Ay
FEg(ag) 0,0,1,1,1,2,2,7) 1
Er(a2) (0,1,1,2,2,3, -4, 1) +1(0,0,0,0,0,0, 1, 1) Ay
Es + Ax (0,1,2,3,4,—5,—-%,4)+1(0,0,0,0,0,0,1, 1, 2) Ay
Dr(a1) (0,1,1,2,3,4,5,0) +(0,0,0,0,0,0,0,2) T
Ex(bg) 0,0,1,1,1,1,2,6) 1
Er(as) (0,0,1,1,2,3, -5, 2) +1(0,0,0,0,0,0,1, 1) Ay
Es(a1) + A (0,1,1,2,3,-2,-2,3) +1(0,0,0,0,0,1, 1, 2) T
A 4233530006 EE LD T
Es (0,1,2,3,4, —4, —4,4) +11(0,0,0,0,0,1,1,2) e
+12(0,0,0,0,0,0,1,1)
De (0,1,2,3,4,5, 11, 1) B
Ds + As 0,1,2,3,-3, -2, —-1,2) +(0,0,0,0,1,1,1,3) Ty
Es(a1) (0,1,1,2,3,-3,-3,3) +12(0,0,0,0,0,1,1,2) As
+u1(0, 0,0,0,0,0,1,1)
FEz(a4) (0,0,1,1,1,2, -1, 1) +1(0,0,0,0,0,0, 1, 1) Ay
AtA (B3R R LR DR RS %, b5 4
Dg(az) (0,1,1,2,3,4,0,0) 4+ v1(0,0,0,0,0,0, —1, 1) 24,
+(0,0,0,0,0,0,1,1)
Ag (-3,-2,-1,0,1,2,3,0) + v2(3, 3. 3 3 3+ 3+ 5+ 5 24,
QR Wk
Es(ar) (0,0,0,1,1,1,1,4) 1
Ds + A, (0,1,2,3,4,—%,1,0) +11(0,0,0,0,0,0,0, 2) 24,
+12(0,0,0,0,0,1,1,0)
Er(as) (0,0,1,1,1,2, -2, 2) +1(0,0,0,0,0,0, 1, 1) Ay
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TABLE 13. (Continued.)

o X 3(0)

EG(G‘3)+A1 (07 0,1, 1727_27_%72)+V(07 0,0,0,0,1, 172) Ay

Ds(az) (0, 1,1,2,2,3, —v1 + v2,v1 + 1/2) 244

Ds(a1) + Az 0,1,1,2,-2,-2,-1,2)+1(0,0,0,0,1, 1,1, 3) Ay

As + Ay (i,—%,—g,—%, i,%, Z, 4)—1—112( 1,0,0,0,0,0,0,1) 24A;
+V1(§7 %7 %7 %7 %7 %7 %7 %)

A4+A3 (07 15257577%77%3571)+V(05 07Oa la 1713174) A1

D5 (071727 3a4a 7/171’277/3) B3

Es(as3) (0,0,1,1,2, -2, —-2,2) +11(0,0,0,0,0, 1, 1, 2) Go
+22(0,0,0,0,0,0,1,1)

Ds+ Ao (0,1,2,3,-1,0,1,0) + 12(0,0,0,0,1, 1, 1, 3) Ao
+v1(0,0,0,0,0,0,0, 2)

Ay + Ag + A; (0,1,-5, -3 -1 1.2 1)4+2(0,0,1,1,1,1,1,5) Ay

*D5(CL1)+A1 (0, 1,1,2, 3,*1+V2,%+I/2,21/1) A{+A1

As (G-5-353500+uh 004D Gt

+12(0,0,0,0,0,0,—1,1) + v3(0,0,0,0,0,0,1, 1)

# Ay + Az (-3, 3.—2,-3.-3,3,5,3) +1(1,1,0,0,0,0,0,0) 24,
+v1(0,0,1,1,1,1,1,5)

Ay + 24 (0,1, -2, 10120) (00000002) A+ T

v2(0,0, 1, ,1,1,0)

Ds(a1) (0,1,1,2,3,v3,v2,11) As

243 (0,1,27—5,—5,%,g,o)+y2(0, 0,0,1, 2,2, 41) B

As+ Ay (0,1,2,— , %,—1, —1,1) +12(0,0,0,0,0,1,1,2) A+ 1T

+11(0,0,0,0,0,0,1,1) +25(0,0,0,1,1,1,1,4)

Dy(a1) + Az (0,1,1,2,-1,0,1,0) +v1(0,0,0,0,1, 1, 1, 3) Ay
+2(0,0,0,0,0,0,0, 2)

Dy + Ay (0,1,2,3,—%,1,0,0)+ Cs

(07 0,0, 07 V1,V1,—Z/2+1/3,V2-|—l/3)

Az + Ax + Ay (0,1,-2,-1,0,1, 2,2)+1/1(001111 —2,2) 2A;
+12(0,0,0,0,0,0,1,1)

Ay (0,-2,-1,0,1,2,0,0)+ Ay

(V47_Vl +V2,V37V37V37V37V37V1 +V2)

A3+A2 (07 1727_1707 1707 O)+(07 0707 V37V37V37V17V2) BQ+T1

Da(a1) + Ay (0,1,1,2,-%,2,0,0) 4 (0,0,0,0,v1, 11, —v2 + v, v2 + v3) 344

Az +2A; (0,1,— s % % % 0, 0)+(0,07V17V17V1,I/1,V2,V3) Ay + Bs

245 + 244 (0,1,-3,-1,%,-1,0, )+1/1(()0 -1 -311LY B
+12(0,0, 1, 1, 1,0,0,2)

D, (0,1,2,3,v3 — v4, V3 + 14, V1 — V2, V1 + 1) Fy
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TABLE 13. (Continued.)

3] X 3(0)
D4(a1) (0, 1, 1, 2, V4, V3, V2, 1/1) Dy
A3+A1 (0 1 2 2,;,0 O O)+(O70,0,V1,V1,V2,V3,V4) A1+Bg

24, + Ay (0,1,-3, -1, 2, -3, -4, ) +11(0,0,1,1,1,-1,-1,1) A1 + G-
+1/2(O 0,0,0,0,1,1,2) +23(0,0,0,0,0,0,1, 1)
24, (-3, 2, -3, -4 1, -1 -1 ) +11(0,0,1,1,1,-1,-1,1) 2G»
Fup(d, L 101 %,_%,_57 1) +13(0,0,0,0,0,1,1,2)
+14(0,0,0,0,0,0,1,1)

«Ay + 34 (0,1,-1,0,—1,0, =1, 1) 4+ 14(0,0,1,1,1,1, -2, 2) Ga+ Ay
+v2(0,0,0,0,1,1,—-1,1) + v3(0,0,0,0,0,0,1, 1)

Az (0,1,2,v1, v2, V3, V4, Us5) Bs

xAs + 241 (0,1,-1,0,1,0,0,0) + (0,0, v1, v1, V1, V2, U3, Va) A1+ Bs

A+ Ay (1,0,1,0,-%,1,0,0)+ As

(—vs, vs, s, V4, V3, V3, —Va + V1, V2 + 1)

*4 A (0,1,-%,%,—3,%,0,00+ Ca

(0,0, v1,v1,v2, V2, —U3 + V4, V3 + 1y)

vi—vo—v3+tvy —vitvo—vztvy —vi—vatvztvg
A ( 2 ’ 2 ) P} ) Es

vi1+votr3+rg Vs—Vg Vs—Ug vs—vg Vvs+3rg
2 e e BT T i i Y

1 1 1 1 1 1
3A; (5,5,—5,5, 5,2,0 0) ( 1/4,1/4,1/3,1/3,1/2,1/2,—1/1,1/1) Fy+ Ay
+15(0,0,0,0,0,0,1,1)
2A1 (0, 1,1/1,112,1/3,1/4,1/5,V6) B(;
Ay (l/1+l/2;lf3fu47 V1+V2;V3+V4 1/1*V2J2rV3+V47 *V1+V22+V3+V47 E;

—vs—vet2vy _ 1 —vstve 1 —vstve vstret2vy
2 »—3 F 2 2t 2 2 )

vy >3}, {0<m<lvs+wm<l,3vri+wve+rvs—vy>3} {0<m<limwt+uy>1m+r3<l,
vy <1,3v1 + 1o + v3 + vy < 3}, {0 <L+ >1lvw+rs<livy<1,3v) —vy —v3+
vy >3 and {0<vy <lvo4+wvs>1, v +v3<1l,u4<1,311 + 19+ 13— vy >3}

4A,. Two regions: {O§V1<V—2§V3<V4<%} and {1+ <limrn+rvs<l,vg+uvy>1,
—I/1+V3+V4<%<I/1+V3+1/4}.

7.2 0-complementary series

We record next the precise description of the 0O-complementary series (that is, the generic
spherical unitary parameters) for types Eg, E7, Eg. This answer is obtained inductively from
Corollary 3.1.

7.2.1 Type Eg. In W(Eg), the longest Weyl group element wy does not act by minus one.
Therefore, we only consider dominant parameters y such that woy = —x:

9 Vs, 2 V4, 2 +V47 9 +V37Ta
_V1+V2 _V1+V2 V1+V2>

<V1—V2 vy — 12 vV — 12 vy — V2 V1 + 1

2 72 72
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The 0-complementary series is

(1) aze < 17 and ag, 02, 3, 04, 5, O 2 07
(ii) aszs <1, ags > 1, and a1, as, ag, as, ag > 0.
7.2.2 Type E7. The parameters are y = (11, V2, V3, 4, Us, Vg, —V7, V7), assumed dominant.
The 0-complementary series is:
ap3 < 1) and aq, (g, 3, 04, 5, Og, Q7 > 0?
a1 <1, agz >1 and a1, ag, ag, as, ag, a7 = 0;

asg <1, asg <1, agy>1and a1, as, ag, ag, ay > 0;

)
)
)
(iV) as3 <1, asg <1, asgs <1, asg>1, asy >1 and aq, az, as > 0.;
) aue <1, agr <1, aug <1, agg <1, aso>1, as1 >1, aseo >1and ay > 0;
) ass <1, asg <1, ass>1and a1, as, ag, as, ag > 0;
) agg <1, as3 <1, ass <1, asa >1, ass > 1 and ag, ay, as > 0;
)

g7 <1, aug <1, ayg <1, azz3 <1, as>1, asg>1and as, ag > 0.

7.2.3 Type Eg. The parameters are x = (v1, V2, V3, V4, Vs, Vg, V7, U3), assumed dominant. The
0-complementary series is:
a0 < 1 and oy, as, as, ay, as, ag, ay, ag = 0;
a3 <1l,a114 < 1; agis >1 and a1, a4, as, ag, 7, ag > 0;
a0 < 1,a110< 1; aq11 > 1, ag12 > 1 and as, as, ag, ar, ag = 0;
ag] < 1,99 < 1,097 <1,a98 <1; ags > 1,96 > 1, 101 > 1 and asg, ay > 0;
gy < 1,91 <1,ag90 <1,a97 <1; agy > 1,95 > 1, agg > 1 and a1, a3 > 0;
agg < 1,90 < 1,91 <1,ag90 <1; agg > 1,94 > 1, 05 > 1, agg > 1 and ay > 0;
a1p4 < 1, a110 < 1; @97 > 1, ag12 > 1 and ag, a4, as, az, ag > 0;

04 < 1, aq05 < 1, aq06 < 15 aqo7 > 1, aqog > 1 and an, ayg, a7, ag > 0;

)
)
)
)
)
)
)
)
(ix) o118 <1; ag19 > 1 and oy, aw, ag, aq, as, ag, ag = 0;
) gy < 1, a1 < 1; o101 > 1, o112 > 1 and as, 0y, A, Qg, QU7 = 0;
) g7 < 1, o105 < 1, 106 < 1; o101 > 1, o108 > 1 and 9, Oy, Qg, 07 = 0;
) a6 < 1; aj17 > 1 and oy, ag, ag, oy, ag, az, ag > 0;
) agr < 1,98 <1, 106 < 1; g1 > 1, g2 > 1 and g, ay, as, ag > 0;
) agr < 1,08 < 1, 99 < 15 crgg > 1, g1 > 1, a2 > 1 and an, ay, a5 = 0;
) agr < 1,98 < 1, 99 < 1, 190 < 1; 101 > 1, apo2 > 1, aegpz > 1 and ao, as > 0;
)

o114 <15 aq12 > 1 and o, a3, ay, as, ag, a7, ag > 0.

7.2.4 Roots for type E. The notation for the positive roots which appeared in the lists of
0-complementary series for Eg, E7, Eg is as follows.
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Ei: 1(-1,1,-1,1,1,-1,-1,1)  ass=2(-1,-1,1,1,1,-1,-1,1) ass=3(1,1,1,1,1,-1,-1,1)
E7
ous=3(-1,1,-1,1,1,-1,-1,1)  aur=5(-1,1,1,-1,-1,1,-1,1)  aus=1(1,-1,-1,1,-1,1,-1,1)
Q9 = €5 + €6 aso=3(-1,-1,1,1,1,-1,-1,1)  as1 =2(-1,1,-1,1,— 1,1)
as2=3(1,-1,-1,-1,1,1,-1,1) a53=§(1 1,1,1,1,—1, -1, 1) ass=3(—1,-1,1,1, 1,1)
ass = 2(-1,1,-1,-1,1,1, -1,1) a56=§(1,1 1,1,-1,1,-1,1) asr=5(-1,-1,1,-1,1,1, —1,1)
ass=1(1,1,1,-1,1,1,-1,1) aso = 1(—1 -1,1,1,1,-1,1)  aso=3(1,1,-1,1,1,1, -1, 1)
61 =5(1,-1,1,1,1,1,-1,1) a2 =3(-1,1,1,1,1,1,-1,1) ap3 = —€7 + €3
ES8
agg_é(l,—1 1,1,1,1,-1,1) g0 =1(1,1,-1,1,1,-1,1,1) a1 =5(1,1,1,-1,-1,1,1,1)
o2 = 1(—1, -1,1,-1,1,1,1)  ass=35(-1,1,1,1,1,1,-1,1) aoa=1(1,-1,1,1,1,-1,1,1)
a5 = (1,1, -1,1,1,1) ags=1(-1,-1,-1,-1,1,1,1,1) agr=—er +es
aos = 3(—1,1,1,1,1,-1,1,1) ago =3(1,-1,1,1,-1,1,1,1) a0 =3(1,1,-1,-1,1,1,1,1)
Q101 = —€p + €3 04102:%( 1,1,1,1,-1,1,1,1) 061032%(1,—17 1,-1,1,1,1,1)
Q104 = —€5 + €5 o105 = 2(-1,1,1,-1,1,1,1,1) o106 = 2(1,-1,-1,1,1,1,1,1)
Q107 = —€4 + €3 a1os:%(71,1,71,1,1,1, 1,1) Q109 = —€3 + €3
o110 =1(-1,-1,1,1,1,1,1, 1) a111 = —€2 + €g a2 =13(1,1,1,1,1,1,1,1)
Q113 = €1 + €8 Q114 = —€1 + €3 Q115 = €2 + €3
Q116 = €3 + €8 Q117 = €4 + €3 Q118 = €5 + €3
Q119 = €6 + €8 Q120 = €7 1+ €3
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