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MONOGENIC EVEN QUARTIC TRINOMIALS
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Abstract

A monic polynomial f (x) ∈ Z[x] of degree N is called monogenic if f (x) is irreducible over Q and
{1, θ, θ2, . . . , θN−1} is a basis for the ring of integers of Q(θ), where f (θ) = 0. We prove that there exist
exactly three distinct monogenic trinomials of the form x4 + bx2 + d whose Galois group is the cyclic
group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.
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1. Introduction

We say that a monic polynomial f (x) ∈ Z[x] is monogenic if f (x) is irreducible over
Q and {1, θ, θ2, . . . , θdeg f−1} is a basis for the ring of integers ZK of K = Q(θ), where
f (θ) = 0. From [1], when f (x) is irreducible over Q,

Δ( f ) = [ZK : Z[θ]]2Δ(K), (1.1)

where Δ( f ) and Δ(K) denote the discriminants over Q, respectively, of f (x) and the
number field K. Thus, for irreducible f (x), the polynomial f (x) is monogenic if and
only if Δ( f ) = Δ(K). We also say that any number field K is monogenic if there exists a
power basis for ZK . We caution the reader that, while the monogenicity of f (x) implies
the monogenicity of K = Q(θ), where f (θ) = 0, the converse is not necessarily true.
A simple example is f (x) = x2 − 5 and K = Q(θ), where θ =

√
5. Then, Δ( f ) = 20

and Δ(K) = 5. Thus, f (x) is not monogenic, but nevertheless, K is monogenic since
{1, (θ + 1)/2} is a power basis for ZK . Observe then that g(x) = x2 − x − 1, the minimal
polynomial for (θ + 1)/2 over Q, is monogenic.

This note was motivated by a recent question of Tristan Phillips (private com-
munication) asking if it is possible to determine all distinct monogenic quartic
trinomials that have Galois group C4, the cyclic group of order 4. We consider two
monogenic C4-quartic trinomials f (x) and g(x) to be distinct if Q(α) � Q(β), where
f (α) = 0 = g(β). In this note, we provide a partial answer to Phillips’s question by
proving the following theorem.
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THEOREM 1.1. The three trinomials

x4 − 4x2 + 2, x4 + 4x2 + 2 and x4 − 5x2 + 5,

are the only distinct trinomials of the form f (x) = x4 + bx2 + d ∈ Z[x] with
Gal( f ) � C4.

In Section 4, we show that the situation is quite different when Gal( f ) � C4, where
f (x) = x4 + bx2 + d.

2. Preliminaries

The following theorem follows from results due to Kappe and Warren.

THEOREM 2.1 [4]. Let f (x) = x4 + bx2 + d ∈ Z[x]. Then f (x) is irreducible over Q
with Gal( f ) � C4 if and only if

d and b2 − 4d are not squares in Z, but d(b2 − 4d) is a square in Z. (2.1)

The next result is the specific case for our quartic situation of a ‘streamlined’
version of Dedekind’s index criterion for trinomials that is due to Jakhar, Khanduja
and Sangwan. We have used Swan’s formula [5] for the discriminant of an arbitrary
trinomial f (x) to calculate Δ( f ).

THEOREM 2.2 [3]. Let K = Q(θ) be an algebraic number field with θ ∈ ZK, the ring of
integers of K, having minimal polynomial f (x) = x4 + bx2 + d over Q. A prime factor
q of Δ( f ) = 24d(b2 − 4d)2 does not divide [ZK : Z[θ]] if and only if q satisfies one of
the following conditions:

(1) when q | b and q | d, then q2 � d;
(2) when q | b and q � d, then

either q | b2 and q � d1 or q � b2(−db2
2 − d2

1),

where b2 = b/q and d1 = (d + (−d)qj
)/q with qj || 4;

(3) when q � b and q | d, then

either q | b1 and q � d2 or q � b1d2(−bb1 + d2),

where b1 = (b + (−b)qe
)/q with qe || 2 and d2 = d/q;

(4) when q = 2 and 2 � bd, then the polynomials

H1(x) := x2 + bx + d and H2(x) :=
bx2 + d + (−bx − d)2

2

are coprime modulo 2;
(5) when q � 2bd, then q2 � (b2 − 4d).
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3. The proof of Theorem 1.1

Following Theorem 2.1, we assume conditions (2.1) so that f (x) is irreducible over
Q with Gal( f ) � C4. Observe that if d < 0, then d(b2 − 4d) < 0, which contradicts the
fact that d(b2 − 4d) is a square. Hence, d > 0 and b2 − 4d > 0. Furthermore, since d
and b2 − 4d are not squares, but d(b2 − 4d) is a square, we deduce that d ≥ 2 and
b2 − 4d ≥ 2.

We use Theorem 2.2 to ‘force’ the monogenicity of f (x). Let q be a prime divisor of
d. If q � (b2 − 4d), then q � b, and q2 | d since d(b2 − 4d) is a square. But then condition
(3) of Theorem 2.2 is not satisfied since q | d2. Therefore, q | (b2 − 4d) and so q | b.
Note then that if q2 | d, then condition (1) is not satisfied. Hence, q || d and therefore,
d is squarefree, d | (b2 − 4d) and d | b.

Suppose next that q is a prime divisor of b2 − 4d, such that q � d. If q | b, then q = 2
and

A := d(b2 − 4d)/4 is a square in Z. (3.1)

We examine condition (2) of Theorem 2.2 to see that

d1 =
d + (−d)4

2
≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (mod 4) if d ≡ 1 (mod 4)

2 (mod 4) if d ≡ 3 (mod 4).

Thus, the first statement under condition (2) is satisfied if and only if

(b mod 4, d mod 4) = (0, 1), (3.2)

while the second statement under condition (2) is satisfied if and only if

(b mod 4, d mod 4) = (2, 3). (3.3)

In scenario (3.2) we have A ≡ 3 (mod 4), while in scenario (3.3) we have
A ≡ 2 (mod 4), contradicting (3.1) in each scenario. Hence, q � b and q ≥ 3. Since
q � d and d(b2 − 4d) is a square, we must have q2 | (b2 − 4d). But then condition (5)
of Theorem 2.2 is not satisfied. Therefore, every prime divisor of b2 − 4d divides d.

Thus, to summarise, d is squarefree and d and b2 − 4d have exactly the same prime
divisors p1 < p2 < · · · < pk. Hence, since d(b2 − 4d) is a square, we can write

d(b2 − 4d) =
( k∏

i=1

pi

)(
b2 − 4

( k∏
i=1

pi

))
=

k∏
i=1

p2ei
i , (3.4)

for some integers ei ≥ 1. Then, from (3.4),

b2 =

( k∏
i=1

pi

)(( k∏
i=1

p2ei−2
i

)
+ 4
)
,
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which implies that
k∏

i=1

pi divides
( k∏

i=1

p2ei−2
i

)
+ 4. (3.5)

We see from (3.5) that if some ei > 1, then pi | 4 so that i = 1 and p1 = 2. In this case,

b2 = 2
( k∏

i=2

pi

)
(4e1−1 + 4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

24
k∏

i=2

pi if e1 = 2

23
( k∏

i=2

pi

)
(4e1−2 + 1) if e1 ≥ 3.

(3.6)

The second case of (3.6) is impossible since b2/8 ≡ 1 (mod 2). The first case of (3.6)
is viable provided k = 1, so that b2 = 16 and d = 2. This gives the two trinomials

x4 − 4x2 + 2 and x4 + 4x2 + 2,

which are both easily confirmed to be monogenic using Theorem 2.2.
The remaining possibility in (3.5) when ei = 1 for all i yields k = 1 and p1 = 5, so

that b2 = 25 and d = 5. The two resulting trinomials are then

x4 + 5x2 + 5 and x4 − 5x2 + 5.

Again, using Theorem 2.2, it is straightforward to verify that x4 + 5x2 + 5 is not
monogenic (condition (4) fails), while x4 − 5x2 + 5 is monogenic.

Thus, we have found exactly three monogenic cyclic trinomials

x4 − 4x2 + 2, x4 + 4x2 + 2 and x4 − 5x2 + 5.

Note that

Δ(x4 − 4x2 + 2) = Δ(x4 + 4x2 + 2) = 211 and Δ(x5 − 5x2 + 5) = 2453. (3.7)

If any two of these three trinomials generate the same quartic field, then their
discriminants must be equal since they are monogenic. Hence, we see immediately
from (3.7) that the quartic field generated by x5 − 5x2 + 5 is distinct from the other two
quartic fields. However, equality of two discriminants is not sufficient to conclude that
those trinomials generate isomorphic quartic fields. Indeed, since the field generated
by x4 − 4x2 + 2 is real, while the field generated by x4 + 4x2 + 2 is nonreal, we deduce
that these two fields are in fact distinct. Alternatively, we can verify that these two
fields are not isomorphic using MAGMA.

4. The noncyclic monogenic even quartic trinomials

With f (x) = x4 + bx2 + d ∈ Z[x], we end by showing that the situation when
Gal( f ) � C4 is quite different from the cyclic case. From [4, Theorem 3], Gal( f ) ∈
{C4, V , D4}, where V is the Klein 4-group and D4 is the dihedral group of order 8.
Moreover, from [4] and Theorem 2.2, conditions can be formulated to determine when
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f (x) is monogenic with Gal( f ) ∈ {V , D4}, and even distinguish between V and D4.
However, unlike the cyclic case, these conditions are not as restrictive and, in fact, lead
to the construction of infinite families of distinct monogenic trinomials. For example,
in [2], the infinite family

F2 := { ft(x) = x4 + 4tx2 + 1 : t ∈ Z and 4t2 − 1 is squarefree}
of distinct monogenic even V-quartic trinomials is given. Although, to the best of our
knowledge, no infinite families of distinct monogenic even D4-quartic trinomials exist
in the literature, we can easily rectify that situation. We claim that the set

F3 := { ft(x) = x4 + 2x2 + 4t + 2 : t ∈ Z and (2t + 1)(4t + 1) is squarefree}
is just such a family. To establish the claim, we use the following theorem that follows
from [4].

THEOREM 4.1. Let f (x) = x4 + bx2 + d ∈ Z[x]. Then f (x) is irreducible over Q with
Gal( f ) � D4 if and only if d, b2 − 4d and d(b2 − 4d) are all not squares in Z.

PROOF OF THE CLAIM. Suppose that ft(x) ∈ F3. Clearly, d = 4t + 2 ≡ 2 (mod 4)
is not a square in Z. We also see that b2 − 4d = −4(4t + 1) is not a square in Z
since 4t + 1 is squarefree, and d(b2 − 4d) = −8(2t + 1)(4t + 1) is not a square in Z
since 23 || −8(2t + 1)(4t + 1). Thus, ft(x) is irreducible over Q with Gal( ft) � D4, by
Theorem 4.1. Noting thatΔ( ft) = 29(2t + 1)(4t + 1)2, it is then straightforward to verify
that ft(x) is monogenic using Theorem 2.2, and we omit the details.

Finally, suppose that fs(x), ft(x) ∈ F3 are such that Q(α) � Q(β), where
fs(α) = 0 = ft(β). Then, since both fs(x) and ft(x) are monogenic, we must have
that Δ( fs) = Δ( ft) from (1.1). Using Maple to solve this discriminant equation yields
the three solutions

{t = t, s = t},
{
t = t, s = − t

2
− 1

2
+

(−12t2 − 8t − 1)1/2

4

}
,

and
{
t = t, s = − t

2
− 1

2
− (−12t2 − 8t − 1)1/2

4

}
.

Since −12t2 − 8t − 1 ≥ 0 only when −1/2 ≤ t ≤ −1/6, we can conclude that s = t, so
that the trinomials in F3 do indeed generate distinct quartic fields, and the claim is
established. �
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