MONOGENIC EVEN QUARTIC TRINOMIAL[S](#page-0-0)

LENNY JONE[S](https://orcid.org/0000-0001-7661-4226)[®]

(Received 3 May 2024; accepted 18 May 2024)

Abstract

A monic polynomial $f(x) \in \mathbb{Z}[x]$ of degree *N* is called *monogenic* if $f(x)$ is irreducible over $\mathbb Q$ and $\{1, \theta, \theta^2, \ldots, \theta^{N-1}\}\$ is a basis for the ring of integers of $\mathbb{Q}(\theta)$, where $f(\theta) = 0$. We prove that there exist exactly three distinct monogenic trinomials of the form $x^4 + bx^2 + d$ whose Galois group is the cyclic group of order 4. We also show that the situation is quite different when the Galois group is not cyclic.

2020 *Mathematics subject classification*: primary 11R16; secondary 11R32.

Keywords and phrases: monogenic, cyclic, quartic, Galois group.

1. Introduction

We say that a monic polynomial $f(x) \in \mathbb{Z}[x]$ is *monogenic* if $f(x)$ is irreducible over \mathbb{Q} and $\{1, \theta, \theta^2, \dots, \theta^{\deg f-1}\}\$ is a basis for the ring of integers \mathbb{Z}_K of $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$. From [\[1\]](#page-4-0), when $f(x)$ is irreducible over \mathbb{Q} ,

$$
\Delta(f) = [\mathbb{Z}_K : \mathbb{Z}[\theta]]^2 \Delta(K), \tag{1.1}
$$

where $\Delta(f)$ and $\Delta(K)$ denote the discriminants over $\mathbb Q$, respectively, of $f(x)$ and the number field *K*. Thus, for irreducible $f(x)$, the polynomial $f(x)$ is monogenic if and only if $\Delta(f) = \Delta(K)$. We also say that any number field K is *monogenic* if there exists a power basis for \mathbb{Z}_K . We caution the reader that, while the monogenicity of $f(x)$ implies the monogenicity of $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$, the converse is not necessarily true. the monogenicity of $K = \mathbb{Q}(\theta)$, where $f(\theta) = 0$, the converse is not necessarily true.
A simple example is $f(x) = x^2 - 5$ and $K = \mathbb{Q}(\theta)$, where $\theta = \sqrt{5}$. Then, $\Delta(f) = 20$
and $\Delta(K) = 5$. Thus $f(x)$ is not monogenic b and $\Delta(K) = 5$. Thus, $f(x)$ is not monogenic, but nevertheless, K is monogenic since $\{1, (\theta + 1)/2\}$ is a power basis for \mathbb{Z}_K . Observe then that $g(x) = x^2 - x - 1$, the minimal polynomial for $(\theta + 1)/2$ over \mathbb{Q} , is monogenic.

This note was motivated by a recent question of Tristan Phillips (private communication) asking if it is possible to determine all distinct monogenic quartic trinomials that have Galois group C_4 , the cyclic group of order 4. We consider two monogenic *C*₄-quartic trinomials *f*(*x*) and *g*(*x*) to be *distinct* if $\mathbb{Q}(\alpha) \neq \mathbb{Q}(\beta)$, where $f(\alpha) = 0 = g(\beta)$. In this note, we provide a partial answer to Phillips's question by $f(\alpha) = 0 = g(\beta)$. In this note, we provide a partial answer to Phillips's question by proving the following theorem.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

THEOREM 1.1. *The three trinomials*

 $x^4 - 4x^2 + 2$, $x^4 + 4x^2 + 2$ *and* $x^4 - 5x^2 + 5$,

are the only distinct trinomials of the form $f(x) = x^4 + bx^2 + d \in \mathbb{Z}[x]$ *with* $Gal(f) \simeq C_4$.

In Section [4,](#page-3-0) we show that the situation is quite different when $Gal(f) \neq C_4$, where $f(x) = x^4 + bx^2 + d$.

2. Preliminaries

The following theorem follows from results due to Kappe and Warren.

THEOREM 2.1 [\[4\]](#page-5-0). *Let* $f(x) = x^4 + bx^2 + d \in \mathbb{Z}[x]$ *. Then* $f(x)$ *is irreducible over* \mathbb{Q} *with* Gal(f) \simeq C_4 *if and only if*

d and
$$
b^2 - 4d
$$
 are not squares in Z, but $d(b^2 - 4d)$ is a square in Z. (2.1)

The next result is the specific case for our quartic situation of a 'streamlined' version of Dedekind's index criterion for trinomials that is due to Jakhar, Khanduja and Sangwan. We have used Swan's formula [\[5\]](#page-5-1) for the discriminant of an arbitrary trinomial $f(x)$ to calculate $\Delta(f)$.

THEOREM 2.2 [\[3\]](#page-5-2). *Let* $K = \mathbb{Q}(\theta)$ *be an algebraic number field with* $\theta \in \mathbb{Z}_K$, the ring of *integers of K, having minimal polynomial* $f(x) = x^4 + bx^2 + d$ *over* \mathbb{Q} *. A prime factor q* of $\Delta(f) = 2^4 d(b^2 - 4d)^2$ *does not divide* [$\mathbb{Z}_K : \mathbb{Z}[\theta]$] *if and only if q satisfies one of the following conditions: the following conditions:*

- (1) when $q \mid b$ and $q \mid d$, then $q^2 \nmid d$;
- (2) when $q \mid b$ and $q \nmid d$, then

either
$$
q \mid b_2
$$
 and $q \nmid d_1$ *or* $q \nmid b_2(-db_2^2 - d_1^2)$,

where $b_2 = b/q$ and $d_1 = (d + (-d)^q)/q$ with $q^j \parallel 4$;
when a *k* h and a | d then

 (3) *when* $q \nmid b$ *and* $q \mid d$ *, then*

either
$$
q \mid b_1
$$
 and $q \nmid d_2$ *or* $q \nmid b_1 d_2(-bb_1 + d_2)$,

where $b_1 = (b + (-b)^{q^e})/q$ *with* $q^e \parallel 2$ *and* $d_2 = d/q$;
when $a = 2$ *and* 2 *k bd then the nolynomials* (4) when $q = 2$ and $2 \nmid bd$, then the polynomials

$$
H_1(x) := x^2 + bx + d
$$
 and $H_2(x) := \frac{bx^2 + d + (-bx - d)^2}{2}$

are coprime modulo 2*;*

(5) when $q \nmid 2bd$, then $q^2 \nmid (b^2 - 4d)$.

3. The proof of Theorem [1.1](#page-1-0)

Following Theorem [2.1,](#page-1-1) we assume conditions [\(2.1\)](#page-1-2) so that $f(x)$ is irreducible over Q with Gal(*f*) \simeq *C*₄. Observe that if *d* < 0, then *d*(*b*² − 4*d*) < 0, which contradicts the fact that *d*(*b*² − 4*d*) is a square. Hence, *d* > 0 and *b*² − 4*d* > 0. Furthermore, since *d* fact that $d(b^2 - 4d)$ is a square. Hence, $d > 0$ and $b^2 - 4d > 0$. Furthermore, since d and $b^2 - 4d$ are not squares, but $d(b^2 - 4d)$ is a square, we deduce that $d \ge 2$ and b^2 − 4*d* ≥ 2.

We use Theorem [2.2](#page-1-3) to 'force' the monogenicity of $f(x)$. Let *q* be a prime divisor of *d*. If *q* \uparrow (*b*² − 4*d*), then *q* \uparrow *b*, and *q*² | *d* since *d*(*b*² − 4*d*) is a square. But then condition (3) of Theorem [2.2](#page-1-3) is not satisfied since $q | d_2$. Therefore, $q | (b^2 - 4d)$ and so $q | b$. Note then that if $q^2 \mid d$, then condition (1) is not satisfied. Hence, $q \parallel d$ and therefore, *d* is squarefree, $d|(b^2-4d)$ and $d|b$.

Suppose next that *q* is a prime divisor of $b^2 - 4d$, such that $q \nmid d$. If $q \mid b$, then $q = 2$ and

$$
A := d(b^2 - 4d)/4
$$
 is a square in Z. (3.1)

We examine condition (2) of Theorem [2.2](#page-1-3) to see that

$$
d_1 = \frac{d + (-d)^4}{2} \equiv \begin{cases} 1 \pmod{4} & \text{if } d \equiv 1 \pmod{4} \\ 2 \pmod{4} & \text{if } d \equiv 3 \pmod{4}. \end{cases}
$$

Thus, the first statement under condition (2) is satisfied if and only if

$$
(b \bmod 4, d \bmod 4) = (0, 1), \tag{3.2}
$$

while the second statement under condition (2) is satisfied if and only if

$$
(b \bmod 4, d \bmod 4) = (2, 3). \tag{3.3}
$$

In scenario [\(3.2\)](#page-2-0) we have $A \equiv 3 \pmod{4}$, while in scenario [\(3.3\)](#page-2-1) we have $A \equiv 2 \pmod{4}$, contradicting [\(3.1\)](#page-2-2) in each scenario. Hence, $q \nmid b$ and $q \ge 3$. Since *q* \dagger *d* and *d*(*b*² − 4*d*) is a square, we must have $q^2 | (b^2 - 4d)$. But then condition (5) of Theorem [2.2](#page-1-3) is not satisfied. Therefore, every prime divisor of $b^2 - 4d$ divides *d*.

Thus, to summarise, *d* is squarefree and *d* and $b^2 - 4d$ have exactly the same prime divisors $p_1 < p_2 < \cdots < p_k$. Hence, since $d(b^2 - 4d)$ is a square, we can write

$$
d(b^2 - 4d) = \left(\prod_{i=1}^k p_i\right) \left(b^2 - 4\left(\prod_{i=1}^k p_i\right)\right) = \prod_{i=1}^k p_i^{2e_i},\tag{3.4}
$$

for some integers $e_i \geq 1$. Then, from [\(3.4\)](#page-2-3),

$$
b^{2} = \left(\prod_{i=1}^{k} p_{i}\right) \left(\left(\prod_{i=1}^{k} p_{i}^{2e_{i}-2}\right) + 4\right),
$$

which implies that

$$
\prod_{i=1}^{k} p_i \quad \text{divides} \quad \left(\prod_{i=1}^{k} p_i^{2e_i - 2}\right) + 4. \tag{3.5}
$$

We see from [\(3.5\)](#page-3-1) that if some $e_i > 1$, then $p_i | 4$ so that $i = 1$ and $p_1 = 2$. In this case,

$$
b^{2} = 2\left(\prod_{i=2}^{k} p_{i}\right)(4^{e_{1}-1} + 4) = \begin{cases} 2^{4} \prod_{i=2}^{k} p_{i} & \text{if } e_{1} = 2\\ 2^{3} \left(\prod_{i=2}^{k} p_{i}\right)(4^{e_{1}-2} + 1) & \text{if } e_{1} \ge 3. \end{cases}
$$
(3.6)

The second case of [\(3.6\)](#page-3-2) is impossible since $b^2/8 \equiv 1 \pmod{2}$. The first case of (3.6) is viable provided $k = 1$, so that $b^2 = 16$ and $d = 2$. This gives the two trinomials

$$
x^4 - 4x^2 + 2
$$
 and $x^4 + 4x^2 + 2$,

which are both easily confirmed to be monogenic using Theorem [2.2.](#page-1-3)

The remaining possibility in [\(3.5\)](#page-3-1) when $e_i = 1$ for all *i* yields $k = 1$ and $p_1 = 5$, so that $b^2 = 25$ and $d = 5$. The two resulting trinomials are then

$$
x^4 + 5x^2 + 5
$$
 and $x^4 - 5x^2 + 5$.

Again, using Theorem [2.2,](#page-1-3) it is straightforward to verify that $x^4 + 5x^2 + 5$ is not monogenic (condition (4) fails), while $x^4 - 5x^2 + 5$ is monogenic.

Thus, we have found exactly three monogenic cyclic trinomials

$$
x^4 - 4x^2 + 2
$$
, $x^4 + 4x^2 + 2$ and $x^4 - 5x^2 + 5$.

Note that

$$
\Delta(x^4 - 4x^2 + 2) = \Delta(x^4 + 4x^2 + 2) = 2^{11} \quad \text{and} \quad \Delta(x^5 - 5x^2 + 5) = 2^4 5^3. \tag{3.7}
$$

If any two of these three trinomials generate the same quartic field, then their discriminants must be equal since they are monogenic. Hence, we see immediately from [\(3.7\)](#page-3-3) that the quartic field generated by $x^5 - 5x^2 + 5$ is distinct from the other two quartic fields. However, equality of two discriminants is not sufficient to conclude that those trinomials generate isomorphic quartic fields. Indeed, since the field generated by $x^4 - 4x^2 + 2$ is real, while the field generated by $x^4 + 4x^2 + 2$ is nonreal, we deduce that these two fields are in fact distinct. Alternatively, we can verify that these two fields are not isomorphic using MAGMA.

4. The noncyclic monogenic even quartic trinomials

With $f(x) = x^4 + bx^2 + d \in \mathbb{Z}[x]$, we end by showing that the situation when Gal(*f*) $\neq C_4$ is quite different from the cyclic case. From [\[4,](#page-5-0) Theorem 3], Gal(*f*) \in ${C_4, V, D_4}$, where *V* is the Klein 4-group and D_4 is the dihedral group of order 8. Moreover, from [\[4\]](#page-5-0) and Theorem [2.2,](#page-1-3) conditions can be formulated to determine when *f*(*x*) is monogenic with Gal(*f*) \in {*V*, *D*₄}, and even distinguish between *V* and *D*₄. However, unlike the cyclic case, these conditions are not as restrictive and, in fact, lead to the construction of infinite families of distinct monogenic trinomials. For example, in [\[2\]](#page-4-1), the infinite family

$$
\mathcal{F}_2 := \{ f_t(x) = x^4 + 4tx^2 + 1 : t \in \mathbb{Z} \text{ and } 4t^2 - 1 \text{ is squarefree} \}
$$

of distinct monogenic even *V*-quartic trinomials is given. Although, to the best of our knowledge, no infinite families of distinct monogenic even *D*4-quartic trinomials exist in the literature, we can easily rectify that situation. We claim that the set

$$
\mathcal{F}_3 := \{ f_t(x) = x^4 + 2x^2 + 4t + 2 : t \in \mathbb{Z} \text{ and } (2t + 1)(4t + 1) \text{ is squarefree} \}
$$

is just such a family. To establish the claim, we use the following theorem that follows from $[4]$.

THEOREM 4.1. Let $f(x) = x^4 + bx^2 + d \in \mathbb{Z}[x]$. Then $f(x)$ is irreducible over Q with Gal(*f*) \simeq *D*₄ *if and only if d, b*² − 4*d and d*(*b*² − 4*d*) *are all not squares in* \mathbb{Z} *.*

PROOF OF THE CLAIM. Suppose that $f_t(x) \in \mathcal{F}_3$. Clearly, $d = 4t + 2 \equiv 2 \pmod{4}$ is not a square in Z. We also see that $b^2 - 4d = -4(4t + 1)$ is not a square in Z since $4t + 1$ is squarefree, and $d(b^2 - 4d) = -8(2t + 1)(4t + 1)$ is not a square in Z since 2^3 || −8(2*t* + 1)(4*t* + 1). Thus, *f_t*(*x*) is irreducible over ℚ with Gal(*f_t*) $\simeq D_4$, by Theorem [4.1.](#page-4-2) Noting that $\Delta(f_t) = 2^9(2t+1)(4t+1)^2$, it is then straightforward to verify that $f_t(x)$ is monogenic using Theorem [2.2,](#page-1-3) and we omit the details.

Finally, suppose that $f_s(x)$, $f_t(x) \in \mathcal{F}_3$ are such that $\mathbb{Q}(\alpha) \simeq \mathbb{Q}(\beta)$, where $f_s(\alpha) = 0 = f_t(\beta)$. Then, since both $f_s(x)$ and $f_t(x)$ are monogenic, we must have that $\Delta(f_s) = \Delta(f_t)$ from [\(1.1\)](#page-0-1). Using Maple to solve this discriminant equation yields the three solutions

$$
\{t = t, s = t\}, \quad \left\{t = t, s = -\frac{t}{2} - \frac{1}{2} + \frac{(-12t^2 - 8t - 1)^{1/2}}{4}\right\},\
$$

and
$$
\left\{t = t, s = -\frac{t}{2} - \frac{1}{2} - \frac{(-12t^2 - 8t - 1)^{1/2}}{4}\right\}.
$$

Since $-12t^2 - 8t - 1 \ge 0$ only when $-1/2 \le t \le -1/6$, we can conclude that $s = t$, so that the trinomials in \mathcal{F}_2 do indeed generate distinct quartic fields, and the claim is that the trinomials in \mathcal{F}_3 do indeed generate distinct quartic fields, and the claim is established. -

Acknowledgement

The author thanks the referee for valuable suggestions.

References

- [1] H. Cohen, *A Course in Computational Algebraic Number Theory*, Graduate Texts in Mathematics, 138 (Springer-Verlag, Berlin, 2000).
- [2] J. Harrington and L. Jones, 'Monogenic quartic polynomials and their Galois groups', Preprint, 2024, [arXiv:2404.05487v3.](https://arxiv.org/abs/2404.05487v3)

\blacksquare L. Jones [6]

- [3] A. Jakhar, S. Khanduja and N. Sangwan, 'Characterization of primes dividing the index of a trinomial', *Int. J. Number Theory* 13(10) (2017), 2505–2514.
- [4] L.-C. Kappe and B. Warren, 'An elementary test for the Galois group of a quartic polynomial', *Amer. Math. Monthly* 96(2) (1989), 133–137.
- [5] R. Swan, 'Factorization of polynomials over finite fields', *Pacific J. Math.* 12 (1962), 1099–1106.

LENNY JONES, Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, USA e-mail: doctorlennyjones@gmail.com