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RELATIONS BETWEEN MAHLER'S MEASURE AND 
VALUES OF L-SERIES 

GARY ALAN RAY 

Introduction. Mahler's measure is a natural generalization of Jensen's 
formula to polynomials in several variables. Its definition is as follows: 

M(p) = exp ~nJ2"---fô^P^>---^^---d4 
The importance of Mahler's measure for polynomials in several variables 
lies in its connection to Lehmer's classical question which can be phrased 
in terms of Mahler's measure for polynomials in one variable: 

Given c > 0, are there any polynomials/? with integer coefficients in one 
variable for which 1 < M(p) < 1 + c? 

Surprisingly, Boyd [1] has shown that to answer this question, it is 
necessary to investigate the larger question involving polynomials in 
several variables. 

An unexpected connection has also been discovered between Mahler's 
measure and values of L-series. Smyth has shown that 

log M(l + z, + z2) = ^ L ( 2 , X " 3) = L ' ( - 1, X-3) 

where X-3 is t n e °dd quadratic character of conductor 3. What makes this 
so tantalizing is that next to nothing is known about L(sy x) when s and x 
have opposite parity. In fact, Apery created a sensation by proving 
recently that f(3) = L(3, Xtriv) *s irrational. On the other hand, when s and 
X have the same parity, the values can be written in terms of generalized 
Bernoulli numbers and have great significance in the study of the 
associated algebraic number field. 

Thus the above comments provide the source of motivation for this 
paper exploring the connections between Mahler's measures and values of 
L-series. We are able to find 6 polynomials with integer coefficients such 
that the log of their Mahler measure is a known constant times L(2, x) for 
the 6 characters associated to the imaginary quadratic fields Q ( V — N) 
where N = 3, 4, 7, 8, 20 and 24. Our result when N = 1 is much deeper 
than the other ones and depends on a new identity involving L(2, X-7)-
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This identity is a special case of a more general relation involving sums of 
dilogarithms. 

In Section 1 we begin by recalling some facts about L-series and 
polylogarithms. In Section 2, we introduce for each quadratic character x 
a polynomial gx(x, y) with integer coefficients such that the log of 
Mahler's measure M(gx) is expressible in terms of the dilogarithm 
function. For the odd quadratic characters of conductors 3, 4, 7, 8, 20 and 
24, we then show that 

log M(gx) = (a rational number) X L'( — 1, x)-

The most interesting example is x = X-7> t n e character for the field 
Q ( V —7). No polynomial with integer coefficients was previously known 
which satisfies the above equality for this character. Our result follows as a 
consequence of some new identities involving dilogarithms and L-series in 
Sections 3 and 4. In the case of x = X-7> w e show 

S cos(jifl) x(") 3 
(la) 2a 2 = "T L ( 2 'X)> 

where cos(#) = —3/4. We use this identity to obtain the following 
result: 

(lb) log M{ (y - 1)2(JC6 + x5 + JC + 1) 

4- (y2 4- 5y + l)(x4 4 JC2) 4- ( / 4- \2y 4- 1)JC3) 

= ^ L ' ( - l , X - 7 ) -

In the final section, we see how these identities involving Mahler's 
measure and L-series values for quadratic characters can to some extent be 
generalized to arbitrary Dirichlet characters. Finally, I would like to thank 
Dr. Neal Koblitz for his many valuable suggestions and encouragement. 

1. Definitions and classical results. To fix notation, recall that the Gauss 
sum for a non-trivial character x is defined as 

N-\ 

T(X) = 2 }&k)? 
k = \ 

where 

£ 2m/N 

The definitions of the Bernoulli numbers, generalized Bernoulli numbers, 
and Bernoulli polynomials are respectively: 
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696 GARY ALAN RAY 

B„ = n\ X coefficient of tn in 
é - r 

N 

Bn = n\ X coefficient of tn in 2 ~rft , 
«=o e — 1 

and 

*„{x) 2(:)^-'-/=0 w / 

Then for s = 1, 2, 3, . . . , if x( — 1 ) = (—If, w e have 

£&x) = ( - i r 
2 V N ) s\ ' 

In other words, L(s, x) is known explicitly when s and x have the same 
parity. 

On the other hand, the only case when L(s, x) is known explicitly if s 
and x have opposite parity is when s = 1 and x is even. Suppose, for 
example, that K = Q(\fN) is a real quadratic field with discriminant N 
and fundamental unit 6, and Xyv is t n e Dirichlet character of conductor 
TV associated to this field. The Dirichlet class number formula states 
that 

(la) i (l,x„) = ^ p 

where h is the class number of K. Alternatively, (la) can be rewritten using 
the functional equation for L(s, x)- We now recall how this is done. 

When x is any primitive character, recall that the functional equation 
for L(s, x) is 

(lb) Us,*) = co(x>Kl - s,x) 

where 

and 

"(x) = (-/T;V-1 / 2T(X) 

Us, X) = (N/irY/2T( (s + a)/2)L(s, X) . 

Here a = 0 if x ( ~ l) = l and a = l if x ( - l) = - l. 
Using (lb) with x even and non-trivial, we see that L(0, x ) = 0 and 

(lc) 1/(0, x) = ^ L ( 1 , X ) . 

If x is odd, L ( - l , x) = Oand 
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(Id) L ' ( -1 , X ) = r° L(2,x). 
477 

In the case of the even quadratic character Xyv> 

(le) Z/(0, x/v) = * log c 

We now proceed to write equation (le) in terms of Mahler's measure. 
Recall that Mahler's measure for a polynomial p in n variables is defined 
as: 

M(P)=exp[^ / r • • • / r i°gi/'(^'. • • •. "̂) 1̂ 1 • • • <*4 
In the one variable case, if 

p(z) = a0 E[ (z - a,-), 

Jensen's formula shows that 

M(p) = IOQI I I |af.|. 
K-I>i 

Let k be a real quadratic field and let p€ be the irreducible polynomial for 
€. Then the conjugate of € is ±1 /6 so that 

(If) plx) = ( * - £ ) 
( - - ! ) • 

Since e > 1, it follows from Jensen's formula and (If) that 

(lg) l o g M ( A ) = }z / (0 ,x*) . 

In analogy with (lg). T. Chinburg [2] conjectured that for each odd 
quadratic character x> there exists a polynomial p in 2 variables with 
integer coefficients such that 

(lh) log M(p) = (a rational number) X L'(— 1, x)-

He has shown that there exists a rational function /? with this property. 
The motivation for the conjecture comes from an example by Smyth 
(see [1] ). 

LX-hx-3) = logM(\ + x + y) 

where x-3(fl) = 0, 1 or — 1 depending on whether n = 0, 1 or 2 mod 3, 
respectively. Smyth [9] has calculated Mahler's measure for a large class of 
polynomials. However, no polynomial with integer coefficients was known 
which, for example, satisfies (lh) for the character x-i- We produce such a 
polynomial as a consequence of our main results on linear relations among 
twisted L-series. 
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698 GARY ALAN RAY 

A twisted L-series for any periodic function/:N —> C is defined by 

oo M/v \ 

L(sJ) = Zi — 
^ .7 = 1 ns 

where ji is any complex number of absolute value ^ 1. We will show that 
^u(^ X) c a n be analytically continued as a function of JU to the complex 
plane minus certain rays. 

Recall that the polylogarithm function Lis is defined as 

oo n 

L>s(z) = 2 -
n = \ n 

for \z\ < 1 and s = 1 , 2 , . . . . Notice that 

Li^z) = - log( l - z). 

The branch of the log throughout this paper will be chosen so that 

— 77 < Im(log(z)) ^ 77. 

The formula 

(li) US+](Z) = jl^dt 

where the path of the integral is taken to be the line from 0 to z if 
z £ [1, oo) defines inductively an analytic extension of L/s to the whole 
complex plane minus [1, oo). In addition the improper integral 

along the real interval [0, x] does converge so in fact (li) defines LisJrX(z) 
for all z e C, s = 1, 2, . . . (but it has a discontinuity if z crosses the ray 
(1, oo) ). A good reference for polylogarithms is [3]. 

Suppose /i is a complex number with |/x| < 1, J = f̂  = e~m/N, and x is 
any character of conductor JV. Then 

(ij) v * x) = 2 ^ - ^ 2 3»UKA). 

Now it is clear that even though the series for L (s, x) only converges if /x is 
in the unit disc, L (s, x) c a n be defined on all of C by (lj), as a function of 
/A for fixed s > 1 and x- ^ ( s , x) 1 S analytic on the complement of the union 
of the TV rays 

{z|z = r/fA', r ^ 1} for k = 1, 2, . . . , N. 
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2. Computations of Mahler's measure. In this section, for each character 
X, a polynomial fx(x, y)is defined. Then log M(fx) is computed in terms of 
a linear combination of {L (2, x) } for various /x/s. We will always assume 
X is a primitive non-trivial Dirichlet character unless otherwise 
indicated. 

To motivate our defintion of f suppose that x is an even quadratic 
character. Then by (la) 

n (i - **) 
(2a) y/NLih x) = 2h log e = log e2h = - l o g 

n (1 " **) 
X ( A ) = - 1 

The last equality is a standard result (see p. 199 of [5] ). The products and 
sums over k in this section will run from 1 to N. 

We define for any character x which has even order, 

PX(Z) = n (i - zt\ 

PX(Z) = n (i - z?), 
x(k) = -\ 

and 

fx(x, y) = ypx(x) - px(x). 

Because x n a s even order, x takes on the values 1 and — 1 the same 
number of times. Therefore the degrees of p and px are equal. When x is 
an odd quadratic character, we set 

&x — Jx* x 

where the bar denotes complex conjugation of the coefficients oif. Then 
px = px and it follows that gx G Z[X, y] and gx factors as 

( \~( \( Px(xA( Px(x)\ px(x)p(x)[y - ——)\y - —7-7/ 
x x v Mx)n PX(X); 

Comparing this to the factorization of p€ in (If) and to (2a) shows the 
analogy between the two variable polynomial g and the one variable 
polynomial pc Note that 

log M(gx) = 2 log M(fx), 

as follows directly from the definition. 
It will be shown that 

log M(fx N) = (a rational) X L ' ( - l , X-N) 
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for N = 3, 4, 8, 20, 24, and 7. The case N = 1 will use a special identity to 
be proven in Section 4. 

Let x again be any character of even order. Since /x(0, 0) = — 1, we 
have 

log M(/x) = i - fj [ i - / ^ log | / x (A A ) k#2]d9,. 

Since 

log M(ax — b) = log|a| 4- max{0, log |6/<z| }, 

computing the inner integral first gives 

l o g l / ^ ' 0 I + maxfo, l o g N ^ ) 

Then 

log M(/x) = log M(px) 

+ ^-{ 2 X(k) £log|l - e ' Y l ^ l 

where £2 C [0, 277] is defined as the set of all #, for which 

\px(e
ie<) I i£ | j>x(A |. 

Since all the roots of p lie on the unit circle, 

log M(px) = 0. 

Suppose that £2 is written as a union of intervals U' [T2,_I, T2•]. Set 

/* = A 
Then 

(2b) log M(fx) = i-f 2 # ) E f ' log|l - e 'V l^ , 
X(/c) = ±:l j J T2J-] 

If we let La (Lh) be the line segment from 0 to éa(éh) with 0 < a 
b < 277, and yl the arc on the unit circle between eia and ë , then 

Li2(e
ib) - Li2(e

ia) 

= ( - l og ( l - x ) - - f - l og ( l - x ) -

= j A - log(l - x)— = -i Ja log(l - ^ ) £0, 

since log(l — x) is analytic inside the unit circle. Thus (2b) becomes 
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(2c) l o g M ( / J 

2^ 
Re 

Using (lj) with x a quadratic character, (2c) can be written in terms of 
twisted L-series. In fact 

PROPOSITION \. If \ = X-N 'S an °dd quadratic character of conductor 
N, 

VN 
(2d) log M(fx ) = y— 2 ( - 1 ) 7 + 1 Re L„.(2, x_*). 

" ATT j J 

Proof. Using (lj), factor out the Gauss sum T(X) = i\/N from (2c) and 
take the real part. 

PROPOSITION 2. When the conductor N = 3, 4, 8, 20, or 24, 

log M(gY J = 2 log M(fx J = 8 ~ 2
A

X - ^ ( 2 ) L X - 1, x _ „ ) . 
^X~NJ 

N 

Proof. When TV = 3, 4, 8, 20, or 24, we will see that £2 - [0, TT] with 
juj = 1 and JU,2 = — 1. Given that this is true, 

(2e) log M ( / ) = ~ y/NW, X-N) ~ L.{{2, X-N) ) 
A N 27T 

by Proposition 1. It is an easy exercise to show that for any character x, 

(20 L_x(s,X) = ( 2 1 _ \ ( 2 ) - l)L(s,x). 

Using (2f ), the right hand side of (2e) becomes 

(2g) 
2m 

X-AK2) ]L(2, X-N)-

Finally, using (Id) we simplify (2g) to 

log M(fXf) 

Therefore, 

^f^t-i.x-,). 

log M(gxJ _ 2 log M( / x . „ ) - 8 2 ^ - » < 2 > f ( - i , x _ „ ) . 

To complete the calculation recall that we need to show how to obtain 
{jLtz}, the end points of the region 12. It is easy to show from the class 
number formula that if x = X-N> N ¥= 3 or 4, then px(z)/px(z) is 
real-valued for all z on the unit circle. 
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From this the {JU,-} must be roots of 

(2h) ^ = ± 1 or px(z) ±px(z) = 0 

and must lie on the unit circle. 
A computation reveals that the only such roots when x = X-yv anc^ 

N = 8, 20, or 24 are zbl. A special computation for N = 3 and 4 reveals 
the same roots. 

In order to determine whether Q, corresponds to [0, TT] or [77, ITT], note 
that as z on the unit circle approaches fr for some residue r, p approaches 
0. Therefore 

\px(z) 

on the upper half of the unit circle and 12 = [0, TT]. Thus /Xj = 1 and 

Ih = _ 1 -

The only other polynomial known which satisfies (lh) is g , the 
polynomial given in equation (lb) at the beginning of this section. The 
proof of (lb) depends on (la) which in turn depends on the deeper results 
in the next two sections. 

As a consequence of our main result, we shall prove 

THEOREM 3. Let x be an odd quadratic character of conductor N ^ 3 or 4 
and let A At) be the discriminant off(x, t) considered as a polynomial in x. 
Suppose that for some real number y < 1, A (/) ¥^ Ofor all t between 0 and 
y. Then for each t between 0 and y, f (x, t) = 0 has M = <p(N)/2 distinct 
roots x = xx(t), x2(t), . . . , xM(t), all of which have absolute value one, 
and 

2 Re Lx/(/)(2, x) = ^V^(2, x), 
/ = 1 ^ 

where (i denotes the Moebius function from elementary number theory. 

We now use Theorem 3 to derive the identity (la). 

COROLLARY 4. If 

- 3 4- y ^ 

" = 4 ' 

then 

(2i) Re L„(2, X-7) = ~\L(2, X _ 7 ) . 

Choosing x = X-i-> a calculation shows 
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p = 1 — ax + ax — x = p 

where a = (—1 -f \ / —7)/2 and 

Ax(0 - -7f4 4- 98/3 - 133/2 4- 98/ - 7. 

Ax(0 has only 4 roots; they are approximately .08, 12.6, .67 zb .74/, 
so Ax(0 ¥= 0 for / < 0. Thus |JC#-(/) | = 1 for all f e ( - o o , 0) and all i by 
Theorem 3. Therefore if we choose / = — 1, then 

fx(x9 - 1 ) = 2x3 + x2 - x - 2 

has roots at x = 1, JU, and /X where 

- 3 + V"-^ 
M = — A — • 

By Theorem 3, 

L(2, x_7) + 2 Re L / 2 , X - 7 ) = ~\L(2, X-I) 

because Re L = Re L^ when x is real-valued. Thus 

Re 1^(2, x - 7 ) = ~\L(2, X _ 7 ) . 

If we set cos(#) = —3/4, then Re(ju,'7) = cos(n0) and (1.2i) is seen to be 
equivalent to (la): 

v cos(n0) X(n) 3 

w = l rcz 4 

Surprisingly, no other relations (other than those which follow from the 
Kubert identities, see [6],) with this simple form are known for other 
characters besides X-i- We will examine reasons why x-i ls s o special in 
Section 5. 

Next we complete the proof of (lb). 

COROLLARY 5. With the notation as above, 

log M(gx_7) = ^ L ' ( - l , X - 7 ) . 

Proof. When x = X-7> there are four roots of equation (2h), px(z) zb 
px(z) = 0, with z on the unit circle. They are ± 1 , ( — 3 ± yrzï)/4. In 
fact, 

i - 3 + y ^ 7 
/Xj = 1, jLt2 = M = , M3, = — 1, a n d /x4 = /x. 
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Therefore, by Proposition 1, 

log M(fx) 

= ^ Re[L,(2, x) + L- , (2 , x) " V 2 > x ) - ^ ( 2 , x ) ] 

= ^ L ( 2 , x ) 
77 

by using the identities (2i) and (2f). From (Id) it follows that 

logM(/ x ) = * L ' ( - l , x ) 

and therefore 

log M(gx) = - L ' ( - l , X - 7 ) -

Equation (lb) follows by expanding g in terms of powers of x and >\ 
The next two sections will be devoted to proving Theorem 3. 

3. Linear relations among dilogarithms. In this section we produce 
certain linear relations among dilogarithms. Theorem 11 gives the main 
result, which will be used in Section 4 to obtain linear relations among 
{L (2, x) } f° r fixed Dirichlet characters x- Theorem 14 gives the main 
result in the next section, and Theorem 3 then follows when x *s a n °dd 
quadratic character. 

We begin by recalling a well-known linear relation involving polylogar-
ithms, the multiplicative form of the Kubert identities. They have been 
studied by Kubert and in a recent paper by Milnor, see [6]. Here is a 
sketch of a derivation of these identities. 

Set co = fM. Then 

i - XM = n (i - <A). 
1=0 

Take logarithms of both sides and integrate 5 — 1 times with respect to 
dx/x from 0 to x. This gives 

, M-\ 
(3a) —z jL i s (x M ) = 2 L ^ c A ) . 

AT /=O 

We have ignored the fact that \og(ab) = log(a) + log(Z>) does not hold for 
all complex a and b because of the different branches of the log. 
Nevertheless, (3a) is easily seen to be valid as long as |*| ^ 1 and when 
s = 1, x * co7, / = 0, . . . , M - 1. 
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These Kubert identities can be restated as a linear relation among 
twisted L-series valid for all fixed s and x- To do this, replace x by Çkx in 
(3a), multiply by x(^), and sum from k = 1 to N to obtain 

(3b) Y—±LXM(S, X) = 2 LJx(s, x). 

If we set 

x = e2my and 

oo liriny 

ls(x) = L/5(e
2m>) = 2 — r = ^ ^ Xtriv). 

« = i « 

then (3a) results in the usual form of the Kubert identities: 

(3c) —^ls{My) = 2 / 5( j + i/M). 

Milnor conjectures that all the Q-linear relations among ls for rational y 
are generated by (3c). See [6] for a precise statement of this conjecture. 

Suppose that one instead seeks, for fixed s and x> Q-linear relations 
among {L (s, x) } W l t n algebraic juz. From (2i), we have one such 
relation: 

V 2 ' X-7) + V 2 > X-7) = " ^ ( 2 , X-i) 

where 

- 3 + y ^ 
p = 

is not a root of unity. It is fairly easy to see that this relation does not 
follow from (3b), no matter how x is chosen. 

In this section we modify the previous argument. Our method is based 
on the work of Rogers [7] for dilogarithms. We begin by picking a 
collection of distinct non-zero complex numbers {ak, fik } where there are 
M <xks and M fiks chosen. Define 

M M 

Pipe) = Î T (1 — akx) and p(x) = U (1 - fax). 
k=\ k=\ 

Set 

q(x, t) = tpx(x) - px(x) 

and let 
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(3d) q(x, t) = dM(t)xM + . . . + do(t) = 0 

define a multiple-valued algebraic function. Since q(x, /) is a linear 
polynomial in / and p and p have no common factors, q is irreducible in 
C[x, / ] . For each complex number t = y0 (except for a finite number of 
critical points), q(x, y0) is an Mth degree polynomial in x with M distinct 
roots {xi(y0) }. The critical points cx, c2, . . . , cr are the values of y0 such 
that either 

dM(jo) = ( " l )M ( /o n &. - n «,) = 0 

or q(x, y0) has a multiple root. 
At this point we state the two main theorems in this paper: 

THEOREM 11. Suppose that {ak, fik} are distinct non-zero complex 
numbers such that 

M M 

n ak = n fih 
k=\ k=\ 

Then if y < 1, we have 

M M 

2 2 [U2(PkXi(y)) ~ Li2(akxA(y))} 
i=\ k = \ 

M M 

- 2 2 [Li2(Pk/ai) - L/2(aA./a,.)] 
i=\ k = \ 

= 2m[2 Nf(y) log(rfy) + 2 NÉ(y) log x^y)] - 47r2W(y) 

for certain complex numbers {^/.}, not depending on y, and certain 
integers {W(y\ Nj(y), N^y)}. 

THEOREM 14. If y < 1 and x is a "regular" (see below) primitive Dirichlet 
character of even order m and conductor N, then 

~ M m—\ r> m — \ m — \ 

— 2 2 Lx(y)(2, xh) + — 2 2 L(2, xhXc) 
m / = i />odd,/>=l ' W~ />odd,/?=l c = 0 

r M
 A l 

2 T 7 / [ 2 Nj(y) log(dj) + 2 ^ 0 0 log^-OO] ~ 4 T 7 2 H ^ ) . 

The next two paragraphs outline the plan of the proofs of these two 
theorems and explain some of the terms and notation used in their 
statement. 
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The first step is to rigorously define the M roots {*,•(/) } for all real /. 
Then an operator Tt is defined for each i = 1, . . . , M so that 

W){y) = / o / ( 0 ^ ' . 

We take logarithms of both sides of tp (t) = px(t) and apply Tl to each 
term. Except for some difficulties with the branch cut of the logarithm, 
this produces M equations: 

M 

7;(log)(j0 + 2 L / 2 G 8 ^ ( J O ) - Li2(Pk/at) 
k = \ 

M 

= 2 Li2(akxi(y)) ~ Li2{pik/ai) 
k = \ 

for each / = 1,. . . , M. Lemma 6 and 7 handle the complications with the 
branch cuts. The actual expression is somewhat more complicated. Next, 
Lemmas 8, 9, and 10 show that Tt(\og)(y) converges and if 

M M 

n ak = n pk, 
k=\ k=\ 

then 

M 

2 7;(log)(^) = 0. 
k = \ 

Thus if we sum the M equations from i: = 1 to M, we obtain a linear 
relation among dilogarithms. Theorem 11 gives the precise result. 

In the next section, we use Theorem 11 to derive relations among 
twisted L series at s = 2 for various characters. Choosing a primitive 
Dirichlet character x with conductor N and even order m, we set 

ak = r* and 0k = T* 

where ? = e2m/N. The collection {rA } ( {nk } ) is the set of / G Z/7VZ such 
that x(0 = 1 (x(0 = - 1 ) . T n e condition that IT ak. = I I ^ can be 
expressed as a condition on x", we then say that x is regular. Lemma 12 
shows that many characters are in fact regular. The next step is to rewrite 
sums of dilogarithms in terms of twisted L-series. Lemma 13 gives the 
necessary computations but in order to simplify the statement of Theorem 
14, we introduce the notation 

Un) = 2 x W -
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Even though x is primitive, x m aY n o t be primitive and therefore this 
Gauss sum is not necessarily equal to r(xb)xb(n)' Theorem 14 then follows 
from Lemma 13 and Corollary 15 gives the special case when x is an odd 
quadratic character. Lemma 16 and 17 refine the hypotheses of Corollary 
15 so that the non-vanishing of A (/), the discriminant of fx(x, t) as a 
polynomial in JC implies that the log terms in Theorem 14 vanish; this gives 
Theorem 3. 

We begin the proof of Theorem 11 by defining the various branches of 
the algebraic function defined by q(x, t) = 0. Suppose that y0 is not a 
critical point. Then M distinct single-valued analytic functions xt(t) are 
determined by 

q(Xi(t\ 0 - 0 

for all / i n a neighborhood of y0. Along any path y in C — {cj, . . . , c r}, 
each Xj(t) can be analytically continued. 

We choose y0 = 0 and order these functions by setting xz(0) = \/al 

(each ai is distinct). We then define the curve y to lie along the real axis 
but missing any critical points. Specifically, let c\ < c'2 < . . . < c's denote 
the points in {ch . . . , cr} which are real. Since dM(0) ¥= 0 and there are M 
distinct roots when / = 0, 0 is not a critical point. Let 8X, . . . , Ss be 
semi-circles such that 

Sj = 8j(€) = {z|Im(z) ^ 0, \z - cj| = e}. 

Assume that e is chosen so that no other critical points lie between 8- and 
the real axis. Define the path y = y(e) to be 

( - o o , c ; - e ) U 8 , U . . . U 8 5 U (c's + c, oo) 

as in Figure 1. 

c\ C2 c's 

Figure 1. Analytic Continuation Path 

We still denote by xt(t) its analytic continuation along y. Letting c —» 0, we 
see that xt(t) is now defined unambiguously for all real t <£ {c\, . . . , c's}. 
Furthermore, as long as dM(c'j) ¥^ 0, we can set 

Xi(Cj) = l i m Xjitf H" €) 
J € - 0 J 

because the M roots vary continuously as / varies. However if 

ô = n ak/U Pk, 
then dM(y0) = 0 and some of the M roots become "infinite" and 
disappear. Thus each function x^t) is continuous on the real line minus 

y0 = n v n nk 
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and is analytic near every real point / £ {c\,. . . , cf
s). 

From now on, fix a real number y and define Iy to be the interval 
between 0 and y, i.e., either Iy = [0,y] or [y, 0]. We will assume y is chosen 
so that 

y0 = II a^/II & £ /v. 
From g(x, /) = 0, it follows that for each /, 

M 

11(1 - akxt(t)) 
A: = 1 

f = . 

n (i - /wo) 

Taking absolute values and logarithms of both sides of the above equation 
produces 

Ref 2 [log(l - < W 0 ) ~ log(l ~ / W O ) ] - log(o) = 0. 

However, the imaginary part is not as simple. For / ^ 0, define for each i 
and t G Iy, 

i f 
= — Im { 2 [logO - < W 0 ) - logO - Pkxt(t) ) ) - log(0 ] 

Thus ^ is an integer-valued step function which can only change value 
when xt crosses the branch cut of one of the functions log(l — akx) or 
logO ~~~ &kx)- We n a v e t n e following M equations: 

M 

(3e) 2 [log(l - akxt(t)) ~ logO - &*/( ' ) ) ] = log t + 277^(0, 
A: = 1 

for/ - 1, 2, . . . , M . 
We now define operators {7^} which will be applied to both sides of (3e) 

for each /'. 

Definition. If C is a piece-wise differentiable curve from R to C then for 
any integrable complex-valued function/for which the following integral 
is finite, we define the operator 

Tc(f)(y) = / ; m^dt. 

For each /' = 1, 2, . . . , M, we will choose C{t) = xt(t) and apply the 
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operator Tx (which we abbreviate as 7]) to both sides of equation (3e). 
Before doing so we need to set up some notation and several lemmas. 

Definition. If C is a complex curve and R any complex ray, we say C 
crosses R at x if x ^ C n R and for all open intervals U along R with 
x G U, U <2 C n R. In other works, x is a crossing point if C intersects 
R transversally, if C "touches" R at one point x, or if C initially contacts R 
at x and then continues along R. 

Let us define 

faft) = ~log(l - axt(t)) for all i and 

a e {ax,...9aM, / ? „ . . . , 0 M } . 

Let {*/}, y = 1 ,2 , . . . , denote the set of values of f along the real axis such 
that xt{t) crosses any one of the rays 

Ra = {z\z = r/a, r > 1}, a e {ak> 0k}, 

as in Figure 2. 

Figure 2. Crossing Points 

Define a\ = x^tj). Then we have 

LEMMA 6. Each function xt(t) crosses each ray Ra at most finitely many 
times. If y and {ah j$k} are algebraic, then the complex numbers xt(y) and 
{a/} are algebraic as well for all i and j . 

Proof. We require the following definitions and two theorems from 
Lojasiewitz [4] which we state only for Rm, m = 1 , 2 , . . . . 

Definition. A set E Q Rm will be called semi-algebraic if there exist a 
finite set of polynomials {pr, qs) in m variables with complex coefficients 
such that 

E - {x G Rm\pr(x) = 0 and qs(x) ^ 0}. 

THEOREM (Seidenberg). Suppose A and B are Rm and IT:A X B —* A is 
projection onto the first coordinate. If E is contained in A X B, and E is 
semi-algebraic, then so is TT(E). 

THEOREM (Lojasiewitz). Any semi-algebraic set consists of a finite union 
of connected semi-algebraic sets. 
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To prove Lemma 6, let us fix a e {aA, /}A } and define r\ = aa/. Then 
the points r/ which lie on the curve axt(t) and the ray {r > 1} are among 
the solutions to 

q(x/a, t) = 0 for i , / E R. 

Therefore we apply the first theorem with yl = B = R to the set 

£ = { ( * , y) |?(x/a, J;) = 0 , X G > 4 J G 5 } . 

7r(£') will be a semi-algebraic set by the first theorem and will consist of a 
finite union of intervals (which could be single points) by the second 
theorem. 

Since the a/'s were crossing points of the curve xt with the rays Ra, 
the collection {r/} lie among the end points of the intervals which 
make up 'ÏÏ(E). Therefore there are at most finitely many points where xt(t) 
crosses each Ra. 

If we suppose that y and {ah fik} are algebraic numbers, then the 
coefficients of q(x, y) as a polynomial in x are algebraic as well. Thus each 
xt(y) is algebraic. Also, an inspection of the proofs of the two previous 
theorems from [4] shows that the polynomials which define IT(E) must 
have algebraic coefficients if q(x, y) does. Because the {r/} are the end 
points of the intervals which make up 7r(E), they are then defined by a set 
of polynomial equalities with algebraic coefficients and so must be 
algebraic numbers. 

Since Lemma 6 implies the collection {a/} is finite, let j run from 1 to 
<oz for each /. We have 

LEMMA 7. Fix a G {ak, fik}. For each i = 1, 2, . . . , M, the integral 
T;(fai)(y) converges and there exists a collection of integers {MJ

a j(y) }, 
j = 0, 1, . . . , co/9 such that 

(30 T,(faJ){y) - [Li2(ax,(y) ) - L/2(ax,(0) ) ] 

03 i 

= 2îri 2 MJ
ai(y) log(aa/). 

7 = 1 

Proof. We first show that the integral T;(f f)(y) converges. Looking at a 
more general situation, let C(t) be any continuous function on Iy which is 
analytic in a neighborhood of all except a finite number of points in Iy and 
which crosses [1, oo) at most finitely many times. Further suppose that 
C is analytic at each point t0 where C(/0) = 1. We will first 
show that 

f0-log(l-C(0)^-dt 
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converges. Then setting C(t) = ax^t) will show that Tj(faj)(y) converges 
for each /'. 

Since log(l — / ) / / is continuous except at t = 1, we can bound this 
integral if for each t0 with C(t0) = 1, we can bound 

/ : 
''o+ô C(t) 

- log(l - C(t))^dt 
C(t) 

for all sufficiently small 8. This integral is bounded as long as C(t)/C(t) is 
bounded near each point t0 and the two integrals 

J o /, = I - arg(l - C(t -f t0))dt and 

J 0 12 = J0- logll - C(t + t0)\dt 

converge for 8 sufficiently small. 
To prove II converges, choose 8 small enough so that for all t between t{) 

and t0 + S, C(t) never crosses [1, oo) and C(t)/C(t) is defined and 
continuous. The former is possible since C crosses [1, oo) only finitely 
many times and the latter is possible since C is analytic near each t0. It 
follows by our choice of 8 that the integrand of I} is continuous and 
therefore Ix converges. 

For the second integral I2, note that for t sufficiently near /0, 

1 > |1 - C(t + / 0 ) | >c\t\h 

for some b and c > 0. Since 

C8 

Jo () log c + b \og\t\dt 

is bounded for all 6, we conclude that I2 converges. 
Now if we let C(t) = axt(t), it follows that T^f^Xy) converges as 

well. 
To prove equation (3f), suppose that C{t) is as before and C(0) = z(), 

C(y) = Zj. Then 

/ ; 
C(t) 

0 - log(l - C(t))-^-dt - [U2(C(y)) - L/2(C(0)) 

/;' - iog(i - o - + /*° - iog(i - o -
^ z() ^ J 0 j 

/ ; 
i , dt 

0 - l o g ( l - 0 7 

where the first integral is along the curve C, the second along the line L0 

from 0 to z0, and the third along the line Lx from 0 to zx as in Figure 3. 
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Figure 3. Integration Path 

Combining the first two integrals, we obtain 

f dt f dt 

^ J^c-wi - »7 - JLi-W - »-
with the endpoints as before. 

If none of the curves C, L0, and Lx crosses the branch cut [1, oo), then 
the integrands are analytic inside C U L0 U L, and (3g) is 0. Now suppose 
that only the curve C crosses [1, oo) and it crosses transversally exactly 
once at C(y{) as pictured in Figure 3. Divide C into arcs Cx and C2 and let 
C be the real interval [1, C(yx) ]. Let 

g(t) = lim log(l - (t + ix)) 

and 

h(t) = lim log(l - (t + IJC)). 

Then g(r) — h{t) = 2m for / ^ 1 and by modifying the paths of the 
integrals in (3g), it follows that (3g) equals 

(3h, ±{jU^-i*<^} 
= ± 2 ^ 1 o g ( C ( ^ ) ) 

for some choice of ± sign, depending on which of Lx or L0 Pi C lies in the 
upper or lower half plane. 

If C crosses [1, oo) several times, decompose C into a finite union of 
curves UC where the end points of each C are consecutive crossing 
points, say C(.y7) and C(j^ + 1), along [1, oo). Then applying the argument 
above shows that (3g) equals 

2TH 2 MMog(CCvy) ) 

for some integers MJ. Finally, it is easy to see that this conclusion is still 
valid if either C does not intersect [ 1, oo) transversally at some points y -, or 
L0 or Lj intersects [1, oo). 

https://doi.org/10.4153/CJM-1987-034-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-034-0


714 G A R Y A L A N R A Y 

Therefore, if for each a e {ah J3k} and / = 1, . . . , M we 
set C(t) = axt{t), then C(y;) e {««/} and we can choose integers 
{MJ

aJ(y) } so that we obtain (3f): 

Titfajiy) - [L^axjiy)) ~ L/2(axz(0) ) ] 

= 2m 2 MJ
ai(y) log(<m/). 

LEMMA 8. If t ¥- 1, then xt(t) ¥= 0 for all i = 1, 2, . . . , M Further, 
suppose 

M M 

n «A = n &. 
A = l k = \ 

Then 
M M 

11^(0 = 1/11 «*; 
/ • = 1 ^ = 1 

//z#/ is, the product of these functions of t is constant. 

Proof By gathering coefficients of powers of x in equation (3d), we see 
that 

-q(x, t) = (-\)M(U ak-U Pkt)x
M + . . . + ( 1 - 0 = 0. 

If / ¥= 1, then the constant term of q(x, t) is not zero. Therefore none of 
the roots {xi} can be 0. Given our hypothesis, we also have 

0 - 0 1 ru(o = (-iy — ,w • l (-\)Maiak-tnPk) Uak 

The lemma follows. 

Recall that Bi was defined by 

M 

Im { 
277 VA:=1 

log(l - / W ) ) ] - log(0]}. 

i r 
2>,.(0 = — Im ( 2 [log(l - akxt{t)) 

We also have 

LEMMA 9. If I £ I then the integral 7J(log)(y) converges and 

to 

(3i) T^BiXy) = 2 Sj(y) log(a/) 
7 = 1 

+ N,(y) log x,(y) + M,(y) log(a,) + 2mWt(y) 
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J or some integers {Sj(y)9 Nt(y), Mt(y), Wt(y) } which depend on y. (Note: 
the number i in the factor 2m should not be confused with the subscript i.) 

Proof We first show that 7^(log)(^) must converge. Since 1 £ Iv,y < 1 
and xt(t) ¥* 0 on I by Lemma 8. We suppose that y < 0. Choose 8 > y so 
that for all t in Iy with 8 < t < 0, x'i(t)/xi(t) is defined and continuous. 
Set 

B = maxt sup |log(7) |, sup 
M [5,0] 

Recall that log was defined so that 

— 77 < Im log(f) ^ IT. 

We see that |7]-(log)(>>) | is less than or equal to 

: / ' i o g ( o ^ f t 
x,{t) 

+ I/: 
' ' log(0 ^ U 

*/(0 

1 *,-(') 
A 

if y < — 1 (if — 1 < y < 0, remove the third integral and let the limits of 
the second be from 8 to y). The first integral is 

m\8\ - 8\log\8\ + m\8\\. 

Using the inequality \a\ + |6| = \a + bi\, the second integral is seen to 
be 

1 x'(t) 
log|r| Re ^-dt 

log|f| Im ^-dt + 
x,(0 

' i m ^ * 
*,-(0 

' R e ^ 
*,-(') 

Notice that log|/| is negative on the entire range of integration. Therefore, 
we can bound these four integrals if we can bound 

/ ; 
*xo dt 

c * , • ( ' ) 

for all real c and d < 1. 
Let C(t) be the curve xt(t) from ^ (c ) to xt(d). Then the techniques in 

Lemma 6 easily show that C(t) crosses the ray ( — oo, 1] at most finitely 
many times. Therefore 

fd x'(t\ f fa 
\ -±\dt = I - = log x:(d) - log x,(c) + 2mWt 

J C X;(t) JL t 
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where Wl is an integer depending on the winding number of C around 0. 
This shows the second integral converges. Similarly, the third integral 
converges and an easier argument shows that 7^(log)(j) converges if 
y > 0. 

To prove (3i), recall that Bt(t) was an integer-valued step function which 
could only change value if / e {//}, i.e., if / is a point where xt(t) crosses 
one of the rays Ra. Let ^ ^ j be the characteristic function on the interval 
[a, b]. Then 

^(%,/>])(>0 = logxf.(6) - log *,.(<!) + liriWi 
if [a, b] Q Ir Here Wtis an integer which depends on the winding number 
of X;(t) around 0 as / runs from a to b. Wt will be 0 if xt(t) never crosses 
( - c o , 0). By expressing Bt as a finite sum of characteristic functions, 
it follows that then there exists integers Wt{y), Sj(y),j = 1, . . . , co,, N; 
and Mt such that 

03 i 

(3j) T^B^y) = 2 S{{y) log(a/) + ImW^y) + Nt(y) log xt(y) 
7 = 1 

- Mt(y) log x,(0). 

Since ^(O) = I/a,, the lemma follows. 

LEMMA 10. If 

M M 

n ak = n &, 
A = l A = l 

//ze/7 provided y < 1, 
A/ 

2 7;(log)(;0 = 0. 

Proof. By Lemma 9, 7^(log)(j) converges for each i iî y < 1. Clearly, 

2 7)(log)(̂ ) = /"log(/) 2 f ^ W 
/• = 1 

' U / = i L ^ ( 0 

Us >ing the product rule, it is easy to see that 

M (n^-(o) 
2 
/ = 1 

*;(o 
*/(0 

v / = i 

n x,.(/) 

By Lemma 8, I I xt(t) is constant, so the ratio above is 0 for all values of /. 
Therefore 

https://doi.org/10.4153/CJM-1987-034-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-034-0


MAHLER'S M E A S U R E 717 

M 

2 2;.(log)(>0 = 0 iîy< 1. 
i=\ 

If we apply the operator Tt to equation (3e), Lemmas 7, 8 and 9 show 
that for each i = 1, 2, . . . , M, 

(3k) 7 ^ 2 [log(l " «Ax,(0) - log(l - Hkx,{t))]\ 
1 k J 

- 7J(logX^) - litiT^B^y) 

= 2 [ L / 2 f e ( 0 ) - U2(akXi(t) ) ] 

- 2 [ l i i feCO) ) - L/2(a,x,(0) ) ] 
k 

- TfiogXy) - 2mNi(y) log xt(y) + 4772Wf(.y) 

- 2 J M , ( J > ) log(a,) + 2 Si(y) log(a/) 

- 277/J2 MikJ(y) \og(aka{) - 2 M ^ O ) log(^a / ) ] = 0. 
1 k,j k,j 

Summing (3k) over all values of /', the term 

2 7;(iogX.y) 
i 

will disappear by Lemma 10. Let us also reorganize the indexing of the 
sums appearing in the last two lines of (3k). Let 

{dj} = U { « „ & , « / } 

and choose integers {NAy) } such that the last two lines of (3k) become 

2m 2 Nj(y) l o g ^ ) . 
j 

Finally, set 

2wfO0 = »'(>'). 
i 

The main theorem of this section has now been proven: 

THEOREM 11. Suppose that {ak, fik} are distinct non-zero complex 
numbers such that 

M M 

n ak = n pk. 
k=\ k=\ 

https://doi.org/10.4153/CJM-1987-034-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-034-0


718 G A R Y A L A N RAY 

Then if y < 1, we have 

M M 

(31) 2 2 [U2tfkXi(y)) ~ U2(akXi(y))] 
/ = ! A = l 

M M 

2 2 [̂ 2(/V<*,) ~ £/2(V«/)] 
/ = 1 A = l 

= 2777 f 2 A^(J) log(rfy) + 2 %> ' ) log x 7( j ) - 47T2W(y) 
j 

for certain integers {N-(y)9 Nf(y)9 W(y) } depending on y. Furthermore, if 
{ak, fik } and y are all algebraic numbers, then each d and xÉ(y) is algebraic 
as well. 

Theorem 11 shows that certain linear combinations of dilogarithms can 
be expressed in terms of elementary functions. It does not seem possible to 
derive this result directly using the functional equations in Roger's paper. 
In any case, he does not consider how the branch cuts involved affect his 
identities. 

In the next section we will choose the aks and fiks so as to obtain a 
linear relation satisfied by {L (29 x) } f° r fixed x, m many cases without 
any logarithm terms. 

4. Twisted L-series identities. Let x t>e a n v Dirichlet character of 
conductor TV and even order m with m dividing <p(N). Let 

M = <p(N)/m = #{k e Z/NZ\X(k) = 1} 

= #{k e Z/NZ\X(k) = - 1 } . 

We set 

£ = <?«»*, K ) = {^}x(,) = 1, and {fa} = tf*}^-,. 
That is, 

p(z) =p{z) = 1 1 ( 1 - zf*) 
X(A) = 1 

and 

P(Z) = p(z) = n (i - z?). 
X(k) = \ 

Note that both p and p have degree M = q>(N)/m. Then set 

fx(x9 y) = q(x, y) = ypx(x) - px(x). 

Notice that this agrees with the definition of f given in Section 2. 
We will now investigate when the condition 
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M 

k=\ 

M 

= ru 
k=\ in Lemma 8 is satisfied. 

To simplify notation, define rk (resp. nk) to be the k{ value of / = 1, 
2, . . . TV such that x(0 = 1» (resp. —1). In this case of a quadratic 
character, rk (resp. nk) denotes the kih residue (resp. non-residue). 

Definition. Set 

M M 

L = 2 rk and L' = 2 «*• 

Then we will call a character x regular if TV divides L — U. 

It follows immediately that if x is regular, then 

n ak = n r* = n r* = n &, 
so the conditions of Lemma 8 are satisfied. For example, if x is even, 
L — I! = 0, and this shows that all even characters are regular. 

LEMMA 12. (a) If TV is prime and x is odd, x *s regular if and only if the 
order of x is n°t TV — 1. 

(b) The odd quadratic character X-N ™ regular if N ¥= 3 or 4. 

Proof For the first statement, let g be a primitive root mod TV. x 1S °dd, 
so 

L - L' = 2L mod N9 

and x is regular if and only if N\L. Let m be the order of x-

{N-\)/m-\ 1 _ v - l 

L - 2 (gw)* = , g
 m - 0 mod TV 

k=0 1 - g 

as long as m ^ iV - 1. If ra = TV — 1, then L = 1, and so TV { L. 
The second statement follows from the Dirichlet class number 

formula: 

A - 1 

Nh = 

N 

2 kX(k) - i | L - L ' ' 
if x is the character for any imaginary quadratic field 

Q(^N) * Q(V=T), Q(V=3)-
Given that x is regular, the conditions of Theorem 11 are satisfied and 

we obtain 
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(4a) 2 2 [Li2(^x,(y) ) - Li2(^x,(y) ) ] 
; k 

- 2 2 [ W - " ) - Li2(^-ro ] 
i k 

= 277/12 A (̂>0 log dj + 2 % j 0 log xtiy)] - 47T2W(y) 
J l 

for all y < 1. 
We next investigate when the left hand side of (4a) can be expressed as a 

sum of twisted L-series. 

Definition. If x is any primitive character of conductor TV, define 

Xh(n) = 2 xW". 
k=\ 

If x is primitive and (b, <p(N) ) = 1, it is easy to show that xh is primitive 
also. A well-known property of Gauss sums for primitive characters shows 
that 

X » = <Xh)x\n) for all n. 

Here r denotes the Gauss sum. However, x is not necessarily a multiple 
of the character x if (b> <p(TV) ) > 1, but it is periodic with period dividing 
N. Even though xt is n o t a character, L (s, xh) can be analytically con­
tinued as L (s, x) was, namely 

N 

L^ xh) = 2 xb(k)Li2(tf
k). 

k = \ 

It is easy to see that if |/x| < 1, this definition agrees with the original 
definition of a twisted L-series for the periodic funct ion/ = \h. Then, 
for example when x is primitive and x = Xi, 

L(s, x) = T(X)L(S9 X). 

LEMMA 13. Let x be a primitive Dirichlet character of conductor N and 
even order m. Let 

M = <p(N)/m = #{k\x(k) = 1}. 

Recall that 

K> = M ) = 1} and{nk} = {/|X(0 = -1} . 
For any /i G C and any s = 2, 3, . . . , 

M ~ m—\ 

(4c) 2 \LiMTk) - L>M"k) 1 = - 2 L^s, Xft) 
k = \ m /,odd,/>=i 
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and 

M M 

(4d> 2 2 [utf*-") - u^-'t)] 
i = \ k = \ 

~ m—\ m—\ 

2 2 L(s, XbXc)-
m c=0 bodd,b=\ 

Proof. It is easy to see that 

V J>(ir\ = /^/2X(^) «X(^) = ±1, 
ddt=i ' 1 ° otherwise. 6odd,Z>=l 

Therefore if Z> runs over the odd integers from 1 to m — 1 in the following 
sums, 

2 
- 2 L (5, xb) 
m boàà 

= 2 ( - 2 x*(*)tao«J*) 
A = l ^ m fodd 

M 

This proves (4c). 
To prove (4d), we expand both sides using the series for Lis(x). The nth 

term of the left hand side is 

(4e) {Ep"){2r'"-r}/«s. 
But an easy calculation shows 

M j m — 1 

2 r"B = - 2 î(») 
1=1 W c = 0 

and 

M ~ N 

2 r*" - r*" = - 2 2 xh(ktn. 
k = \ m k = \ />odd 

Using the above equalities, (4e) becomes 
~ m — 1 m — 1 _ 

i S 2 Xft(«)Xc(«)/^ 
m c = o />odd,/>=i 
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which is the nth term of the right hand side of (4d). 

Our main result in this section can now be proven: 

THEOREM 14. If y < 1 and x is a regular primitive Dirichlet character of 
even order m and conductor N, then 

rs m—\ ~ m~\ m — \ 

(40 — 2 2 Lx<v)(2, xh) + — 2 2 L(2,XfcX,) 
m , bodà,b=\ ' ' m bodd,b=l c=0 

r M
 A i 

277/J2 ^ ( j O log(^) + 2 N,(y) logx,(y)\ - 4ir2W(y) 

where 

idj) = u {rs r*, «/} 
#/?<i {J^CyX N:(y), Nj(y)} are certain integers depending on y. Further­
more if y is algebraic, then all the d's are algebraic as well. 

Proof. Simply apply Lemma 13 with s = 2 to equation (4a). 

COROLLARY 15. Let y < 1 and let x =
 X-N be an odd quadratic 

character of conductor N > 4. Suppose that \xt(t) | = 1 for all t between 0 
and y and each i. Then 

M A/AA 

(4g) 2 Re LXi(v)(2, x) - ^ 1 ( 2 , x ) = 0 

where (i is the Moebius function. 

Proof Since x is quadratic, m is 2 and the indices b and c run from 1 to 1 
and 0 to 1, respectively. An argument from elementary number theory 
shows that 

2 SN = frN) 
(k,N) = \ 

where jl(N) is the Moebius function of N defined as (— l)v if TV = 
P\Pi • • -Pv> where each/?, is a distinct prime, fi{N) = 0 if N is divisible by 
a square. Therefore, x0(n) = (l(N) if («, N) = 1, XiXo = £(N)r(x)x> a n d 
(4f) becomes 

(4h) - 2 T(X)L A . ( > ) (2 , x) + ~ T ( X ) L ( 2 , x) - \r(X)2L(2, X
2) 

= Iml^Njiy) log dj + 2 My) log *,0)} ~ ^2W(y). 
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Dividing (4h) by — T(X) = ~i^/N and taking real parts gives 

2 Re LXi{y)(2, x) ~ ^ V ^ ( 2 , X) 
/ • = 1 

277 

7ÏÏ 
{^Nj(y) log\dJ{ + 2 AJOO logl^O) l ) . 

By hypothesis, l*^/) | == 1 for all t between 0 and y. Therefore |^ | = 1 
for ally and 1^(^)1 = 1 for all i. Thus, the right hand side of equation 
(4h) is 0. 

The following two lemmas will show that the hypothesis about the 
absolute values of the algebraic functions xt(t) can be replaced by a simple 
condition on the zeroes of A At), the discriminant of fx(x, t) as a 
polynomial in JC. 

LEMMA 16. If x is any regular odd character and y is a real number, then 
1 /3c is a root of q (x, y) = 0 whenever x is. 

Proof Because x is odd, p(x) = p(x). Then 

p(l/x) = 11(1 - ?/x) 
F(i/x) i i(i - r /*) 

(using a convenient abbreviation of notation) 

n(3c - n 

= r 
L-L'no ~ rrx) 

no - rnx) 
= (p(x)) 

The last step used the regularity of x to show that fL L = 1. Since y is 
real, we have shown that \/x is a root if x is. 

LEMMA 17. Let xbe a regular odd quadratic character. If&x(t) ¥= Qfor all 
t G Iy, then \xt(t) | = 1 for all i and all t e Iy. 

Proof. By assumption &x(t) ¥= 0 on Iy9 so there are no real critical points 
of the algebraic functions defined by fx(x9 t) = 0 on this interval and 
therefore each xt(t) is analytic near every point of Iy. Suppose that for 
some x(t) G: {xt(t) }, there exists a p o i n t y e Iy such that \x(y0) \ ¥= 1. 
By Lemma 16, the function l/x(t) satisfies 

fUfr') 0. 
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By Lemma 8, x(t) ¥= 0 on Iy. Therefore, \/x(t) is analytic and must be 
equal to one of the M algebraic functions {xt(t) } on the interval Iy. 
Furthermore, 

x(y0) ^ l/3t(j>0)-

This implies x(t) and \/x(t) are distinct; in fact, since A (/) ¥= 0 on Iy, 
x(t) ¥= \/x(t) for all t e Iy. But |*(0) | = 1 so 
x(0) = l/x(0), a contradiction. We conclude that |x,(0 | = 1 on the entire 
interval / 

Lemma 17 applied to Corollary 15 completes the proof of Theorem 3 
which we restate below. 

THEOREM 3. Let x be an odd quadratic character of conductor N ¥= 3 or 4 
and let A (/) be the discriminant off(x, t) considered as a polynomial in x. 
Suppose that for some real number y < 1, A (/) ¥= Ofor all t between 0 and 
y. Then for each t between 0 and y,f (x, t) = 0 has M = <p(N)/2 distinct 
roots x = Xj(0, x2(t), . . . ,xM(t), all of which have absolute value one, 
and 

(4i) 2 Re LXi(!)(2, x) = ^P-L(2, x). 

Since 0 is not a root of Ax(/) and x((0) ¥= 0 for all /, there must exist an 
open interval around 0 where the conditions of Theorem 3 are satisfied. 
Since there exist infinitely many real algebraic numbers in every open 
interval, we also have 

COROLLARY 18. There exist infinitely many collections {JU,} of <p(N) 
algebraic numbers for each odd quadratic character x of conductor N such 
that 

<KN) 

(4j) 2 Lft(2, x) = fcN)L(2, x)-
z = l 

Proof Choose / to be a real algebraic number sufficiently close to 0 and 
let 

Hi = xi(0 a n d M2/-1 = */(0-

Then each /xz is algebraic and since x is real, 

A*. + L = 2 Re Lx (fV 

The corollary then follows from Theorem 3. 

We note that equation (4i) seems to be valid whenever 
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\xt(t) | = 1 for all /, 

regardless of the hypotheses of Theorem 3. However, this has not been 
proven. In fact, there are many examples when the numbers {JCZ-(0 } are all 
roots of unity. For example, if t = 0, xt(0) = f ~r' for all /. In this case, the 
resulting identity (4i) does follow from the Kubert identities. There are 
other examples when t ^ 0. Here is one with x = X-i-> t ~ —4.79 and 

(4k) I L ( 2 , x) + ^ ( 2 , x) + L r3(2, x) + ^< 2 > x) + V 2 ( 2 > *> 

+ L?(29 x) + L r s (2 , x) = 0. 

Using (3b) with x = 1 and M = 3, 4, 6 and 12, we find that (4k) does 
indeed follow from the Kubert identities after some simplification. 

This leads to the following question which we have not been able to 
resolve: 

If t is chosen so that the roots off(x, t) are all roots of unity, then is 
equation (4i) always valid and does this identity follow from the Kubert 
identities? 

5. Extensions of previous results. In this section, we first show that our 
method of producing polynomials g such that 

log M(gx) = (a rational number) X L'(—\9 x) 

will apparently only work for those odd quadratic characters mentioned 

before, namely X-3> X-4> X-7» X-g> X-20> a n d X-24- W e s t a r t bY 
investigating the number of points z = /A, on the unit circle such that 

\px(z)/px(z)\ = 1. 

Let this number be n . Recall that we computed Mahler's measure from 
equation (2d) by expressing each of the nx terms Re L^(2, x) as a rational 
times L(2, x)- Thus it seems reasonable to look at all odd characters of 
even order with a small value of n 

LEMMA 19. Let N be the conductor of an odd Dirichlet character x with 
even order. If vx equals the number of sign changes in the sequence 
(X(*) Ix(^) = ±l}for k = 1, 2, . . . , TV + 1, then nx ^ Vyc 

Proof. As z approaches fr on the unit circle, 

l/frOO 1 ^ Q 

As z —> fw, the ratio approaches oo. Thus there must be a point on the unit 
circle between fr and fw where the ratio is 1. This corresponds to a sign 
change in the sequence of x values. 

https://doi.org/10.4153/CJM-1987-034-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1987-034-0


726 G A R Y A L A N R A Y 

PROPOSITION 20. Fix positive even integers m and B. Then there exists 
at most a finite number of odd Dirichlet characters x of order m such that 

Proof. We will bound the conductors TV of the characters which satisfy 
the hypotheses. Since x n a s even order m, x takes on the values 
± 1 2q)(N)/m times as k runs from 1 to N. Therefore, for a given 
B, the condition *>x = B implies there exist integers a and b with 
1 ^ a < b ^ N + 1 such that at all values k between a and Z>, either x(^) 
is never —1 and x(k) equals 1 at least 2<f>(N)/(mB) times or x(^) is never 1 
and x(k) equals —1 at least 2<j>(N)/(mB) times. In other words, there must 
be a string of consecutive l's or — l's of length 2cj>(N)/(mB) in the 
sequence (x(^) Ix(^) = ± 1 } for A: = 1 to TV + 1. 

Let x ^ denote the il conjugate of x in Q(x) = Q(£m)- Then 

2 X{'\k) = 0 

unless x(k) = ± 1 - The Polya-Vinogradov inequality, [10], pp. 143-147, 
implies that 

2 X(k) < V^V log(TV). 

Therefore 

<jp(m) 

b 

2 X(k) 
X<Lk) = ±\,k=a 

By our choice of a and b: 

2<p(N) ^ 
(5a) 

mB 

b 

2 X(k) 
X!Lk) = ±\,k=a 

2 2 x('}(*) 
i k =a 

< v ^ log(TV). 

< q{m)y/Nlog(N). 

Elementary estimates show 

cN 
<p(N) > 

log(TV) 
for some c > 0. Thus 

2c VW 
mB 

< (log(TV) )z. 

Since \/N grows faster than any power of log(TV), for N sufficiently large 
this inequality is false. Thus N is bounded and the number of characters is 
finite. 
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The estimates used above are much too crude to be practical however. 
We could have used the character sum estimates of Burgess, but they 
involve undetermined constants. Instead, by obtaining sharper estimates 
for odd quadratic characters, we prove 

PROPOSITION 21. The only primitive odd quadratic characters x w^tn 

nx = 2 are X-3> X-4> X-8> X-20> and X-24- The only such X with nx = 4 
arex-i and x~\5-

Proof. When x 1S a n °dd quadratic character, it is easy to show the 
inequalities: 

< log(TV) 
2^N 

= 2 ar 

<p(A0 + 2 

4V^V 

if ^x = 2 and 

< log(TV) 

if *>x = 4. If TV is the conductor of x» N is the absolute value of the 
discriminant of the associated quadratic field. Thus N = TV7, 47V, or 87V' 
where TV' is odd and square-free. We will find the largest conductor N such 
that 

<p(N) + 2 

This will suffice for both cases v = 2 and 4. 
First we will bound w(TV'), the number of prime factors of N'. Let 

iv = n ^ 
Then 

«w = n^ r ' nu -i) 
so 

4Upf2 l o g u i ^ - J . 

The left hand side increases faster than the right as ni increases. Therefore, 
assume that ni = 1 for all /. Clearly the left hand side is greater than or 
equal to 

2 X 4 X 6 X . . . + 2 

\/3V5\/7 . . . 

A calculation reveals that if co(N') > 4, the above inequality is false. 
Hence co(TV') ^ 4. 
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If N = 47V', <p(TV) = 2<KTV'), a n d 

<p(N') + 1 

4VTV' 
< log(4TV'). 

A similar calculation shows that œ(N') ^ 4. This also follows if 
TV = 87V'. 

Secondly, a bound for TV' will be obtained. Suppose that TV = TV'. Since 
co(TV') ^ 4, 

<p(N') = TV' 11(1 - I/o,) è T V ' - X - X - X — ^ —TV'. 
3 5 7 11 77 

Therefore 

16 
/TV' + 1 

77 
< log(TV'). 

A calculation shows TV' < 7360. If TV - 4TV', TV' < 10510. Finally, if 
TV = 8TV', TV' < 5260. All quadratic characters with conductor TV in these 
ranges were examined by computer. The final result is the statement of 
Proposition 21. 

The one character we have not examined previously is x = X-i5- There 
are four roots of px(z) ± px(z) = 0 in this case: /ij, /x2 and their complex 
conjugates. However, none of these are roots of unity and it does not 
appear possible to isolate the two unknown terms in equation (2d), namely 
Re L^ (2, x) and Re L (2, x)> a s w e did for the single term Re 1^(2, x) 
when x = X-i-

Since we have found so few examples when Mahler's measure gives a 
rational times L'(— 1, x), l e t us instead try to find polynomials/ in two 
variables whose Mahler measure is a linear combination of derivatives of 
L functions with rational or even algebraic coefficients. We can extend the 
previous work directly to certain characters of even order m without much 
additional work. 

PROPOSITION 22. Let x be an odd character of even order m and conductor 
TV such that x is primitive for all odd b less than m. Suppose that the region £1 
defined in Section 2 as the set of 6 e [0, 2TT] such that 

\px(e'e) | â \px(e'e) | 

consists of the interval [0, TT] with fi{ = 1 and /x2 = — 1. Then 

(5b) log M(fx) = — Re{ 2 (2 - xh(2)/2)L\- 1, x
h) \ . 
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In particular, (5 b) holds if the conductor N of x is a Fermât prime and 
m = <p(N) or ifN = 2a for a > 2 and the order of x is <v(N)/2 = 2a~2. 

Proof Using equation (4c) and the fact that x is primitive, we simplify 
(2c) and obtain 

, m— 1 

(5c) log M(fx) = — Re 2 iT(x
h)[-L{(2, x") + £ - i (2 , x") ]• 

W7T bodd,b=\ 

The term L_j can be simplified using (1.2f), producing 

^ m — \ 

(5d) log M(/ x) = — Re 2 (x"(2)/2 - 2)/r(X
/))L(2, x*)-

W77 />odd,/>=l 

Finally, the functional equation (Id) allows (5d) to be expressed in terms 
of Z/, as in (5b). 

If TV is a Fermât prime, then y(N) is a power of 2 and it is clear that 
(Z>, <p(N) ) = 1 for all odd b less than <p(N). Furthermore, since the order of 
X is <p(N), 

\px(z)/px(z) | = | (1 - V V O " £N]Z) I = 1 

precisely when z = ± 1 . It is then easy to show that 12 = [0, TT] and /Xj = 1 
and jLt2 = — 1. Therefore the conditions of this proposition are satisfied. 

Suppose that the conductor TV is equal to 2a for a > 2. Then the group 
(Z/JVZ) has 4 elements of order 2, zbl and ±.b where b = 52" mod 2a. 
Thus if x has order m = <p(iV)/2, 

i , V ~ , M i(i - frxi - r M i 
i ^ ) ^ ) i - i ( 1 - r . z X 1 - ^ ) i 

where f = f2û. 
A calculation shows that 

\px(z)/px(z)\ = 1 

if and only if 

px(z)/px(z) = ± £ ' - f t . 

Solving for z, we obtain two roots, z = =t 1 of 

(5e) a1-* =b i)z2 - (rh + s> + (r* + o* ± f1-* + i .= o 
lying on the unit circle. We therefore find that Q consists of [0, IT] and so 
jLtj = 1 and /i2 = — 1. Thus the conditions of Proposition 22 are satisfied 
in this case also. We remark that this provides infinitely many examples of 
characters for which (5b) holds. 

We now present an alternate way of generalizing our results in Section 1 
to odd characters of even order greater than 2. Let F be Q(xX t n a t 1S t n e 
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field containing the values of x- Let DF be its different. Then for a fixed 
element a e D^\ define 

Va(k) = Tr(ax(k) ) = 2 a^\k), 

where a^ denotes the ith conjugate of a in F. By the definition of the 
different, 7]a has integer values for all k. Finally, set 

PV(Z)= n (i -$kzf«{k) 

MI(Z)= n (i - f*z )^> 

Va(k)<0 

and 

The value of k in the products runs from 1 to N. It is easy to see that if x is 
quadratic and a = 1, f = f As before, define the region £2 Q [0, 277] to 
be the set of 0 such that 

\Py](e'e)\ ^W4e'e)\. 

We then have 

PROPOSITION 23. Let x &£ <?« odd character of even order. Suppose that £2 
consists of the interval [0, 77] with fil = 1 #n<i /x2 = ~ 1. Then 

(50 log M(/„ ) = I 2 «(/>(2 - ^)(2)/2)L'(- 1, X
0))-

Proof. A computation similar to the one in Section 2 shows that if 
£2 = [0, 77], then 

(5g) log M(/„ ) = ^ Re 2 n,a(/r)[-Lj2(f*) + L i 2 ( - f * ) ] . 
A = l ' " « 27T 

We write out the nl term of the Taylor series for 

N 

2 jia{k)Li2(^y 
k=\ 

(5h) -^ 2 Tja(*)M"f*" 

= ̂  2 «0) 2 x" W 
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n
 J 

Therefore setting ju = ± 1 , from (5g) we obtain, 

(5i) log M(fvJ = -L Re 2 ia^T(X
(i))[-Lx(2, ^ ) + L_,(2, ^ ] 

Z77 y 

= — Re 2 /a0)T(x (7))(x^(2)/2 - 2)L(2, / ^ ) . 
277 y 

From the fact that x is odd, it is easy to see that 

N 

2 *a{k)Li2(p.?) 
k = \ 

is purely imaginary. Therefore, we do not need to take the real part in (5i). 
Thus applying (Id) to (5i), we obtain (5f) and the proposition is proven. 

Propositions 22 and 23 extend Corollary 2 by giving collections of 
polynomials in two variables whose Mahler measure can be expressed as a 
linear combination of derivatives of L functions with algebraic coeffi­
cients. However, f and/^ do not have integer coefficients in general; the 
coefficients would lie in the field Q(x)- O n e could of course multi­
ply together all the conjugates of fx (or fv ) to obtain a polynomial in 
Z[x,y]. 

There are many directions which could be pursued. One is to try to use 
the generalization by Sandham [8] of the methods of Rogers to obtain 
identities similar to (3k) with trilogarithms instead of dilogarithms. The 
resulting relations would undoubtably be extremely complicated and 
further progress is intimately tied to an old unsolved problem of finding 
functional equations for general polylogarithms. 

It would also be desirable to attack the following questions: 
(i) Are there other "nice" identities for other characters besides X-7? 

(ii) Do there exist polynomials pJx, y, z) for each non-trivial even 
quadratic character x such that 

log M(p^) = (a rational number) X L'{ — 2, x)? 

(iii) Finally, is Mahler's measure the natural quantity to look at when 
investigating these questions? 
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