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Abstract

Background: Maintaining the adequacy of systemic oxygen delivery is of utmost importance,
particularly in critically ill children. Renal oxygen extraction can be utilised as metric of the
balance between systemic oxygen delivery and oxygen consumption. The primary aim of this
study was to determine what clinical factors are associated with renal oxygen extraction in
children after Norwood procedure.Methods:Mechanically ventilated children who underwent
Norwood procedure from 1 September, 2022 to 1 March, 2023 were identified as these patients
had data collected and stored with high fidelity by the T3 software. Data regarding
haemodynamic values, fluid balance, and airway pressure were collected and analysed using
Bayesian regression to determine the association of the individual metrics with renal oxygen
extraction.Results:A total of 27,270 datapoints were included in the final analyses. The resulting
top two models explained had nearly 80% probability of being true and explained over 90% of
the variance in renal oxygen extraction. The coefficients for each variable retained in the best
were −1.70 for milrinone, −19.05 for epinephrine, 0.129 for mean airway pressure, −0.063 for
mean arterial pressure, 0.111 for central venous pressure, 0.093 for arterial saturation, 0.006 for
heart rate, −0.025 for respiratory rate, 0.366 for systemic vascular resistance, and −0.032 for
systemic blood flow. Conclusion: Increased milrinone, epinephrine, mean arterial pressure, and
systemic blood flow were associated with decreased (improved) renal oxygen extraction, while
increased mean airway pressure, central venous pressure, arterial saturation, and systemic
vascular resistance were associated with increased (worsened) renal oxygen extraction.

Parallel circulation represents a unique circulatory physiology in which the systemic saturation
is dependent on a weighted average of the systemic and pulmonary venous saturations. The
weights for this average depend on the relative proportion of blood flow going to the pulmonary
and systemic circulations. This ratio of pulmonary and systemic blood flow is further dependent
on the relative resistances in these two beds.1–3

Optimal management of children with parallel circulation, particularly after the Norwood
operation, requires a thorough understanding of the nuances of the circulation and
understanding of how the circulation is impacted by various clinical interventions. Data on
the impact of clinical interventions on the physiology itself are limited. More detailed
understanding of these impacts could better help improve the management of the children.

Oxygen extraction reflects the balance between oxygen delivery and oxygen consumption, or
in other words, the adequacy of systemic oxygen delivery. Increased oxygen extraction has been
demonstrated to increase morbidity and mortality, with oxygen extraction of 30–40 being as a
period of increased risk of morbidity, such as impaired neurodevelopment, acute kidney injury,
hepatic insufficiency, necrotising enterocolitis, and cardiac arrest increase.4–22

The primary aim of this study was to utilise high fidelity data to characterise the association
of various clinical parameters and renal oxygen extraction in children with parallel circulation
after the Norwood operation.

Methods

Study design

This study protocol was approved by the institutional review board. It is in concordance with the
Helsinki Declaration. This study was a single-centre, retrospective study aimed to characterise
the association between various clinical parameters and renal oxygen extraction. The resulting
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model and the ability to predict the renal oxygen extraction were
not necessarily the main aim of this study, but rather to
demonstrate the relationship between the independent variables
and renal oxygen extraction.

Variables of interest

The variables of interest collected were as follows: central venous
pressure, heart rate, respiratory rate, mean arterial blood pressure,
arterial saturation by pulse oximetry, renal near infrared
spectroscopy, peak airway pressure, mean airway pressure, positive
end expiratory pressure, body temperature, fluid balance,
epinephrine dose, norepinephrine dose, dopamine dose, dobut-
amine dose, vasopressin dose, nitroprusside dose, and nicardipine
dose. Patient weight and gestational age were also collected.

All the data except for vasoactive doses were collected from the
T3 software. T3 is software designed to integrate multiple data
streams in real time in clinical settings. The data from all the
streams can then be displayed by the software in a user-defined
fashion. Additionally, T3 also estimates the venous saturation and
then displays the probability of the venous saturation being under
30, 40, or 50% in a metric known as the index of inadequate
delivery of oxygen. The T3 software collects data from the available
streams at an interval of 5 s, thus offering high temporal resolution.

Central venous pressures were obtained by use of femoral lines
terminating in the inferior caval vein. Line placement was
confirmed by radiographs.

Renal near infrared spectroscopy values were collected. Near
infrared spectroscopy values were obtained using the Casmed
ForeSight Elite tissue oximeter.

Vasoactive doses were collected manually through the
electronic medical record as charted. It is local practice to
document every time an infusion dose has been changed and at
regular intervals. Doses of all vasoactive infusions were collected
for each timepoint at which the data from T3 were collected.

Fluid balance was collected manually through the electronic
medical record as charted. It is local practice to update fluid
balance hourly. Fluid balance for each timepoint at which T3 data
were collected was collected as the fluid balance for the hour prior
to that timepoint.

Some values were also calculated. Renal oxygen extraction was
calculated as ((arterial saturation by pulse oximetry – renal near
infrared spectroscopy)/(arterial saturation by pulse oximetry)) ×
100. Thus, if the arterial saturation were 80 and the renal near
infrared spectroscopy value was 60, the renal oxygen extraction
ratio would be 25. Oxygen consumption in ml/min was estimated
using the LaFarge equation. Systemic blood flow was calculated by
dividing the estimated oxygen consumption by the arteriovenous
oxygen content difference. The renal near infrared spectroscopy
value was used for this. Systemic vascular resistance was then
calculated using the following equations: (mean arterial blood
pressure – central venous pressure)/systemic blood flow.

Patient inclusion

Neonates with functionally univentricular hearts who underwent a
Norwood operation were eligible for inclusion in this study. Data
must have been collected and available for patients in T3 for
patients to be included in this study. T3 was implemented locally
on 1 September 1, 2022 and a final inclusion date of 1 March, 2023
was utilised. Only data while patients were intubated and
mechanically ventilated were included as this allowed for airway
pressures to be quantified. Data were available at five second

intervals for patients with T3 data. Datapoints were included in the
final analyses only if there was a central venous pressure and airway
pressures available at that specific timepoint.

Statistical analyses

The primary statistical aim of the analyses was to model renal
oxygen extraction ratio using the other collected data in order to
quantitatively assess the association of the various parameters with
renal oxygen extraction ratio. This was done utilising a Bayesian
linear regression. Renal oxygen extraction ratio was the dependent
variable, and the following independent variables were included:
central venous pressure, heart rate, respiratory rate, mean arterial
blood pressure, arterial saturation by pulse oximetry, mean airway
pressure, body temperature, fluid balance, epinephrine dose,
norepinephrine dose, dopamine dose, dobutamine dose, vaso-
pressin dose, nitroprusside dose, nicardipine dose, estimated
systemic blood flow, and estimated systemic vascular resistance.
The Jeffreys–Zellner–Siow prior was utilised. The top 10 most
likely models were evaluated.

Bayesian statistics were utilised rather than frequentist
regressions for several reasons. The details of these are beyond
the scope of this manuscript but in general Bayesian statistics
allows for generating a distribution for all point estimates. This
allows for the quantification of the probability of specific outcomes
and models describing the outcomes. Bayesian models have also
been demonstrated to be more well-fitted and reproducible.

Statistical analyses were conducted using JASP Version 0.16
(University of Amsterdam, Amsterdam, Netherlands). P-values
are not presented as Bayesian statistical tools, and no frequentist
statistical tools were utilised.

Results

Cohort information (Table 1)

A total of 27,270 datapoints were included in the final analyses.
These were collected from nine patients over a total of 1,338 patient
hours (55.7 days). As per the inclusion criteria for retaining
datapoints in the final analyses, central venous pressure and airway
pressures must have been available for the data for a timepoint to
be included. It is important that the sample size here is 27,270 as
the analyses are done on a datapoint level and not on an individual
patient level.

Average gestational age was 38 weeks with 2 patients being
premature. Average patient age at the time of the Norwood
operation was 20 days. This was due to two patients getting their
Norwood done closer to 2 months of life following a hybrid
procedure. When these two patients are excluded, the mean age at
time of Norwood was 2 days. Of the nine patients for whom data
were collected, two had an identified genetic anomaly.

Regarding vasoactive agents, epinephrine was utilised during
91% of the timepoints at which data were collected, dopamine
during 14.5%, milrinone during 24.8%, and nitroprusside during
3.8%, and vasopressin 0.3%. Norepinephrine, dobutamine, and
nicardipine were not utilised in any of the patients during the study
period.

Regression analyses (Table 2)

The most probable model had a probability of 71.5% and an R2

value of 0.932. The R2 value indicated that 93.2% of the variability
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in renal oxygen extraction ratio could be explained by the model
and it’s included variables.

The most probable model retained the following independent
variables: milrinone, mean airway pressure, mean arterial pressure,
central venous pressure, arterial saturation by pulse oximetry,
heart rate, respiratory rate, systemic vascular resistance, and
systemic blood flow.

The coefficients for each variable retained in the best were as
follows: −1.70 for milrinone, −19.05 for epinephrine, 0.129 for
mean airway pressure, −0.063 for mean arterial pressure, 0.111 for
central venous pressure, 0.093 for arterial saturation by pulse
oximetry, 0.006 for heart rate,−0.025 for respiratory rate, 0.366 for
systemic vascular resistance, and −0.032 for systemic blood flow.

Correlation was present in this analysis between independent
variables such as milrinone and systemic vascular resistance,
milrinone and systemic blood flow.

To put the above in a more clinically relevant context, a
0.5 mcg/kg/min increase of milrinone is associated with a 0.85
decrease in renal oxygen extraction, a 0.01 mcg/kg/min increase of
epinephrine is associated with a 0.19 decrease in renal oxygen
extraction, a 1 cmH20 increase in mean airway pressure was
associated with a 0.12 increase in renal oxygen extraction, a
5 mmHg increase in mean arterial pressure was associated with a
0.31 decrease in renal oxygen extraction, a 1 cmH20 increase in
central venous pressure was associated with a 0.11 increase in renal
oxygen extraction, a 5 increase in arterial saturation by pulse
oximetry was associated with a 0.46 increase in renal oxygen
extraction, a 10 beat per minute increase in heart rate was
associated with a 0.06 increase in renal oxygen extraction, a 5
Woods units increase in systemic vascular resistance was
associated with a 1.83 increase in renal oxygen extraction, and a
1 l/min increase in systemic blood flow was associated with a 0.03
decrease in renal oxygen extraction.

Thus, increased milrinone, epinephrine, mean arterial pressure,
and systemic blood flow were associated with decreased
(improved) renal oxygen extraction, while increased mean airway
pressure, central venous pressure, arterial saturation by pulse
oximetry, and systemic vascular resistance were associated with
increased (worsened) renal oxygen extraction.

The second most probable model had a probability of 10.9%
and an R2 value of 0.931. Thus, the twomost probable models had a
total probability of 82.4%; thus, these two models were able to
explain amajority of the data, accounting for 93% of the variance in
renal oxygen extraction. The second most probable model was
similar to the most probable model except for the addition of
temperature as a retained variable.

Discussion

The current study demonstrates factors that were statistically
significantly associated with renal oxygen extraction in mechan-
ically ventilated children with parallel circulation after the
Norwood operation. Renal oxygen extraction improved with
increases in milrinone, epinephrine, mean arterial pressure, and
systemic blood flow while renal oxygen worsened with increasing
mean airway pressure, arterial saturation by pulse oximetry, and
systemic vascular resistance. Of equal note is that other vasoactive
agents such as dopamine, vasopressin, and nicardipine did not
demonstrate any statistically significant effect on renal oxygen
extraction.

While statistical significance was demonstrated for the above-
mentioned variables, milrinone and systemic vascular resistance
seemed to be the most clinically significant. The subjective review
of the change in the variable needed to modify renal oxygen
extraction was most clinically possible. For instance, a 1 change in
renal oxygen extraction would require a 15 mmHg change in mean
arterial pressure which in a neonate is an unlikely clinical change to
experience.

Table 1. Descriptive data regarding cohort

Principle cardiac diagnosis (frequency)

Hypoplastic left heart syndrome 5

Tricuspid atresia 2

Small left sided structures 2

Genetic anomaly (frequency) 2

Premature (frequency) 2

Age at Norwood (days) 20.5 ± 32.0

Weight at Norwood (kg) 3.3 ± 0.2

Table 2. Association of variables with change in renal oxygen extraction

Variablea
Beta-

coefficient Clinical interpretation

Milrinone
(mcg/kg/min)

−1.700 An increase in milrinone of 0.5 is
associated with a decrease in renal
oxygen extraction by 0.85.

Epinephrine
(mcg/kg/min)

−19.050 An increase in epinephrine by 0.02
is associated with a decrease in
renal oxygen extraction by 0.38.

Mean airway
pressure (cmH20)

0.129 An increase in mean airway
pressure is associated with an
increase in renal oxygen extraction
by 0.12.

Mean arterial
pressure (mmHg)

−0.063 An increase in mean arterial
pressure of 10 mmHg is associated
with a decrease in renal oxygen
extraction by 0.63.

Central venous
pressure (mmHg)

0.111 An increase in central venous
pressure of 1 mmHg is associated
with an increase in renal oxygen
extraction by 0.11.

Arterial saturation
by pulse oximetry
(%)

0.093 An increase in arterial saturation
by pulse oximetry of 5 is associated
with an increase in renal oxygen
extraction by 0.46.

Heart rate 0.006 An increase in heart rate by 10 is
associated with an increase in
renal oxygen extraction by 0.06.

Respiratory rate
(breaths per
minute)

−0.025 An increase in respiratory rate by
10 is associated with a decrease in
renal oxygen extraction by 0.25.

Systemic vascular
resistance (woods
units)

0.366 An increase in systemic vascular
resistance by 1 is association with
an increase in renal oxygen
extraction by 0.36.

Systemic blood
flow (L/min)

−0.032 An increase in systemic blood flow
by 1 is associated with a decrease
in renal oxygen extraction by -0.03.

aOnly variable with significant associations are included in the table.
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Oxygen extraction can be evaluated regionally using near
infrared spectroscopy as a surrogate for venous saturation. The
correlation between near infrared spectroscopy and underlying
venous saturations has been demonstrated.23More importantly, an
independent association between regional near infrared spectros-
copy values and morbidity and mortality has been demon-
strated.24–28 Use of superior or inferior caval vein saturations, or
analogously, cerebral or renal near infrared spectroscopy seems
reasonable according to findings of published data, despite
anecdotally perpetuated superiority of the superior caval vein
saturation or cerebral near infrared spectroscopy.27,28

Parallel circulation is a unique circulation in which the systemic
venous blood and pulmonary venous blood mix. Thus, the
systemic arterial saturation becomes a weighted average of the
systemic venous and pulmonary venous saturation with the
weights of each being dictated by the relative amount of pulmonary
and systemic blood flow. The systemic and pulmonary blood flow
have a unique relationship in that cardiac output is the sum of these
two individual flows and a change in either must be met by a
change of equal magnitude but opposite direction in the other
circulation if total cardiac output remains constant. This delicate
balance of saturations and flows between the pulmonary and
systemic circulations puts children with parallel circulation at
greater risk of experiencing inadequacy of systemic oxygen
delivery.1 The findings of this study seem to demonstrate that
increased systemic oxygen delivery seems to largely be mediated by
increase in systemic blood flow and decreased systemic vascular
resistance.

A growing body of data has helped lend valuable insight into the
factors that help mediate this balance and subsequently decrease
the risk of morbidity and mortality, particularly in parallel
circulation.14,29–70 The current data add to the present data with the
benefit of high temporal resolution of collected data. This is
particularly beneficial in characterising the associations with
changes in vasoactive medication doses. Data regarding dose-
dependent changes in haemodynamics in the setting of CHD is
lacking, nonetheless in the setting of parallel circulation.46,71,72

Characterisation of vasoactive support has largely been done based
on the vasoactive-inotrope score which assigns relatively arbitrary
coefficients to the dosage of vasoactive medications to result in a
score which has subsequently been demonstrated to correlate with
morbidity and mortality. This more vasoactive support worse
outcome approach doesn’t directly reflect haemodynamic changes.
A scoring system in which coefficients are based on haemody-
namic changes associated with vasoactive medications could be
much more telling and have a more pragmatic impact on bedside
vasoactive titration.

The adequacy of systemic oxygen delivery represents the
relative balance between oxygen delivery and oxygen consump-
tion.73 Systemic oxygen delivery is the product of cardiac output
and oxygen content. Cardiac output further breaks down into the
quotient of oxygen consumption and the arteriovenous oxygen
content difference, while oxygen content is a function of
haemoglobin, arterial saturation, and partial pressure of oxy-
gen.74,75 With this in mind, it becomes apparent why convention-
ally monitored haemodynamic parameters may not reflect
systemic oxygen delivery as they do not actually directly influence
them.9,20 Additionally, monitored pressures are a product of flow
and resistance and resistance cannot be quantified in any
meaningful way, nonetheless on a second-to-second base. Thus,
whether a change in arterial pressure, for instance, is due to an

increase in cardiac output or system vascular resistance cannot be
easily delineated. This, however, is of utmost importance if arterial
pressure is to be used to guide clinical care as increased blood
pressure driven by increased cardiac output may help improve
systemic oxygen delivery while increased blood pressure driven by
increased systemic vascular resistance may actually decrease
systemic oxygen delivery.

The current data serve as a proof of concept that high fidelity
haemodynamic monitoring tools such as T3 can be used to help
more clearly characterise the effects of various clinical factors,
including vasoactive medications in vivo. This is important as
much of the current understanding of such effects vastly
originates from ex vivo studies or animal studies. Ex vivo studies
lack the ability to replicate in vivo feedback mechanism while
animal studies may not be generalisable to humans due to
differences between species. Even human in vivo data from
specific subsets of patients may not be generalisable to all
humans. But leveraging large, high fidelity sets from multiple
institutions in a manner done in the current study may help
characterise in vivo effects of vasoactive medications in specific
patient populations.

The novel application of high-fidelity haemodynamic data is
one strength of this study. Additionally, factors such as vasoactive
medication doses and fluid balance which aren’t captured by the
T3 system were manually collected in high fidelity to be combined
with the T3 dataset, allowing for additional insight. The
characterisation of effects was done at a time point level, which
led to a robust sample size of underlying data. Additionally, the use
of baseline values with subsequent time points allowed for some
characterisation of the effect of time with the principles of causal-
mediated analysis. Additionally, the high temporal resolution of
data further sides to this. The incorporation of fluid balance, airway
pressures, multiple haemodynamic variables, and multiple
vasoactive medications help make the variable specific effect
estimates more convincing. The use of Bayesian statistics is also a
strength of this study as it allowed for quantifying the probabilities
of the dependent and independent variables as well as allowed for
comparison of multiple models to help determine which model
was most helpful. The high probability of the data being explained
by the top two models and the high degree of similarity between
these two models (second most probable model included all the
same instrument variables as the most likely and included the
addition of only a single variable) speak to the strength of the
resultingmodels. The selection of a very specific patient population
may have also contributed to the ability for models to be quite
predictive.

The study is not without its limitations. Some vasoactive
medications, specifically nicardipine, could not be well charac-
terised due to the relatively short duration they were utilised during
the study period. As this is a single centre study generalisability
may be limited. For instance, centres who utilise routine
postoperative alpha blockade or differing cardiopulmonary bypass
strategies may see slightly different effects of specific vasoactive
medications. The overall physiologic implications should be less
variable. The local practice of using specific vasoactive medications
also affects the generalisation of this data. For instance, the
institution in the current study does not utilise norepinephrine or
nicardipine as much as other centres may and may utilise
dopamine more often than other centres may. Additionally,
cerebral near infrared spectroscopy data were not available during
this monitoring period for technical reasons.

4 R. S. Loomba et al.

https://doi.org/10.1017/S1047951124025174 Published online by Cambridge University Press

https://doi.org/10.1017/S1047951124025174


Conclusion

In children with parallel circulation immediately following the
Norwood operation, increased milrinone, increased epinephrine,
mean arterial pressure, and systemic blood flow were associated
with decreased (improved) renal oxygen extraction, while
increased mean airway pressure, central venous pressure, arterial
saturation by pulse oximetry, and systemic vascular resistance were
associated with increased (worsened) renal oxygen extraction.
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